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ON DOUBLY ALTERNATIVE ZERO DIVISORS IN
CAYLEY–DICKSON ALGEBRAS

S. A. Zhilina∗ UDC 512.643, 512.554

Zero divisors of Cayley–Dickson algebras over an arbitrary field F, charF �= 2, are studied. It
is shown that the zero divisors whose components alternate strongly pairwise and have nonzero
norm form hexagonal structures in the zero-divisor graph of a Cayley–Dickson algebra. Properties
of the doubly alternative zero divisors at least one of whose components has nonzero norm are
established, and explicit forms of their annihilators, orthogonalizers, and centralizers are obtained.
Properties of the zero divisors in Cayley–Dickson algebras with anisotropic norm are described,
and it is shown that in this case, directed hexagons in the zero-divisor graph can be extended to
undirected double hexagons in the orthogonality graph. A criterion of C-equivalence for elements
of Cayley–Dickson algebras with anisotropic norm is obtained. Possible values of dimension for
the annihilators of elements in Cayley–Dickson algebras are considered. Bibliography: 23 titles.

1. Introduction

A convenient method for visualizing a binary algebraic relation R is to define the corre-
sponding graph. Its vertices represent the elements or their equivalence classes in an algebraic
structure under consideration, and there is an edge from x to y if and only if xRy. The
most popular relation graphs of various algebras are the commutativity, orthogonality, and
zero-divisor graphs.

Studying relation graphs is a rapidly expanding branch of modern mathematics. Among the
fields where relation graphs find particularly important applications, one should mention the
problem of classifying relation preserving mappings, see [5], and the isomorphism problem,
that is, exploring the interrelation between an isomorphism of algebraic structures and an
isomorphism of the corresponding relation graphs, see [6, 12].

This work aims at studying the commutativity and orthogonality relations, the relation of
forming a pair of zero divisors, and also the graphs induced by them for a particular class of
nonassociative algebras, namely, the Cayley–Dickson algebras. The study of Cayley–Dickson
algebras started in the theory of composition algebras, i.e., those algebras that possess a strictly
nondegenerate quadratic form n(·) satisfying the identity n(ab) = n(a)n(b) for all elements of
the algebra.

In 1898, Hurwitz proved that the unital composition division algebras over R are exhausted
by the real numbers R, complex numbers C, quaternions H, and octonions O. Later the
Hurwitz theorem was extended by Jacobson to arbitrary unital composition algebras over an
arbitrary field F, charF �= 2. He demonstrated that any such algebra A is isomorphic to a
Cayley–Dickson algebra An of dimension 2n, where 0 ≤ n ≤ 3, see [11, p. 61, Theorem 1]. This
result was generalized to a field F of arbitrary characteristic by Zhevlakov et al., see [20, p. 46,
Theorem 1].

In general, the Cayley–Dickson algebras over a field F, charF �= 2, form a family of 2n-
dimensional algebras An, n ∈ N0, that are defined inductively: A0 = F, and at every step
the algebra An+1 is obtained from An by applying the Cayley–Dickson process with a certain
parameter γn ∈ F\{0}. The elements of An+1 are the ordered pairs of elements from An, that
is, they are of the form (a, b) ∈ An×An. For n ≥ 4, the algebras An are not alternative, whence

∗Lomonosov Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dol-
goprudny, Russia, e-mail: s.a.zhilina@gmail.com.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 514, 2022, pp. 18–54. Original article
submitted October 4, 2022.
496 1072-3374/23/2724-0496 ©2023 Springer Nature Switzerland AG

DOI 10.1007/s10958-023-06444-8



they are not composition algebras. Consequently, even in the case where the norm on An is
anisotropic, An contains zero divisors. The problems of classifying them and describing their
annihilators are rather difficult, except for some particular cases.

At present, most authors restrict their attention to the real algebras of the main sequence,
which we denote by Mn. In this case, F = R, and all the Cayley–Dickson parameters are equal
to −1. The most successful studies of zero divisors in these algebras are due to Moreno [14–16]
and Biss, Dugger, and Isaksen [3, 4]. Particularly, in [3, 4] the dimensions of the annihilators
of their elements were completely described, and the zero divisors with annihilators of the
largest possible dimension were classified. Then Pixton [18] obtained a similar result for the
dimensions of the alternators in these algebras.

It should be mentioned that Moreno was the first who studied doubly alternative elements
in the real algebras of the main sequence, that is, the elements both of whose components
are alternative in the preceding algebra of the sequence. He established several important
properties of the doubly alternative zero divisors, see [14, pp. 25–27]. As it was shown
in [15, p. 15], a reason why the doubly alternative elements can be successfully studied is that
though the composition identity n(ab) = n(ba) = n(a)n(b) does not hold in the entire algebra
Mn for n ≥ 4, it is valid if a, b ∈ Mn alternate with each other.

Among the recent works on the relation graphs of real Cayley–Dickson algebras one should
mention the papers [9, 10, 21], where the relation graphs of the low-dimensional real Cayley–
Dickson algebras, namely, of the split-complex numbers, split-quaternions, split-octonions,
split-sedenions, and sedenions, have been described. In the author’s papers [22, 23], the zero
divisors in the real Cayley–Dickson algebras whose components satisfy additional conditions on
their norm and alternativity were studied, and the isomorphism problem for the orthogonality
graphs on pairs of basis elements of real Cayley–Dickson algebras was solved.

In the present paper, we generalize the results obtained in [22] for the real Cayley–Dickson
algebras to the case of arbitrary Cayley–Dickson algebras over a field F, charF �= 2, and the
results obtained in [3,14,22] for the real algebras of the main sequence are extended to the case
of arbitrary Cayley–Dickson algebras with anisotropic norm. Corollary 3.3 and Lemma 5.6
correct some inaccuracies occurring in the proofs of Lemma 4.6 and Corollary 5.9 in [22]. Also
we study the possible dimensions of the annihilators of elements in arbitrary Cayley–Dickson
algebras.

The paper is organized as follows: In Sec. 2, we introduce the main definitions and notation,
which are used throughout the paper. In particular, we give a detailed description of the
Cayley–Dickson process in Sec. 2.2 and recall some properties of the Cayley–Dickson algebras
in Sec. 2.3.

Section 3 extends some well-known results on subalgebras in the real algebras of the main
sequence to the case of arbitrary Cayley–Dickson algebras. Namely, in Lemma 3.4, Corol-
lary 3.8, and Theorems 3.7 and 3.9, we establish a sufficient condition for two or three elements
to generate an associative or an alternative subalgebra and present the multiplication table
for the elements of this subalgebra. The proofs of these results are based on constructing a
homomorphism from A2 or A3 to the subalgebra in question.

In Sec. 4, we consider pairs of the zero divisors in arbitrary Cayley–Dickson algebras whose
components have nonzero norm and alternate with each other. In Sec. 4.1, it is shown that they
form hexagonal patterns in the zero divisor graph. Lemma 4.1 plays the key part in studying
such elements because it allows one to construct a new pair of zero divisors given a pair of them.
The main result of Sec. 4.1 is Theorem 4.13. In Sec. 4.2, we describe properties of the doubly
alternative zero divisors at least one of whose components has nonzero norm. Lemma 4.19 and
Theorem 4.22 establish an explicit form of their annihilators and orthogonalizers and describe
the relationship between their centralizers and orthogonalizers.
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In Sec. 5, we consider zero divisors in the Cayley–Dickson algebras with anisotropic norm.
Lemmas 5.1 and 5.6 generalize the results on properties of zero divisors in the real algebras
of the main sequence obtained in [14]. Corollary 5.4 shows that two noncentral elements of a
Cayley–Dickson algebra with anisotropic norm are C-equivalent, i.e., their centralizers coincide
if and only if their imaginary parts are proportional to each other. Theorem 5.11 states that
in the case of Cayley–Dickson algebras with anisotropic norm, the directed hexagons in the
zero divisor graph from Theorem 4.13 can be extended to undirected double hexagons in the
orthogonality graph.

Section 6 is devoted to studying possible values of dimensions for the annihilators of elements
in Cayley–Dickson algebras. Examples 6.3, 6.4, and 6.5 demonstrate that, in general, the
dimension of an annihilator can be either divisible by four, or even but not divisible by four,
or odd. However, in accordance with Theorem 6.11, in the case of Cayley–Dickson algebras
with anisotropic norm, the dimension of an annihilator is always divisible by four. This result
generalizes Theorem 9.8 in [3] on the dimensions of annihilators in real algebras of the main
sequence.

2. Main definitions and notation

2.1. Algebraic relations and their graphs. Let F be an arbitrary field and let (A,+, · ) be
an algebra over a field F, possibly noncommutative and nonassociative. We say that a, b ∈ A
anticommute if ab+ ba = 0, and a, b ∈ A are orthogonal if ab = ba = 0. We denote the set of
zero divisors (left, right, or two-sided) in A by Z(A), the set of two-sided zero divisors in A
by ZLR(A), and the (commutative) center of A by CA.

Definition 2.1. Let a be an arbitrary element of an algebra A.

• The centralizer of a is the set CA(a) =
{
b ∈ A | ab = ba

}
of all elements in A that

commute with a.
• The anticentralizer of a is the set AncA(a) =

{
b ∈ A |ab+ ba = 0

}
of all elements in A

that anticommute with a.
• The orthogonalizer of a is the set OA(a) =

{
b ∈ A | ab = ba = 0

}
of all elements in A

that are orthogonal to a.
• The left annihilator of a is the set l.AnnA(a) =

{
b ∈ A | ba = 0

}
.

• Similarly, the right annihilator of a is the set r.AnnA(a) =
{
b ∈ A | ab = 0

}
.

It is clear that CA(a), AncA(a), OA(a), l.AnnA(a), and r.AnnA(a) are linear spaces over F.

Definition 2.2. Elements a, b ∈ A are said to be C-equivalent if CA(a) = CA(b) and O-equi-
valent if OA(a) = OA(b).

Notation 2.3. Given a subset X of a linear space W over F, we denote the set of lines passing
through elements of X by

P(X) = {[x] = Fx | x ∈ X \ {0}}.
Introduce some relation graphs, which will be studied in this paper.

Definition 2.4. Let A be an arbitrary algebra. Define the following relation graphs of A:

• The commutativity graph ΓC(A): its vertices are the elements of

P(A/CA) = {[a+ CA] = Fa+ CA | a ∈ A \ CA},
and distinct vertices [a+ CA] and [b+ CA] are adjacent if and only if ab = ba.

