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HOCHSCHILD COHOMOLOGY FOR ALGEBRAS OF
SEMIDIHEDRAL TYPE. X. COHOMOLOGY ALGEBRA
FOR THE EXCEPTIONAL LOCAL ALGEBRAS

A. I. Generalov* UDC 512.5

Hochschild cohomology algebra is described in term of generators and relations for a family of local
algebras of semidihedral type. This family appears in famous K. Erdmann’s classification only if
the characteristic of the base field is equal to 2. Bibliography: 13 titles.

INTRODUCTION

The present paper is devoted to calculation of the Hochschild cohomology algebra HH*(R)
for the so called “exceptional” family of local algebras of semidihedral type. Recall that the
algebras of dihedral, semidihedral, and quaternion type appear in K. Erdmann’s papers on
classification of group blocks having a tame representation type (see [1]). The Hochschild
cohomology groups for this “exceptional” family were earlier calculated in [2]; this family
appears in the case when the base field has characteristic different from 2.

For another family of local algebras of semidihedral type, the Hochschild cohomology algebra
HH*(R) was calculated in [3,4]. Moreover, the Hochschild cohomology was investigated for
several families of algebras of semidihedral type with 2 or 3 simple modules in [5-11].

In order to calculate multiplication in HH*(R), we use the minimal projective (= free)
resolution for algebras under consideration, which was constructed in [2].

1. FORMULATION OF THE MAIN RESULT

Let K be an algebraically closed field of arbitrary characteristic p := char K. For k € N\ {1}
and ¢, d € K, we define a K-algebra Ry, .q = K(X,Y)/I, where I is an ideal of the free algebra
K(X,Y), generated by the elements

X2 _y(XY)F L — ¢ XY)E, Y2 —d(XY)F, (XY)F — (YX)F, X (Y X)*.

The images of X and Y under the canonical homomorphism from K(X,Y) to Rj.q are
denoted by x and y, respectively. The algebra Ry .4 is a symmetric local algebra of tame
representation type [1, II1.1.2]; moreover, Ry .q is an algebra of semidihedral type, in the
terminology of [1, Chap.VIII].

The algebra Ry, . q admits as a K-basis the set

Br={(zy)" |0<i<k}U{(ya)' [1<i<k-1}
U{z(ye) | 0<i<k—1}U{y(ey)" |0<i<k—1}

consisting of all nonzero paths of the quiver of R (it consists of a single vertex and two loops
x and y).

The algebras Sy, := Ry, 00 (the parameters c, d are zero) form a family of local algebras that
is included in the classification in [1]. If p # 2, then this family contains all local algebras of
semidihedral type. The Hochschild cohomology of the algebras Sj (in any characteristic p)
was studied in [3,4].

But if (¢,d) # (0,0) and p = 2, then the algebras Ry .q form a one more family of local
algebras in K. Erdmann’s classification [1]. Note that if ¢ # 0, then we may assume that ¢ = 1.

(1.1)
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In the sequel, we assume that the base field K has characteristic 2.

In this section, we state the main result of the paper, namely, we describe the multiplicative
structure of the Hochschild cohomology algebra for algebras under consideration. Since this
description depends on the values of parameters that are included in the defining relations of
the studied algebras, we first construct several auxiliary graded K-algebras.

Let

X1 = {p1,p2, 3, P4, U1, U2, U3, V1, V2, V3, Vg, W, 2 }. (1.2)
We introduce a grading on the algebra K[A}], such that
degp1 = degps = degps = degps =0,
degu; = degugy = degug = 1,
degv; = degvy = deguvg = degvy = 2,
degw = 3, degz = 4.