• The orthogonality graph ΓO(A): its vertices are the elements of P(ZLR(A)), and distinct
vertices [a] and [b] are adjacent if and only if ab = ba = 0.
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• The directed zero divisor graph ΓZ(A): its vertices are the elements of P(Z(A)), and
distinct vertices [a] and [b] are connected by a directed edge ([a], [b]) if and only if
ab = 0.

Note that the edges of ΓC(A), ΓO(A), and ΓZ(A) are well defined. When speaking of the
vertices of these graphs, we will not distinguish between a nonzero element a and the line
[a] = Fa passing through it. Also we denote span(a1, . . . , ak) = Fa1 + · · ·+ Fak.

2.2. Constructing Cayley–Dickson algebras. We refer the reader to [13,19] for auxiliary
definitions and general properties of the Cayley–Dickson algebras.

Definition 2.5. Let A be an algebra over a field F with an involution a �→ ā. The algebra
A{γ} produced by the Cayley–Dickson process applied to A with a parameter γ ∈ F, γ �= 0,
is defined as the set of ordered pairs of elements of A with the operations

α(a, b) = (αa, αb);

(a, b) + (c, d) = (a+ c, b+ d);

(a, b)(c, d) = (ac+ γd̄b, da+ bc̄)

and the involution
(a, b) = (ā,−b),

where a, b, c, d ∈ A, α ∈ F. If the involution on A is regular, that is, a + ā ∈ F1A and
aā = āa ∈ F1A for all a ∈ A, then the involution on A{γ} also is regular, see [19, p. 435].

Proposition 2.6 ( [13, p. 161, Exercise 2.5.1]). Let γ′ = α2γ for an α �= 0. Then the algebras
A{γ} and A{γ′} are isomorphic.

In the sequel, we assume that charF �= 2. Now we define an arbitrary Cayley–Dickson
algebra, which is determined by a set of its parameters.

Definition 2.7. Given an integer n ≥ 0 and nonzero numbers γ0, . . . , γn−1 ∈ F, we define the
Cayley–Dickson algebra An = An{γ0, . . . , γn−1} by induction as follows:

(1) A0 = F, and e
(0)
0 = 1 is its single basis element.

(2) If An{γ0, . . . , γn−1} is constructed, then An+1{γ0, . . . , γn} = (An{γ0, . . . , γn−1}){γn}. Its

basis elements are e
(n+1)
0 , . . . , e

(n+1)
2n+1−1

, where

e(n+1)
m =

{
(e

(n)
m , 0), 0 ≤ m ≤ 2n − 1,

(0, e
(n)
m−2n ), 2n ≤ m ≤ 2n+1 − 1.

For every integer n ≥ 0, the structureAn in Definition 2.7 is a 2n-dimensional algebra over F

with the unit element e
(n)
0 and a regular involution. We denote 1 = e0 = e

(n)
0 and k = ke

(n)
0

for k ∈ F.

Definition 2.8.

• Let a ∈ An. Its trace is t(a) = a+ ā, its imaginary part is Im(a) = a−ā
2 , and its norm

is n(a) = aā = āa. Since the involution on An is regular, we have t(a), n(a) ∈ F.
• An element a ∈ An is said to be pure if t(a) = 0.
• An element (a, b) ∈ An+1 is said to be doubly pure if t(a) = t(b) = 0.

Proposition 2.9 ( [19, p. 435]). The trace and norm of an element (a, b) ∈ An+1 can be
determined inductively by using the following relations:

t((a, b)) = t(a),

n((a, b)) = n(a)− γnn(b).

From Proposition 2.9 it follows that the norm n(·) is a nondegenerate quadratic form on An.
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2.3. Properties of the Cayley–Dickson algebras. In what follows, we assume that A is
an arbitrary algebra over a field F, and An = An{γ0, . . . , γn−1} is an arbitrary Cayley–Dickson
algebra over a field F, charF �= 2.

Proposition 2.10 ( [19, p. 440]). Let 〈a, b〉 denote the F-valued symmetric bilinear form
associated with the quadratic form n(a). Then, for all a, b ∈ An, 〈a, a〉 = n(a) and 2〈a, b〉 =
ab̄+ bā = āb+ b̄a = t(ab̄). In addition, for arbitrary a, b ∈ An it holds that 〈a, b〉 = 〈ā, b̄〉 and
t(a) = 2〈a, e0〉.
Notation 2.11. We write a ⊥ b if a and b are orthogonal with respect to 〈·, ·〉, that is,
〈a, b〉 = 0.

Lemma 2.12 ( [19, Lemmas 2 and 6]). For all x, y, z ∈ An we have

(1) t([x, y, z]) = 0;
(2) 〈x, yz〉 = 〈xz̄, y〉 = 〈ȳx, z〉.
Definition 2.13. Let F = R.

• The algebra An{γ0, . . . , γn−1} is called a real Cayley–Dickson algebra of the main se-
quence if γk = −1 for all k = 0, . . . , n− 1. We denote this algebra by Mn.

• The algebra An{γ0, . . . , γn−1} is called a real Cayley–Dickson split-algebra if γk = −1
for all k = 0, . . . , n − 2 and γn−1 = 1. We denote it by Hn because the norm on Hn

appears to be hyperbolic.

Proposition 2.14 ( [10, Proposition 3.31]).

• Let a =
2n−1∑

m=0
ame

(n)
m , b =

2n−1∑

m=0
bme

(n)
m ∈ Mn. Then 〈a, b〉 =

2n−1∑

m=0
ambm is a Euclidean

inner product. Particularly, n(a) =
2n−1∑

m=0
a2m, whence n(a) = 0 if and only if a = 0.

• Let a =
2n−1∑

m=0
ame

(n)
m , b =

2n−1∑

m=0
bme

(n)
m ∈ Hn. Then 〈a, b〉 =

2n−1−1∑

m=0
ambm −

2n−1∑

m=2n−1

ambm.

Remark 2.15. In the case of real algebras of the main sequence, the norm of a is frequently
defined as

√
aā, in contrast with the definition n(a) = aā used in this paper. However, most

results can readily be extended to the norm modified in this way.

Example 2.16.

• The complex numbers (C), quaternions (H), octonions (O), and sedenions (S) are the
real algebras of the main sequence for n = 1, 2, 3, and 4, respectively, see [1].

• The split-complex numbers (Ĉ), split-quaternions (Ĥ), split-octonions (Ô), and split-

sedenions (Ŝ) are the real split-algebras for n = 1, 2, 3, and 4, respectively, see [2,21].

Now we proceed to some concepts related to associativity. Given a, b, c ∈ A, we denote
their associator by [a, b, c] = (ab)c− a(bc) and their antiassociator by {a, b, c} = (ab)c+ a(bc).
An algebra A is said to be flexible if [a, b, a] = 0 for all a, b ∈ A. Clearly, in a flexible
algebra A we have [a, b, c] = −[c, b, a] for all a, b, c ∈ A. An algebra A is said to be alternative
if [a, a, b] = [b, a, a] = 0 for all a, b ∈ A.

It is well known that the algebra An is alternative if and only if n ≤ 3; however, An always
is flexible, see, e.g., [19, p. 436, Theorem 1].

Definition 2.17 ( [15, p. 12, p. 15]). Let a, b ∈ An.

• We say that a alternates with b if [a, a, b] = 0.
• If a alternates with every b ∈ An, then a is said to be alternative.
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• We say that a alternates strongly with b if [a, a, b] = 0 and [b, b, a] = 0.
• If a alternates strongly with every b ∈ An, then a is said to be strongly alternative.

The following three lemmas describe the anticentralizer of an arbitrary nonzero element
of An and the relationship between the centralizer and orthogonalizer of an arbitrary pure
element. In [8], they are stated for the real Cayley–Dickson algebras only. However, their
proofs are valid verbatim in the case of an arbitrary field. Nevertheless, we provide the proofs
of Lemmas 2.19 and 2.20 for completeness. In the statement of Lemma 2.20, the direct
sum also implies that the direct summands are orthogonal to each other with respect to the
symmetric bilinear form 〈 · , · 〉. By [8, Proposition 8.19], the condition n ≤ 3 is essential in
Lemma 2.20(1).

Lemma 2.18 ( [8, Lemma 5.8]). Let a ∈ An, a �= 0.

(1) If t(a) �= 0, n(a) �= 0, then AncAn(a) = {0}.
(2) If t(a) �= 0, n(a) = 0, then AncAn(a) = Fā.
(3) If t(a) = 0, then AncAn(a) = {b ∈ An | t(b) = 〈a, b〉 = 0} = span(e0, a)

⊥.

Lemma 2.19 ( [8, Lemma 8.10]). Let x ∈ An\{0}, t(x) = 0. Then CAn(x) = F⊕OAn(x)⊕V ,
where dim(V ) ≤ 1.

Proof. Obviously, F ⊆ CAn(x), and it is sufficient to show that Im(CAn(x)) = OAn(x) ⊕ V ,
where dim(V ) ≤ 1. By Lemma 2.18, AncAn(x) ⊂ Im(An), whence

OAn(x) = CAn(x) ∩AncAn(x) = Im(CAn(x)) ∩AncAn(x).

Since for any y ∈ Im(CAn(x)) (implying that t(y) = 0) the condition y ∈ AncAn(x) is described
by a single linear equation, we have dim(Im(CAn(x)))− dim(OAn(x)) ≤ 1. �
Lemma 2.20 ( [8, Lemma 8.11]). Let x ∈ An \ {0}, t(x) = 0.

(1) If n(x) = 0 and n ≤ 3, then CAn(x) = F⊕OAn(x).
(2) If n(x) �= 0, then CAn(x) = F⊕ Fx⊕OAn(x).

Proof. It is clear that CAn(x) ⊇ F+ Fx+OAn(x). Observe that if y ∈ OAn(x), then t(y) = 0,
whence, by Proposition 2.10, 〈x, y〉 = 1

2t(xȳ) = −1
2t(xy) = 0. Since n(x) = xx̄ = −x2, the

conditions n(x) = 0 and x ∈ OAn(x) are equivalent. Consider the following two cases:

(1) If n(x) = 0, then this inclusion takes the form CAn(x) ⊇ F⊕OAn(x). Show that for n ≤ 3
the reverse inclusion relation also holds. Let y ∈ CAn(x) and let t(y) = 0. Since n ≤ 3,
we can use the alternativity of An. Note that xy = ȳx̄ = yx = xy, i.e., xy = k ∈ F. Then
0 = x2y = x(xy) = kx, whence k = 0, that is, y ∈ OAn(x).

(2) If n(x) �= 0, then this inclusion takes the form CAn(x) ⊇ F ⊕ Fx ⊕ OAn(x). The reverse
inclusion relation follows from Lemma 2.19 and dimension considerations. �

Example 2.21. If An = Mn is a real algebra of the main sequence, then any element
x∈Mn\{0}, t(x) = 0, satisfies the assumption of Lemma 2.20(2).

3. Alternative subalgebras

In this section, we establish a sufficient condition for two or three elements to generate
an associative or an alternative subalgebra in an arbitrary Cayley–Dickson algebra. Also
we present the multiplication table for the elements of this subalgebra. It should be noted
that Assertions 3.2, 3.4–3.7, and 3.9 were already partially proved in the author’s paper [22]
for the real Cayley–Dickson algebras. Corollary 3.3 was also stated in that paper (see [22,
Corollary 5.9]), but there the elements x and y were assumed to alternate strongly, and the
proof contained an inaccuracy, namely, orthogonal projections with respect to subspaces with
possibly degenerate norms were considered.
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For n ≥ 4, the algebra An is not alternative, whence it is not a composition algebra.
However, as the following lemma shows, the composition identity still holds for the elements
that alternate with each other. In [10, 15], it is stated for the real Cayley–Dickson algebras
only; however, its proof remains valid for an arbitrary field F with charF �= 2.

Lemma 3.1 ( [15, p. 15], [10, Lemma 4.8]). Let a, b ∈ An, [a, a, b] = 0. Then n(ab) = n(ba) =
n(a)n(b).

Following [14–16], we denote ẽ0 = (0, e0) ∈ An and ã = aẽ0 for all a ∈ An.

Lemma 3.2. Let a, b ∈ An and let b be doubly pure. Then

(1) ˜̃a = γn−1a;

(2) ãb = −ãb;
(3) ã ⊥ a.

If a also is doubly pure, then

(4) ãb+ b̃a = 0 if and only if a ⊥ b;

(5) γn−1ab+ b̃ã = 0 if and only if ã ⊥ b.

Proof. Let a = (a1, a2), b = (b1, b2). By definition, ã = (a1, a2)(0, e0) = (γn−1a2, a1).

(1) It holds that ˜̃a = ˜(γn−1a2, a1) = (γn−1a1, γn−1a2) = γn−1a.
(2) Since b is doubly pure, we have

ãb = (γn−1a2, a1)(b1, b2) = (γn−1a2b1 + γn−1b̄2a1, γn−1b2a2 + a1b̄1)

= −(γn−1(b2a1 + a2b̄1), a1b1 + γn−1b̄2a2) = −ãb.

(3) By Lemma 2.12(2), 〈a, ã〉 = 〈a, aẽ0〉 = 〈āa, ẽ0〉 = 〈n(a)e0, ẽ0〉 = 0.

(4) By Lemma 2.18, a ⊥ b if and only if ab = −ba, which amounts to −ãb = ãb = −b̃a = b̃a.

(5) By Lemma 2.18, ã ⊥ b if and only if ãb = −bã, or equivalently −γn−1ab = −˜̃
ab = ˜̃ab =

−b̃ã = b̃ã. �
Corollary 3.3. Let x, y ∈ An−1. Then in An the following relations hold:

xỹ = ỹx, x̃y = x̃ȳ, x̃ỹ = γn−1ȳx.

Proof. For any z ∈ An−1, we have z = (z, 0) in An. Therefore, by Lemma 3.2, z̃ = (0, z).
Then

xỹ = (x, 0)(0, y) = (0, yx) = ỹx,

x̃y = (0, x)(y, 0) = (0, xȳ) = x̃ȳ,

x̃ỹ = (0, x)(0, y) = (γn−1ȳx, 0) = γn−1ȳx. �
Note that in Lemma 3.4 and Theorems 3.7 and 3.9, n(a) and n(b) are allowed to be zero,

which is in contrast with the usual definition of Cayley–Dickson algebras.

Lemma 3.4. Let a ∈ An be doubly pure. Consider Ha = span(e0, a, ẽ0, ã). Then there exists a
surjective homomorphism ϕa : A2{−n(a), γn−1} → Ha, whence Ha is an associative subalgebra
in An. Moreover, if n(a) �= 0, then ϕa is an isomorphism.

Proof. Denote μ1 = n(a) and μ2 = n(ẽ0) = −γn−1. Since a and ẽ0 are pure, we have
a2 = −n(a) = −μ1 and (ẽ0)

2 = −n(ẽ0) = −μ2. The condition a ∈ span(e0, ẽ0)
⊥ implies that

ã ∈ span(e0, ẽ0)
⊥. By Lemma 3.2(3), ã ⊥ a, whence a, ẽ0, ã anticommute pairwise. It remains

to observe that ãa = −ãa = μ̃1e0 = μ1 ẽ0 by Lemma 3.2(2), ãẽ0 = ˜̃a = γn−1a = −μ2a by
Lemma 3.2(1), and (ã)2 = −n(ã) = −n(aẽ0) = −n(a)n(ẽ0) = −μ1μ2 by Lemma 3.1. Thus, we
have the following multiplication table in Ha:
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× e0 a ẽ0 ã
e0 e0 a ẽ0 ã
a a −μ1 ã −μ1 ẽ0
ẽ0 ẽ0 −ã −μ2 μ2a
ã ã μ1 ẽ0 −μ2a −μ1μ2

Table 1. Multiplication table in Ha.

Now we may define ϕa : A2{−μ1,−μ2}→Ha by setting ϕa(e0)=e0, ϕa(e1)=a, ϕa(e2)= ẽ0,
and ϕa(e3) = ã. Table 1 coincides with the multiplication table of A2{−μ1,−μ2}, and
e0, e1, e2, e3 form a basis in A2{−μ1,−μ2}. Thus, every nontrivial relation in A2{−μ1,−μ2}
is preserved under ϕa, and ϕa actually is a homomorphism. Clearly, ϕa is surjective because
Ha = span(e0, a, ẽ0, ã).

In order to prove the last assertion of the lemma, we use the fact that e0, a, ẽ0, ã form an
orthogonal system with respect to the symmetric bilinear form 〈·, ·〉. If n(a) �= 0, then n(ã) =
n(a)n(ẽ0) �= 0, whence e0, a, ẽ0, ã are linearly independent. Thus, ϕa is an isomorphism. �

Remark 3.5. Note that if n(a) = 0, then ϕa in Lemma 3.4 can have a nontrivial kernel even
for a �= 0 because it is possible that a = ã.

Lemma 3.4 immediately implies the well-known assertion on the strong alternativity of the
element ẽ0, see [7, Lemma 1.2].

Corollary 3.6. The element ẽ0 is strongly alternative in An.

Proof. Let a ∈ An and let a′ be the orthogonal projection of a onto span(e0, ẽ0)
⊥. By

Lemma 3.4, a′ and ẽ0 generate an associative subalgebra Ha′ ⊂ An. Clearly, a ∈ Ha′ , whence
[a, a, ẽ0] = [ẽ0, ẽ0, a] = 0. �

Theorem 3.7. Let a, b ∈ An alternate strongly, t(a) = t(b) = 0. Then Ha,b = span(e0, a, b, ab)
is an associative subalgebra in An closed with respect to involution, and multiplication of its
elements is described by Table ??, where μ1 = n(a), μ2 = n(b), and k = −2〈a, b〉. In the
case where k = 0, there exists a surjective homomorphism ψa,b : A2{−n(a),−n(b)} → Ha,b.
Moreover, if n(a) �= 0 and n(b) �= 0, then ψa,b is an isomorphism.

Proof. Since a and b are pure elements, we have a2 = −n(a) = −μ1 and b2 = −n(b) = −μ2.
From k = −2〈a, b〉 = −t(ab̄) = t(ab) it follows that ba = b̄ā = ab = k − ab.

Since the elements a and b alternate strongly, we have a(ab) = a2b = −μ1b, b(ab) =
b(k−ba) = kb−b2a = kb+μ2a, (ab)a = (k−ba)a = ka−ba2 = ka+μ1b, and (ab)b = ab2 = −μ2a.
Finally, Lemma 3.1 implies that n(ab) = n(a)n(b) = μ1μ2, whence (ab)2 = (ab)(k − ab) =
kab− n(ab) = kab− μ1μ2. Thus, we have the following multiplication table in Ha,b:

Table 2. Multiplication table in Ha,b.

× e0 a b ab
e0 e0 a b ab
a a −μ1 ab −μ1b
b b k − ab −μ2 kb+ μ2a
ab ab ka+ μ1b −μ2a kab− μ1μ2
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If k = 0, that is, a ⊥ b, then we may define ψa,b : A2{−μ1,−μ2} → Ha,b by the relations
ψa,b(e0) = e0, ψa,b(e1) = a, ψa,b(e2) = b, and ψa,b(e3) = ab. Then the associativity of Ha,b

follows from the associativity of A2{−μ1,−μ2}, and the rest of the proof is similar to that of
Lemma 3.4.

Now assume that k �= 0. First consider the case where n(a) �= 0 or n(b) �= 0. Without loss

of generality, we may assume that n(a) �= 0. Let b′ = b− qa, where q = 〈a,b〉
n(a) . Then a ⊥ b′ and

Ha,b = span(e0, a, b, ab) = span(e0, a, b
′, ab′) = Ha,b′ . Moreover, [a, a, b′]=[a, a, b] − q[a, a, a]=0

and [b′, b′, a] = [b, b, a]− q[a, b, a]− q[b, a, a]+ q2 [a, a, a] = 0, that is, a and b′ alternate strongly.
Consequently, Ha,b′ is an associative subalgebra in An closed with respect to involution, as
desired.

Now let n(a) = n(b) = 0. Consider the elements x = e1 + e2, y = −k
2 (e1 + e3), and

xy = k
2 (e0+e1+e2+e3) in A2{−1, 1}. Then e0, x, y, xy are linearly independent in A2{−1, 1},

and their products satisfy the same relations as the products of e0, a, b, ab because A2{−1, 1}
is associative, n(x) = n(y) = 0, and t(xy) = k. Thus, we may define the homomorphism
θa,b : A2{−1, 1} → Ha,b by the relations θa,b(e0) = e0, θa,b(x) = a, θa,b(y) = b, and θa,b(xy) =
ab, and the associativity of Ha,b follows from that of A2{−1, 1}. �
Corollary 3.8. Let a, b ∈ An alternate strongly. Then the set span(e0, a, b, ab) is an associa-
tive subalgebra in An closed with respect to involution.

Proof. Let a′ = Im(a) and let b′ = Im(b). It is clear that a′ and b′ alternate strongly and
span(e0, a, b, ab) = span(e0, a

′, b′, a′b′). Then the desired assertion immediately follows from
Theorem 3.7 applied to the elements a′ and b′. �

The theorem below is a generalization of Theorem 5.1 in [15].

Theorem 3.9. Let elements a, b ∈ An be doubly pure, b ⊥ span(a, ã). Also let a alternate

strongly with b. Denote Oa,b = span(e0, a, b, ab, ẽ0, ã, b̃, ãb). Then there exists a surjective
homomorphism ϕa,b : A3{−n(a),−n(b), γn−1} → Oa,b, whence Oa,b is an alternative subalgebra
in An. Moreover, if n(a) �= 0 or n(b) �= 0, then ϕa,b is an isomorphism.

Proof. Denote μ1 = n(a), μ2 = n(b), and μ3 = n(ẽ0) = −γn−1. Since a, b, and ẽ0 are
pure, we have a2 = −n(a) = −μ1, b

2 = −n(b) = −μ2, and (ẽ0)
2 = −n(ẽ0) = −μ3. Using

Lemma 2.12(2), we can show that from a ⊥ span(e0, ẽ0) and b ⊥ span(e0, a, ẽ0, ã) it follows that

{e0, a, b, ab, ẽ0, ã, b̃, ãb} is an orthogonal system with respect to 〈 · , · 〉. Then, by Lemma 2.18,

a, b, ab, ẽ0, ã, b̃, ãb anticommute pairwise. Note that the element ab also is doubly pure.
By Theorem 3.7, there exists a surjective homomorphism ψa,b : A2{−μ1,−μ2} → Ha,b. Now

we extend it to ϕa,b : A3{−μ1,−μ2,−μ3} → Oa,b. We may apply Lemma 3.4 to a, b, and ab

separately. Then, by using Lemma 3.2(2), we obtain that ãb = −ãb, ã(ab) = −ã(ab) = μ1 b̃,

b̃a = −b̃a = ãb, b̃(ab) = −b̃(ab) = −μ2 ã, ãb · a = − (̃ab)a = −μ1 b̃, and ãb · b = − (̃ab)b = μ2 ã.

By Lemma 3.2(5), we obtain that b̃ã = −γn−1ab = μ3ab, ãb · ã = −γn−1a(ab) = −μ1μ3b, and

ãb · b̃ = −γn−1b(ab) = μ2μ3a. Thus, the multiplication table in Oa,b is provided by Table 3.

Now we may define ϕa,b by setting ϕa,b((ej , 0)) = ψa,b(ej) and ϕa,b((0, ej)) = ψ̃a,b(ej) for all
0 ≤ j ≤ 3. The rest of the proof is similar to that of Lemma 3.4. �

4. Zero divisors with alternativity conditions on their components

This section is devoted to studying the zero divisors in arbitrary Cayley–Dickson algebras
whose components satisfy some additional conditions on the norm and alternativity. We
generalize and strengthen the results obtained in Sec. 3 of the author’s paper [22] for the real
Cayley–Dickson algebras.

504



Table 3. Multiplication table in Oa,b.

× e0 a b ab ẽ0 ã b̃ ãb

e0 e0 a b ab ẽ0 ã b̃ ãb

a a −μ1 ab −μ1b ã −μ1 ẽ0 −ãb μ1 b̃

b b −ab −μ2 μ2a b̃ ãb −μ2 ẽ0 −μ2 ã

ab ab μ1b −μ2a −μ1μ2 ãb −μ1 b̃ μ2 ã −μ1μ2 ẽ0
ẽ0 ẽ0 −ã −b̃ −ãb −μ3 μ3a μ3b μ3ab

ã ã μ1 ẽ0 −ãb μ1 b̃ −μ3a −μ1μ3 −μ3ab μ1μ3b

b̃ b̃ ãb μ2 ẽ0 −μ2 ã −μ3b μ3ab −μ2μ3 −μ2μ3a

ãb ãb −μ1 b̃ μ2 ã μ1μ2 ẽ0 −μ3ab −μ1μ3b μ2μ3a −μ1μ2μ3

4.1. Hexagons in zero-divisor graphs

Lemma 4.1. Let (a, b), (c, d) ∈ An+1 and let the elements c, d ∈ An alternate (not strongly)
with a, b ∈ An. Also assume that n(c) − χγnn(d) = χn(c) − γnn(d) = 0 for a certain χ ∈ F.
Then

(1) (a, b)(c, d) = 0 implies (c, d)(ac,−χda) = 0;
(2) (c, d)(a, b) = 0 implies (ca,−χdā)(c, d) = 0.

Proof. (1) We have the following string of equalities:

(c, d)(ac,−χda) =
(
c(ac) + γn(−χda)d, (−χda)c + d(ac)

)

=
(
c(c̄ā)− χγn(ād̄)d, χ(bc̄)c− γnd(d̄b)

)

=
(
(cc̄)ā− χγnā(d̄d), χb(c̄c)− γn(dd̄)b

)

= ((n(c)− χγnn(d))ā, (χn(c)− γnn(d))b) = 0.

(2) Similarly,

(ca,−χdā)(c, d) =
(
(ca)c+ γnd̄(−χdā), d(ca) + (−χdā)c̄

)

=
(
(āc̄)c− χγnd̄(dā), d(−γnb̄d) + χ(bc)c̄

)

=
(
ā(c̄c)− χγn(d̄d)ā,−γn(dd̄)b+ χb(cc̄)

)

= ((n(c)− χγnn(d))ā, (χn(c)− γnn(d))b) = 0. �

Remark 4.2. If, in Lemma 4.1, n(c) = n(d) = 0, then one can take an arbitrary χ ∈ F.
Otherwise we immediately obtain

⎧
⎨

⎩

n(c) = ±γnn(d) �= 0;

χ =
n(c)

γnn(d)
=

γnn(d)

n(c)
= ±1.

(∗)

Condition (∗) is fulfilled automatically whenever An+1 is a real algebra of the main sequence,
see [14, pp. 25–27], or An+1 is a real Cayley–Dickson split-algebra, see [10, Lemma 4.1]. One
can verify that the proofs in those papers only require that c, d ∈ An alternate (not strongly)
with a, b ∈ An, and then n(c) = n(d). Thus, the values of χ are equal to −1 and 1, respectively.
From Lemma 4.6 it follows that condition (∗) also is satisfied if An is a Cayley–Dickson algebra
with anisotropic norm over an arbitrary field F, charF �= 2. However, in the general case,
condition (∗) is not necessarily fulfilled, see [10, Example 4.17] and Example 6.3 below.
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Notation 4.3. Let (a, b) ∈ An+1 and let n(a) �= 0. Then the value χ((a, b)) =
γnn(b)

n(a)
is

called the characteristic of (a, b).

Remark 4.4. Note that we could define the characteristic as the reciprocal of χ((a, b)), i.e.,
n(a)

γnn(b)
. Then the condition that n(a) �= 0 should be replaced by n(b) �= 0. Most of the results

of this section can readily be transferred to the case of this modified definition. In particular,
in Lemma 4.19, the element c should be expressed in terms of d, not vice versa.

Proposition 4.5. If (x, y) ∈ An+1 is pure and χ((x, y)) = 1, then (x, y) is (strongly) orthog-
onal to itself.

Proof. By definition, n((x, y)) = n(x) − γnn(y) = γnn(y)− γnn(y) = 0, whence (x, y)(x, y) =

−(x, y)(x, y) = −n((x, y)) = 0. �
Lemma 4.6. Let elements c, d ∈ An alternate with a, b ∈ An and let (a, b)(c, d) = 0 or
(c, d)(a, b) = 0 in An+1. Assume that n(a) �= 0 or n(b) �= 0 and that n(c) �= 0 or n(d) �= 0.
Then χ = χ((a, b)) = χ((c, d)) = ±1 and, moreover, χ((ac,−χda)) = χ((ca,−χdā)) = χ. In
other terms, the elements (a, b), (c, d), (ac,−χda), and (ca,−χdā) satisfy condition (∗) with
the same value of χ.

Proof. Without loss of generality, we may assume that (a, b)(c, d) = (ac + γnd̄b, da + bc̄) = 0;
the case where (c, d)(a, b) = 0 is considered similarly. By Lemma 3.1,

n(a)n(c) = n(ac) = n(−γnd̄b) = γ2nn(d̄b) = γ2nn(b)n(d̄) = γ2nn(b)n(d),

n(a)n(d) = n(da) = n(−bc̄) = n(bc̄) = n(b)n(c̄) = n(b)n(c),

(n(c))2n(a) = n(c)(n(a)n(c)) = γ2nn(c)(n(b)n(d)) = γ2nn(d)(n(b)n(c))

= γ2nn(d)(n(a)n(d)) = (γnn(d))
2n(a),

(n(c))2n(b) = n(c)(n(b)n(c)) = n(c)(n(a)n(d)) = n(d)(n(a)n(c))

= γ2nn(d)(n(b)n(d)) = (γnn(d))
2n(b).

From n(a) �= 0 or n(b) �= 0 it follows that (n(c))2 = (γnn(d))
2, whence n(c) = ±γnn(d) �= 0.

Similarly, from n(c) �= 0 or n(d) �= 0 it follows that n(a) = ±γnn(b) �= 0. Thus, χ = χ((a, b)) =

γn
n(b)

n(a)
= γn

n(d)

n(c)
= χ((c, d)) = ±1. Moreover, Lemma 3.1 implies that

χ((ac,−χda)) = γn
n(−χda)

n(ac)
= γn

n(da)

n(ac)
= γn

n(a)n(d)

n(a)n(c)
= γn

n(d)

n(c)
= χ.

The relation χ((ca,−χdā)) = χ is established similarly. �
Below, in Assertions 4.7–4.12 and in Fig. 1, we assume that (a, b)(c, d) = 0 in An+1 and

that the elements a, b ∈ An alternate strongly with c, d ∈ An, that is, [x, x, y] = [y, y, x] = 0
for x ∈ {a, b} and y ∈ {c, d}. Everywhere, except for Lemma 4.7, we also assume that (a, b)
and (c, d) satisfy condition (∗).

Lemma 4.7. The elements ac and da alternate strongly with a, b, c, d.

Proof. From (a, b)(c, d) = (ac + γnd̄b, da + bc̄) = 0 it follows that ac = −γnd̄b and da = −bc̄.
It remains to apply Corollary 3.8 to a and c, to b and c, to a and d, and to b and d.

Note that this assertion can readily be proved directly:

[a, a, ac] = −[a, ā, ac] = −(aā)(ac) + a(ā(ac))

= −(aā)(ac) + a((āa)c) = −n(a)ac+ n(a)ac = 0,
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[b, b, ac] = [b, b,−γnd̄b] = γn[d̄b, b, b] = −γn[d̄b, b̄, b] = 0.

Similarly, one can show that the elements a, b, c, d alternate with ac and ad. Conversely, we
have

[ac, ac, a] = −[ac, ac, a] = −((ac)(ac))a+ (ac)((c̄ā)a)

= −n(ac)a+ (ac)(c̄(āa)) = −n(ac)a+ n(a)(ac)c̄

= −n(ac)a+ n(a)a(cc̄) = −n(ac)a+ n(a)n(c)a = 0

because from Lemma 3.1 it follows that n(ac) = n(a)n(c). Thus, the elements ac and ad
alternate with a, b, c, and d. �
Corollary 4.8. In ΓZ(An+1), there is the following 6-cycle:

(a, b) → (c, d) → (ac,−χda) → (a,−b) → (c,−d) → (ac, χda) → (a, b).

Proof. By Lemma 4.6, χ = χ((a, b)) = χ((c, d)) = χ((ac,−χda)) = ±1. On the other hand, by
Lemma 4.7, the elements ac, da alternate strongly with a, b, c, d. We obtain the desired cycle
by successively applying Lemma 4.1:

• (a, b)(c, d) = 0 implies (c, d)(ac,−χda) = 0;

• since c(ac) = c(c̄ā) = (cc̄)ā = n(c)a and −χ(−χda)c = (da)c = (−bc̄)c = −b(c̄c) =
−n(c)b, we conclude that the relations (c, d)(ac,−χda) = 0 and n(c) �= 0 imply that
(ac,−χda)(a,−b) = 0;

• since (ac)a = (c̄ā)a = c̄(āa) = n(a)c and −χ(−b)(ac) = χb(−γnd̄b) = −χγnb(b̄d) =
−χγn(bb̄)d = −χγnn(b)d = −n(a)d, we conclude that (ac,−χda)(a,−b) = 0 and
n(a) �= 0 imply (a,−b)(c,−d) = 0;

• from (a,−b)(c,−d) = 0 it follows that (c,−d)(ac, χda) = 0;
• (c,−d)(ac, χda) = 0 implies (ac, χda)(a, b) = 0. �

Proposition 4.9. Let (x, y)(z, w) = 0 in An+1. Then

(x̄, ȳ)(γnw̄, z̄) = (γnȳ, x̄)(γnw, z) = (γny, x)(z̄, w̄) = 0.

Proof. By assumption, (x, y)(z, w) = (xz + γnw̄y, wx+ yz̄) = 0. Therefore,

(x̄, ȳ)(γnw̄, z̄) = (γnx̄w̄ + γnzȳ, z̄x̄+ γnȳw) = (γn(wx+ yz̄), xz + γnw̄y) = 0,

(γnȳ, x̄)(γnw, z) = (γ2nȳw + γnz̄x̄, γnzȳ + γnx̄w̄) = γn(xz + γnw̄y, wx+ yz̄) = 0,

(γny, x)(z̄, w̄) = (γnyz̄ + γnwx, γnw̄y + xz) = 0. �
Corollary 4.10. In ΓZ(An+1) there are the following 6-cycles:

(ā, b̄) → (γnd̄, c̄) → (−χγnda, ac) → (ā,−b̄) → (γnd̄,−c̄) → (χγnda, ac) → (ā, b̄),

(γnb, a) → (c̄, d̄) → (−χγnda, ac) → (γnb,−a) → (c̄,−d̄) → (χγnda, ac) → (γnb, a),

(γnb̄, ā) → (γnd, c) → (ac,−χda) → (γnb̄,−ā) → (γnd,−c) → (ac, χda) → (γnb̄, ā).

Proof. The assertions immediately follow from Corollary 4.8 and Proposition 4.9. �
Remark 4.11. The cycles in Corollary 4.10 can also be obtained by using Corollary 4.8 if the
pairs (ā, b̄) and (γnd̄, c̄), (γnb, a) and (c̄, d̄), (γnb̄, ā) and (γnd, c) are chosen as the initial pairs
of zero divisors.

Description 4.12. By using Corollaries 4.8 and 4.10, we obtain subgraphs of ΓZ(An+1),
which will be called hexagons. They are shown in Fig. 1 below.

By combining the results of Lemmas 4.6 and 4.7 and Corollaries 4.8 and 4.10, we obtain
the following theorem.
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Fig. 1. Hexagons.

Theorem 4.13. Let elements a, b ∈ An alternate strongly with c, d ∈ An and let (a, b)(c, d) = 0
in An+1. Then the following assertions are valid:

(1) The elements ac, da alternate strongly with each of the elements a, b, c, d.
(2) Let n(a) �= 0 or n(b) �= 0, and also let n(c) �= 0 or n(d) �= 0. Then (a, b), (c, d), and

(ac,−χda) satisfy condition (∗) with the same value of χ.
(3) In this case, in ΓZ(An+1) there are the following 6-cycles:

(a, b) → (c, d) → (ac,−χda) → (a,−b) → (c,−d) → (ac, χda) → (a, b),

(ā, b̄) → (γnd̄, c̄) → (−χγnda, ac) → (ā,−b̄) → (γnd̄,−c̄) → (χγnda, ac) → (ā, b̄),

(γnb, a) → (c̄, d̄) → (−χγnda, ac) → (γnb,−a) → (c̄,−d̄) → (χγnda, ac) → (γnb, a),

(γnb̄, ā) → (γnd, c) → (ac,−χda) → (γnb̄,−ā) → (γnd,−c) → (ac, χda) → (γnb̄, ā).

4.2. Doubly alternative zero divisors

Notation 4.14. Let a ∈ An. The mappings La, Ra : An → An are defined as follows: for all
x ∈ An, we set

La(x) = ax, Ra(x) = xa. (4.1)

Obviously, La and Ra are linear operators on the 2n-dimensional linear space An.

Lemma 4.15. Let a ∈ An. Then dim(KerLa) = dim(KerRa), that is, dim(l.AnnA(a)) =
dim(r.AnnA(a)).

Proof. By Lemma 2.12(2), the linear operators La and Lā are conjugate with respect to
the symmetric bilinear form 〈 · , · 〉 in the sense that for all x, y ∈ An we have 〈La(x), y〉 =

〈x,Lā(y)〉. Thus, dim(KerLa) = dim(KerLā). On the other hand, Lā(x̄) = āx̄ = xa = Ra(x)
for all x ∈ An, whence dim(KerLā) = dim(KerRa). This completes the proof. �
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Corollary 4.16. Z(An) = ZLR(An).

Proof. Let a ∈ An, a �= 0. Then, by Lemma 4.15, KerLa �= {0} if and only if KerRa �= {0}.
In other terms, a is a right zero divisor if and only if a is a left zero divisor. Thus, the sets of
left and right zero divisors in An coincide, that is, Z(An) = ZLR(An). �

Thus, in the case of Cayley–Dickson algebras, all zero divisors are two-sided zero divi-
sors. The following proposition describes the interrelation between the orthogonality and
zero-divisor graphs of these algebras. Note that in [22] this assertion is stated for the real
Cayley–Dickson algebras only; however, its proof remains valid in the case of an arbitrary field
as well.

Proposition 4.17 ( [22, Proposition 3.10]). An edge ([a], [b]) in ΓZ(An) is an edge in ΓO(An)
if and only if one of the following conditions is fulfilled:

(1) [b] = [ā] and n(a) = 0;
(2) t(a) = t(b) = 0.

From Proposition 4.17 it follows that any zero divisor a ∈ An with a nontrivial orthogonalizer
either is pure or has zero norm. If a is not pure, then its connected component in ΓO(An)
consists of two vertices [a] and [ā]. Hence, in the context of orthogonality graphs, we are only
interested in pure zero divisors.

Now consider the zero divisors (a, b) ∈ An+1 such that both a and b are alternative elements
in An.

Definition 4.18. The set of doubly alternative elements of An+1 is the set

DA(An+1) = {(a, b) ∈ An+1 | both a and b are alternative in An}.
An algebra An is alternative only for n ≤ 3. Therefore, all elements of An+1 are doubly

alternative if and only if n ≤ 3. Note that doubly alternative elements need not be alternative,
see [15, Theorem 3.3] and [10, Lemma 4.16].

We also note that, in accordance with [10, Example 4.17], doubly alternative elements need
not satisfy condition (∗) even in the case where both of their components have nonzero norms.
In other terms, their characteristic χ can be well defined but not equal to 0 or ±1. However,
by Lemma 4.6, if the left or right annihilator of a doubly alternative element (a, b) contains
an element (c, d) and if n(a) �= 0 or n(b) �= 0 and also n(c) �= 0 or n(d) �= 0, then (a, b) satisfies
condition (∗).

Lemma 4.19. Let (a, b) ∈ DA(An+1) and let n(a) �= 0. Denote χ = χ((a, b)). Then

l.AnnAn+1((a, b)) =

{(
c,−(bc)a

n(a)

) ∣∣
∣
∣ b(ca) = χ(bc)a

}
,

r.AnnAn+1((a, b)) =

{(
c,−(bc̄)ā

n(a)

) ∣
∣
∣∣ b(c̄ā) = χ(bc̄)ā

}
.

Moreover, if t((a, b)) = 0, then

OAn+1((a, b)) =

{(
c,−(bc)a

n(a)

) ∣∣
∣∣ t(c) = 0, b(ca) = χ(bc)a

}
.

Proof. First consider l.AnnAn+1((a, b)). Let (c, d) ∈ An+1 be such that (c, d)(a, b) = (ca +

γnb̄d, bc + dā) = 0. Then bc + dā = 0, whence n(a)d = d(āa) = (dā)a = −(bc)a. Moreover,
ca + γnb̄d = 0 and χn(a) = γnn(b), whence b(ca) = −γnb(b̄d) = −γn(bb̄)d = −γnn(b)d =
−χn(a)d = χ(bc)a. Arguing in the reverse direction, we conclude that for any c ∈ An such

that b(ca) = χ(bc)a we have
(
c,− (bc)a

n(a)

)
∈ l.AnnAn+1((a, b)). Thus, the converse also is true.
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Proceed to r.AnnAn+1((a, b)). Let (c, d) ∈ An+1 be such that (a, b)(c, d) = (ac+ γnd̄b, da+

bc̄) = 0. Then da+ bc̄ = 0, whence n(a)d = d(aā) = (da)ā = −(bc̄)ā. Since ac+ γnd̄b = 0 and

χn(a) = γnn(b), we have b(c̄ā) = b(ac) = b(−γnd̄b) = −γnb(b̄d) = −γn(bb̄)d = −γnn(b)d =
−χn(a)d = χ(bc̄)ā. Clearly, in this case, the converse also is true, that is, for any c ∈ An such

that b(c̄ā) = χ(bc̄)ā we have
(
c,− (bc̄)ā

n(a)

)
∈ r.AnnAn+1((a, b)).

Finally, the formula for OAn+1((a, b)) follows from Proposition 4.17. �
Corollary 4.20. Let a, b, c, d, ac, ad ∈ An alternate strongly pairwise, (a, b)(c, d) = 0 in An+1,
(a, b) and (c, d) satisfy condition (∗). Also let t(a) = t(c) = t(ac) = 0. Then the left upper
hexagon in Fig. 1 is an undirected hexagon in ΓO(An+1), and in ΓO(An+1) there are no other
edges connecting its vertices, that is, there are no chords in it.

Proof. Since t(a) = t(c) = t(ac) = 0, from Proposition 4.17 it follows that this hexagon is a
hexagon not only in ΓZ(An+1) but also in ΓO(An+1).

Now let (x, y) and (z, w) be two of its vertices, possibly coinciding. First show that (x, y)
cannot be orthogonal to both (z, w) and (z,−w). Suppose the contrary. Then, as in the

proof of Lemma 4.19, (x, y)(z, w) = 0 implies w = − (yz)x
n(x) , and (x, y)(z,−w) = 0 implies

−w = − (yz)x
n(x) , whence w = −w. But w �= 0, a contradiction.

Let t(x) = 0. In general, it is possible that (x, y)(x,−y) = (−n(x) − γnn(y),−2yx) = 0,
i.e., (x, y) and (x,−y) are orthogonal. However, if x alternates strongly with y and (x, y)
satisfies condition (∗), then (x, y) cannot be orthogonal to (x,−y). Indeed, by Lemma 3.1,
n(yx) = n(y)n(x) �= 0. Thus, yx �= 0, implying that (x, y)(x,−y) �= 0. �

The proof of the following lemma uses arguments from [14, p. 21].

Lemma 4.21. Let elements a, b, c ∈ An satisfy the relations t(a) = t(b) = 0, [a, b, b] = 0, and
b = [a, c, b]. Then n(b) = 0.

Proof. Consider the mapping S : An → An defined by S(x) = [a, x, b] for all x ∈ An. Then
S = RbLa − LaRb, where La and Rb are defined in (4.1). The linear operators La and Rb are
skew-symmetric with respect to the symmetric bilinear form 〈 · , · 〉 because, by Lemma 2.12(2),
〈La(x), y〉 = 〈ax, y〉 = 〈x, āy〉 = 〈x,−ay〉 = −〈x,Lay〉. Therefore, S also is skew-symmetric,
and S(S(x)) = 0 implies that 0 = 〈x,−S(S(x))〉 = 〈S(x), S(x)〉 = n(S(x)). Since b = S(c)
and 0 = [a, b, b] = S(b) = S(S(c)), we conclude that n(b) = n(S(c)) = 0. �

The next theorem is a generalization of Lemma 2.20(1) to the case of doubly alternative zero
divisors whose characteristic χ equals 1. If the characteristic is well defined but not equal to 1,
then the norm of such an element is nonzero, and Lemma 2.20(2) can be applied. Thus, we
know the centralizer of an arbitrary pure doubly alternative zero divisor whose first component
has nonzero norm.

Theorem 4.22. Let (a, b) ∈ DA(An+1) be pure and let χ((a, b)) = 1. Then CAn+1((a, b)) =
F⊕OAn+1((a, b)).

Proof. Since χ((a, b)) = 1, we have n((a, b)) = n(a) − γnn(b) = 0. Suppose there exists
(c, d) ∈ CAn+1((a, b)) \ (F ⊕ OAn+1((a, b))). Without loss of generality, we may assume that
t(c) = 0. Then

(a, b)(c, d) = (c, d) · (a, b) = (c, d)(a, b) = (a, b)(c, d),

that is, (a, b)(c, d) = k ∈ F. Since (c, d) /∈ OAn+1((a, b)), we have k �= 0. Assume, without loss
of generality, that k = 1. Then

(1, 0) = (a, b)(c, d) = (ac+ γnd̄b, da+ bc̄) = (ac+ γnd̄b, da− bc).
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The condition da = bc implies that n(a)d = d(aā) = (da)ā = (bc)ā, whence n(a)d̄ = a(c̄b̄) =
−a(cb̄). By multiplying the equality 1 = ac + γnd̄b by b̄ on the right and substituting the
expression for n(a)d̄, we obtain

b̄ = (ac)b̄+ γn(d̄b)b̄ = (ac)b̄ + γnd̄(bb̄) = (ac)b̄+ γnn(b)d̄

= (ac)b̄+ n(a)d̄ = (ac)b̄− a(cb̄) = [a, c, b̄].

From Lemma 2.12(1) it follows that t(b̄) = t([a, c, b̄]) = 0, whence b̄ = −b and b = [a, c, b]. By
Lemma 4.21, we obtain that n(b) = 0, which contradicts the assumption that χ((a, b)) = 1. �

5. Zero divisors in algebras with anisotropic norm

In Lemma 5.1, we extend the Moreno’s results obtained in Sec. 1 of [14] for the real algebras
of the main sequence to the case of Cayley–Dickson algebras with anisotropic norm over an
arbitrary field F, charF �= 2. Recall that we denote ẽ0 = (0, e0) ∈ An and ã = aẽ0 for all
a ∈ An.

Corollary 4.16 claims that all zero divisors in the Cayley–Dickson algebras prove to be two-
sided zero divisors, that is, Z(An) = ZLR(An). In the case of a Cayley–Dickson algebra with
anisotropic norm, the following stronger result holds.

Lemma 5.1 ( [14, Corollaries 1.5, 1.6, 1.9, and 1.12]). Let An be a Cayley–Dickson algebra
with anisotropic norm and let a, b ∈ An. Then

(1) n(ab) = n(āb) = n(ab̄) = n(ba);
(2) the elements ab, ba, āb, ab̄ are zero or nonzero simultaneously;
(3) if a ∈ Z(An), then t(a) = 0;
(4) if a ∈ Z(An), then a is doubly pure;

(5) ab = 0 if and only if ab̃ = 0.

Proof. (1) By Lemma 2.12(2), n(ab) = 〈ab, ab〉 = 〈ā(ab), b〉 = 〈b̄(ā(ab)), e0〉 = 1
2t(b̄(ā(ab))).

Note that ā(ab) = (t(a) − a)(ab) = a((t(a) − a)b) = a(āb), hence n(ab) = 1
2t(b̄(ā(ab))) =

1
2t(b̄(a(āb))) = n(āb). Moreover, n(āb) = n(āb) = n(b̄a) = n(ba) = n(ba) = n(āb̄) = n(ab̄).
(2) This assertion immediately follows from item (1) and the fact that the norm on An is

anisotropic.
(3) Let a ∈ Z(An), that is, ab = 0 for a certain b ∈ An, b �= 0. By item (2), we have

ab = āb = 0, whence t(a)b = (a+ ā)b = 0. Since t(a) ∈ F and b �= 0, we conclude that t(a) = 0.
(4) From Proposition 4.9 it follows that if a = (a1, a2) ∈ Z(An), then ã = (γn−1a2, a1) ∈

Z(An). Therefore, by item (3), we have t(a) = t(ã) = 0, that is, t(a1) = t(a2) = 0.

(5) If a = 0 or b = 0, then ab = ab̃ = 0. Otherwise, by item (4), a and b are doubly pure,
and the desired assertion follows from the first equality in Proposition 4.9. �
Corollary 5.2. Let An be a Cayley–Dickson algebra with anisotropic norm. Then the graph
ΓZ(An) can be obtained from the graph ΓO(An) by replacing every undirected edge with a pair
of directed edges.

Proof. This assertion immediately follows from Lemma 5.1(2). �
Theorem 5.3. Let An be a Cayley–Dickson algebra with anisotropic norm and let a, b ∈
An \ {0}, t(a) = t(b) = 0. If a and b are C-equivalent, i.e., CAn(a) = CAn(b), then [a] = [b].

Proof. By Lemma 2.20(2), CAn(a) = F ⊕ Fa ⊕ OAn(a). Moreover, by Proposition 4.17, for
all x ∈ OAn(a) it holds that t(x) = 0. Since b ∈ CAn(b) = CAn(a) and t(b) = 0, we have
b = ka+ x for some k ∈ F and x ∈ OAn(a). Therefore, CAn(a) ⊆ CAn(x).

Suppose [a] �= [b], that is, x �= 0. Since the norm on An is anisotropic, this means that
n(x) �= 0. By Lemma 5.1(5), ax = 0 implies ax̃ = 0, i.e., x̃ ∈ OAn(a). Hence x̃ ∈ CAn(a) ⊆
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CAn(x). Moreover, by Lemma 5.1(4), the element x is doubly pure. From Lemma 3.4 it follows
that x̃x = −xx̃ = n(x)ẽ0 �= 0, which contradicts the equality x̃x = xx̃. �
Corollary 5.4. Let An be a Cayley–Dickson algebra with anisotropic norm and let a, b ∈ An,
Im(a) �= 0, Im(b) �= 0. If a and b are C-equivalent, then [Im(a)] = [Im(b)].

Proof. This assertion immediately follows from Theorem 5.3 because CAn(a) = CAn(Im(a))
and CAn(b) = CAn(Im(b)). �
Remark 5.5. Let An be a Cayley–Dickson algebra with anisotropic norm and let a ∈ Z(An).
Then, by Lemmas 3.2(3) and 5.1(4)–5.1(5), the elements a and ã are doubly pure and lin-
early independent but O-equivalent. On the other hand, if b ∈ Z(An−1), then OAn((b, 0)) =
OAn((0, b)) = {(c, d) | c, d ∈ OAn−1(b)}, whence (b, 0) and (0, b) also are doubly pure and
linearly independent but O-equivalent.

Items (1)–(5) of Lemma 5.6 were proved by Moreno in [14, pp. 25–27] for the real algebras
of the main sequence. In his proof, Moreno assumed that c and d were alternative elements
in Mn. However, his proof is valid verbatim in the case where the elements c, d ∈ Mn

alternate with a, b ∈ Mn only. Also Moreno proved Lemma 5.6(6), but his proof required that
the elements c and d alternate strongly.

Recall that the antiassociator of elements a, b, c in A is {a, b, c} = (ab)c + a(bc).

Lemma 5.6. Let An+1 be a Cayley–Dickson algebra with anisotropic norm and let elements
c, d ∈ An alternate with elements a, b ∈ An, (a, b), (c, d) ∈ Z(An+1), (a, b)(c, d) = 0. Then

(1) t(a) = t(b) = t(c) = t(d) = 0;
(2) n(a) = −γnn(b) and n(c) = −γnn(d), i.e., χ((a, b)) = χ((c, d)) = −1;
(3) [c, a, d] = 2n(c)b, [c, b, d] = −2n(d)a;
(4) {c, a, d} = {c, b, d} = 0;
(5) a ⊥ b;
(6) a, b ∈ span(e0, c, d, cd)

⊥;
(7) (c, d)(ac, ad) = 0.

Proof. Item (1) immediately follows from Lemma 5.1(4).
(2) Since (a, b) �= 0, (c, d) �= 0, and the norm on An is anisotropic, we have n(a) �= 0 or

n(b) �= 0, and also n(c) �= 0 or n(d) �= 0. By Lemma 4.6, χ = χ((a, b)) = χ((c, d)) = ±1.
However, if χ = 1, then n((a, b)) = n((c, d)) = 0, which contradicts the fact that the norm on
An+1 is anisotropic. Therefore, χ = −1.

(3) Since (a, b)(c, d) = (ac + γnd̄b, da + bc̄) = (ac − γndb, da − bc) = 0, we have ac = γndb
and da = bc. Thus,

n(d)a = d̄(da) = −d(bc),

n(d)a = − 1
γn
n(c)a = − 1

γn
(ac)c̄ = 1

γn
(γndb)c = (db)c,

n(c)b = (bc)c̄ = −(da)c,

n(c)b = −γnn(d)b = −d̄(γndb) = d(ac).

Applying the involution to both sides of every equality, we obtain that n(d)a = −(cb)d = c(bd)
and n(c)b = −c(ad) = (ca)d. It follows that [c, a, d] = 2n(c)b, [c, b, d] = −2n(d)a, and
{c, a, d} = {c, b, d} = 0, which also proves item (4).

(5) As in the proof of Lemma 4.21, consider the skew-symmetric linear operator S : An→An

defined by the formula S(x) = [c, x, d] for all x ∈ An. Then a ⊥ S(a) = [c, a, d] = 2n(c)b,
implying that a ⊥ b.

(6) By item (1), e0 ∈ span(a, b, c, d)⊥. We apply Lemma 4.1(1) to the elements (a, b) and
(c, d) with χ = χ((c, d)) = −1 and use the relations ac = c̄ā = ca. Then (c, d)(ca, da) = 0 and,
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by Lemma 5.1(4), t(ca) = t(da) = 0. From Proposition 2.10 it follows that 〈a, c〉 = −〈a, c̄〉 =
−1

2t(ca) = 0 and, similarly, 〈a, d〉 = 0, that is, a ⊥ c and a ⊥ d. By using the equalities
ca = γnbd and da = bc, we similarly obtain that b ⊥ c and b ⊥ d.

From Lemma 2.18 it follows that the elements a, b anticommute with c, d. Then ac =
−ca and ad = −da, which immediately proves item (7). It remains to observe that, by
Lemma 2.12(2),

〈a, cd〉 = 〈ad̄, c〉 = 〈da, c〉 = 〈bc, c〉 = 〈b, cc̄〉 = n(c)〈b, e0〉 = 0,

〈b, cd〉 = 〈c̄b, d〉 = 〈bc, d〉 = 〈da, d〉 = 〈a, d̄d〉 = n(d)〈a, e0〉 = 0,

whence a ⊥ cd and b ⊥ cd. �
Now we will generalize some results obtained in Sec. 4.2 of the author’s paper [22] for the

real algebras of the main sequence. Note that in [22] there is an inaccuracy, namely, the proof
of the pairwise orthogonality of the elements a, b, c, d with respect to 〈·, ·〉 uses the fact that the
elements a, b, c, d alternate strongly pairwise. However, all other assertions are stated under
the assumption that the elements a, b alternate strongly with c, d only (see [22, Corollary 4.4,
Lemma 4.6]).

Below, in Assertions 5.7–5.10 and in Fig. 2, we assume that An+1 is a Cayley–Dickson
algebra with anisotropic norm, (a, b), (c, d) ∈ Z(An+1), (a, b)(c, d) = 0, and the elements
a, b ∈ An alternate strongly with c, d ∈ An, i.e., [x, x, y] = [y, y, x] = 0 for x ∈ {a, b} and
y ∈ {c, d}.
Corollary 5.7. In ΓO(An+1) there is the following 6-cycle:

(a, b) ↔ (c, d) ↔ (ac, ad) ↔ (a,−b) ↔ (c,−d) ↔ (ac,−ad) ↔ (a, b).

Proof. Apply Corollary 4.8 with χ = χ((c, d)) = −1. By Lemma 5.6(6), we have ac = −ac and
da = −ad. Finally, Corollary 5.2 implies that the directed edges of the hexagon in ΓZ(An+1)
correspond to the undirected ones in ΓO(An+1). �
Description 5.8. By using Lemma 5.1(5) and Corollary 5.7, we obtain a subgraph
of ΓO(An+1), which we call a double hexagon. It is shown in Fig. 2. The double hexagon
consists of 6 bipartite graphs K2,2 glued together. Note that it contains all hexagons from
Fig. 1.

Lemma 5.9.

(1) The elements e0, a, b, c, d are orthogonal with respect to 〈 · , · 〉.
(2) The elements e0, a, b, c, d, ac, ad are orthogonal with respect to 〈 · , · 〉.
Proof. (1) This assertion immediately follows from items (5)–(6) of Lemma 5.6 applied to the
pairs of elements (a, b)(c, d) = 0 and (c, d)(a, b) = 0.

(2) By Lemma 4.7, the elements ac, ad alternate strongly with a, b, c, d. By Corollary 5.7,
(a, b)(c, d) = (c, d)(ac, ad) = (ac, ad)(a,−b) = 0. It remains to use item (1) thrice. �
Corollary 5.10. All elements at the vertices of the double hexagon in Fig. 2 are linearly
independent.

Proof. This assertion immediately follows from Lemma 5.9(2) because, by Lemma 3.1, n(ac) =
n(a)n(c) �= 0 and n(ad) = n(a)n(d) �= 0. �

By combining the results of Lemmas 4.7 and 5.9(2) and of Corollaries 5.7 and 5.10 with
Description 5.8, we obtain the following theorem.

Theorem 5.11. Let An+1 be a Cayley–Dickson algebra with anisotropic norm and let elements
a, b ∈ An alternate strongly with c, d ∈ An; (a, b), (c, d) ∈ Z(An+1); (a, b)(c, d) = 0. Then
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Fig. 2. The double hexagon.

(1) the elements ac, ad alternate strongly with a, b, c, d;
(2) the elements e0, a, b, c, d, ac, ad are orthogonal with respect to 〈·, ·〉;
(3) there exists a subgraph of ΓO(An+1) that is shown in Fig. 2 and called the double hexagon;
(4) all elements at the vertices of the double hexagon are linearly independent.

In [22, Theorem 4.11], the multiplication table for the vertices of the double hexagon is
obtained in the case where An+1 is a real algebra of the main sequence Mn+1. This result
can be generalized to an arbitrary Cayley–Dickson algebra with anisotropic norm, but the new
multiplication table will depend on the parameters n(a), n(c), and γn. If An+1 = Mn+1, then
γn = −1, and we may assume, without loss of generality, that n(a) = n(c) = 1. Therefore,
all coefficients in the multiplication table of the vertices of the double hexagon [22, p. 677,
Table 1] are constant.

6. Dimensions of annihilators

In this section, we extend the proof of Theorem 9.8 from [3], which claims that the dimension
of the annihilator of an arbitrary element in a real algebra of the main sequence is divisible
by four, to the case of an arbitrary Cayley–Dickson algebra An with anisotropic norm over
a field F, charF �= 2. First we show that this assertion can fail for Cayley–Dickson algebras
with isotropic norm. Recall that by Lemma 4.15, for any a ∈ An we have dim(l.AnnA(a)) =
dim(r.AnnA(a)).

Lemma 6.1. Let n ≥ 1, a ∈ An, t(a) = 0. Then dim(r.AnnAn(a)) is even.

Proof. Since t(a) = 0, by Lemma 2.12(2) we have 〈La(b), c〉 = 〈ab, c〉 = 〈b, āc〉 = −〈b, La(c)〉 for
all b, c ∈ An, that is, La is a skew-symmetric linear operator with respect to the nondegenerate
symmetric bilinear form 〈·, ·〉. Since charF �= 2, it follows that the rank of La is even. But
dimAn = 2n is even, whence dim(r.AnnAn(a)) = dim(KerLa) also is even. �
Proposition 6.2 ( [10, Lemma 4.18], [21, Corollary 4.5]). Let An be a real low-dimensional
Cayley–Dickson split-algebra, i.e., F = R, An = Hn, where 1 ≤ n ≤ 4, and let a ∈ An.

(1) If 1 ≤ n ≤ 3, then dim(r.AnnAn(a)) ∈ {0, 2n−1, 2n}.
(2) If n = 4, then dim(r.AnnAn(a)) ∈ {0, 4, 8, 16}.

Thus, for n ∈ {3, 4}, dim(r.AnnAn(a)) is divisible by four.

514



The two examples below show that for n ≥ 4 the algebra An can contain pure doubly
alternative elements such that the dimensions of their annihilators are even but not divisible
by four.

Example 6.3 ( [10, Example 4.17]). Let n ≥ 4, F = R, An = Hn−1{1}. Consider a = e
(n−2)
1 ∈

Mn−2. Then, by [10, Lemma 4.16], the element A = (2a + ã, a) ∈ An is pure and doubly

alternative. However, n(a) = 1 and n(2a + ã) = 3, whence χ(A) = γn−1
n(a)

n(2a+ã) = 1
3 �= ±1.

Thus, A does not satisfy condition (∗). Moreover, from Theorem 3.9 and Lemma 4.19 one can
obtain that

r.AnnAn(A) =
{
(c,−c)

∣
∣∣ c = (x,−x), x ∈ span(e0, a)

⊥ ⊆ Mn−2

}
.

Therefore, dim(r.AnnAn(A)) = dim(span(e0, a)
⊥) = 2n−2−2 is even but not divisible by four.

Example 6.4. Let F = R, A4 = H3{1}. Consider a = e2 + e5 + e6, b = e0 + e1 + e5 ∈ H3.
Since H3 is an alternative algebra, the element (a, b) ∈ A4 is pure and doubly alternative.

Furthermore, n(b) = −n(a) = 1, whence χ((a, b)) = γn−1
n(b)
n(a) = −1, that is, (a, b) satisfies

condition (∗). However,

r.AnnA4((a, b)) = span
(
(−e2 + e3 − e6 − e7, e2 + e3 + e6 − e7),

(e1 + e2 + 2e3 − 2e4 + e5 − e7, e1 − 3e3 + 2e4 + e5 − e6 + 2e7)
)
.

Thus, dim(r.AnnA4((a, b))) = 2 is even but not divisible by four.

The following example shows that if an element of An is not pure, then, for n sufficiently
large, the dimension of its annihilator can be odd.

Example 6.5. Let F = R and let A5 = H5 = M4{−1}. Consider the elements

a = e0 − e1 + 2e2 + 2e5 − e6 + 2e7 + e9 − e10 − e11 − 2e12 − 2e13 − 2e14 − 2e15,

b = −e0 − 2e1 + e2 − 2e3 − 2e4 − 2e6 + 2e7 + e9 − 2e10 + 2e11 + e12 + e13 − e15 ∈ M4.

One can verify that in this case, dim(r.AnnH5((a, b))) = 3 is odd.

Now let An be a Cayley–Dickson algebra with anisotropic norm over a field F, charF �= 2.
Recall that in this case, by Lemma 5.1(2), we have l.AnnAn(a) = r.AnnAn(a) = OAn(a) for
all a ∈ An.

Lemma 6.6. Let n ≥ 1. Denote K = span(e0, ẽ0). Then

(1) K is a field;
(2) An is a left vector space over K.

Proof. (1) Since (ẽ0)
2 = γn−1, the set K is closed with respect to addition and multiplication,

that is, it is a subalgebra in An. Moreover, multiplication on K is commutative and associative.
Since the norm on An is anisotropic, its restriction to K also is anisotropic, whence K contains
no zero divisors. Therefore, K is a field.

(2) It is sufficient to show that [k1, k2, a] = 0 for all k1, k2 ∈ K and a ∈ An. This is
equivalent to the equality [ẽ0, ẽ0, a] = 0 for all a ∈ An, that is, to the alternativity of the
element ẽ0. But ẽ0 = (0, e0) is one of the standard basis elements, whence it is alternative
by [19, Lemma 4]. �

By Lemma 2.12(2), 〈a, b〉 = 〈ab̄, e0〉, that is, 〈a, b〉 is an orthogonal projection of ab̄ onto F

with respect to 〈·, ·〉. We can use this observation in defining a K-valued Hermitian inner
product on An.
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Notation 6.7. Given a, b ∈ An, by 〈a, b〉K we denote the orthogonal projection of ab̄ onto K

with respect to 〈·, ·〉.
Lemma 6.8. (1) For arbitrary a, b ∈ An we have 〈a, b〉K = 〈a, b〉+ 1

γn−1
〈ẽ0a, b〉ẽ0.

(2) 〈a, b〉K is a Hermitian inner product, that is, an anisotropic (in particular, nondegener-
ate) Hermitian sesquilinear form.

Proof. (1) By Lemma 2.12(2), 〈ab̄, e0〉 = 〈a, b〉 and 〈ab̄, ẽ0〉 = 〈a, ẽ0b〉 = −〈ẽ0a, b〉. Since
e0 ⊥ ẽ0, n(e0) = 1, and n(ẽ0) = −γn−1, we have

〈a, b〉K =
〈ab̄, e0〉
n(e0)

e0 +
〈ab̄, ẽ0〉
n(ẽ0)

ẽ0 = 〈a, b〉 + 〈ẽ0a, b〉
γn−1

ẽ0.

(2) Additivity in both arguments is obvious. Show that 〈ka, b〉K = k〈a, b〉K for all k ∈ K

and a, b ∈ An. By the F-linearity, it is sufficient to prove this assertion for k = e0 and k = ẽ0
only. The first case is evident, whereas in the second case we derive

〈ẽ0a, b〉K = 〈ẽ0a, b〉+ 〈ẽ0(ẽ0a), b〉
γn−1

ẽ0 = 〈ẽ0a, b〉+ 〈(ẽ0)2a, b〉
γn−1

ẽ0

= 〈ẽ0a, b〉+ 〈a, b〉ẽ0 = 〈a, b〉ẽ0 + 〈ẽ0a, b〉
γn−1

(ẽ0)
2 = ẽ0〈a, b〉K.

Moreover, from ab̄ = bā it follows that 〈a, b〉K = 〈b, a〉K. Since aā = n(a) ∈ F ⊆ K, we have
〈a, a〉K = n(a) for a ∈ An, whence 〈 · , · 〉K is anisotropic. �

Lemma 6.9. Let a ∈ An be doubly pure. Then La is a conjugate-linear skew-Hermitian
mapping in the sense that

(1) La(b+ c) = La(b) + La(c),
(2) La(kb) = k̄La(b),

(3) 〈La(b), c〉K = −〈b, La(c)〉K for all k ∈ K, b, c ∈ An.

Proof. (1) The additivity of La is obvious.
(2) By virtue of the F-linearity, it is sufficient to consider the cases k = e0 and k = ẽ0.

The first case is evident, whereas in the second case we have to show that a(ẽ0b) = −ẽ0(ab).
Applying the involution to both sides of the desired equality and using the fact that a is
pure, we conclude that it is equivalent to (b̄ẽ0)a = −(b̄a)ẽ0. Since a is doubly pure, from

Lemma 3.2(2) it follows that ˜̄ba = −˜̄ba, as desired.
(3) Using Lemma 2.12(2) and items (1) and (2) of Lemma 6.8, we derive

〈La(b), c〉K = 〈ab, c〉K = 〈ab, c〉+ 〈ẽ0(ab), c〉
γn−1

ẽ0 = 〈b, āc〉+ 〈b, ā(ẽ0c)〉
γn−1

ẽ0

= −〈b, ac〉 + 〈b, a(ẽ0c)〉
γn−1

ẽ0 = −〈b, ac〉+ 〈b,−ẽ0(ac)〉
γn−1

ẽ0

= −〈b, ac〉 + 〈ẽ0b, (ac)〉
γn−1

ẽ0 = −〈b, ac〉K = −〈b, La(c)〉K. �

In [3], the following lemma is stated for the field of complex numbers only; however, the
proof also holds in the case of an arbitrary field K, charK �= 2, with an involution a �→ ā.

Lemma 6.10 ( [3, Lemma 6.7]). Let V be a finite-dimensional linear space over K with a
nondegenerate Hermitian form and let L be a conjugate-linear skew-Hermitian endomorphism
of V . Then the K-codimension of KerL in V is even.
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Proof. We identify V with K
m, where m = dimV . Since L is conjugate-linear, there exists a

matrix A ∈ Mm(K) such that Lx = Ax for all x ∈ V . Let H ∈ Mm(K) be the matrix of the
Hermitian form on V , that is, 〈x, y〉K = xtHȳ for all x, y ∈ V . Then we have H̄ = Ht. The
mapping L is skew-Hermitian, hence for all x, y ∈ V we have

xtHAy = 〈x,Ay〉K = 〈x,Ly〉K = −〈Lx, y〉K = −〈Ax, y〉K
= −(Ax)tHȳ = −(Ax)tH̄y = −xtAtHty = −xt(HA)ty.

Thus, HA = −(HA)t. Since charK �= 2, it follows that the rank of HA is even, whence
the nondegeneracy of H implies that the rank of A is even. Therefore, the K-codimension of
KerL = KerA in V is even. �

Theorem 6.11. Let n ≥ 2, a ∈ An. Then dimF(r.AnnAn(a)) is divisible by four.

Proof. If a = 0, then dimF(r.AnnAn(a)) = dimF(An) = 2n is divisible by four, and if a �= 0
and a /∈ Z(An), then dimF(r.AnnAn(a)) = 0 is as well divisible by four. Now consider the case
where a ∈ Z(An). By Lemma 5.1(4), the element a is doubly pure. Hence, by Lemma 6.9, La is
a conjugate-linear skew-Hermitian mapping. From Lemma 6.10 it follows that codimKKerLa

is even. Since dimKAn = 2n−1 is even, this means that dimKKerLa also is even. Hence
dimF(r.AnnAn(a)) = dimFKerLa = 2dimKKerLa is divisible by four. �

Some other results on the dimensions of annihilators obtained in [3, 4] for the real algebras
of the main sequence can also be generalized to the case of an arbitrary Cayley–Dickson
algebra with anisotropic norm. In particular, this concerns Lemma 8.4, Proposition 8.11, and
Theorem 13.2 from [3]. Notice that in the case of an arbitrary Cayley–Dickson algebra with
anisotropic norm, Definition 3.1 of the element {a, b} ∈ An+1 from [4] should be modified
as follows: the factor 1√

2
should be deleted, and a new factor γn should appear in the first

component of {a, b}.
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