Then we define a graded K-algebra A; = A;(k,c,d) = K[X1]/11, where the ideal I; is gener-
ated by the elements

pllgvp227p3?'717427‘ } (1.3)
pip; for 1 <idi<j <4

eprug + d(pauy + plf_2u2),p'f_1uQ, (1.4)

Pau2, P3U2, P4U2; (1.5)

pjusz for 1 <j <4, (1.6)

U1U2,u§,plf_1’v4, UU3, (L.7)

uju3 + cpav, u3;, (1.8)

cp1v2 + dpavi, pavr + pavo, (1.9)

paud + p1va, paui + pavs, paui + pova, (1.10)

prud, pau?, (1.11)

P3V2, P4v2, P3V4, P4V4, (1.12)

P1V1, P21, P3V1, P1U3, P2U3, P4V3, (1.13)

cuif + duqvy, p%@ + Uy, dpaw + uqvy, (1.14)

uvg + p]f_lﬁ + epo, paus, (1.15)

P3W, paw, (1.16)

U1, Upa, U3, (1.17)

U3V, U3V3, UV, (1.18)

vg, vi; v, ifi < j; (1.19)

ui, (1.20)

w W + (p3 + cpa)z, (1.21)

vi 4 piz, (1.22)

udv; for 1 < j < 4, (1.23)

for ¢ =0 uyvy; (1.24)

uW, (1.25)

V3W + PaULZ, V4W + U2z, VoW (1.26)

(W) 2 + epyuiz. (1.27)



Furthermore, we introduce a grading on the algebra A1, induced by the grading of the algebra
K[Xx).
Next, let
Xo = {p1,p2, P3, a, Uy, Uy, uz, V1, V2, V3, Va, W, 2} (1.28)
We introduce a grading on the algebra K[X3], such that

degp1 = degps = degps = degps = 0,
degu) = deguly = deguz =1,
degvy = degvy = deg vy = deguvy = 2,
degw = 3, degz = 4.
Then we define a graded K-algebra As = K[X5]/I2, where the ideal I is generated by the

elements (1.3), (1.6), (1.8), (1.12), (1.13), (1.18), (1.19), (1.22), and by the following elements
(here we use a constant 6, of the field K (n € N), defined by the formula

(1.29)

n
On = i): (1.30)
i1
pruy + (dpa + cpr)ub, pouy + P b,

p’f_lv4 + dpyv1 + cp3vs, pa(u})? + prve, pa(u))? + psvs, pa(uh)? + povs,
P12, pa(u)?,
wiub + g1 (cdpavy + *psvs),
(uh)? + dubvy, wyve + pilw, uhvs + paw,
vy + uh(dvg + cvg), uhvy + prw,
ujvy, ubvs,
p3w, psw,
(u’l)zvj for2 < j <4,
ujw, uhw,
VoW + poubz, Vaw + pruhz, vaw,
w2 + (d9k+1p42)1 + C@k_lpg’l)g)z.
Furthermore, we introduce a grading on the algebra As, induced by the grading of the algebra
K[X5].
Let
A3 = {p1,p2,P3, P4, U0, U1, U2, V2, V3, Vg, Wo, W1, 2} (1.31)
We introduce a grading on the algebra K[X3], such that
degp1 = degpy = degps = degps = 0,
degug = deguy; = degug =1,
degvy = deg vy = deguvy = 2,
degwy = degw; = 3, degz = 4.
Then we define a graded K-algebra As = K|[X3]/I5, where the ideal I3 is generated by the
elements (1.3), (1.5), (1.7), (1.12), (1.19), (1.22), and by the elements
p1uo + psur, psuo + Py us,
p2u1 + (p3 + cpa)uo, prus;
UoU2, p4U%a Pauouy,
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p1v2, p2vy, pjvz for 1 <75 < 4;
UpU3 + P3wo, UeU3 +plf_1w17 DP2w1 + Pawo,
pswi, pswy,
ulug + cugvg + cpawy, uou%, ui{’,
UgUs + ULV3, UV + P1Wo, Uy + PIwn,
urvg + (P + ep2)wn,
U1V4, UV2, UV3,
uywi + (p3 + cpa)z, urwo + cupw + cpaz —I—p]f_l«ZQ
vowo + uGwy, vawo + p]f_2U2Z,
V4Wo + P3ULZ, V3W] + P4ULZ, V4W1 + U2Z, VW],
wd + (14 Apy)udz,
wow1 + V22, w%.

We introduce a grading on the algebra As, induced by the grading of the algebra K[Xj3].
Let

X4 = {p17p27p37p47 up, ulla u/27 V2, V3, V4, Wo, W1, Z}. (132)
We introduce a grading on the algebra K[X}] such that
degpy = degpy = degpz = degps =0,
deguy = degu) = degufy =1,

degvy = degvy = degvy = 2,
degwg = degw; = 3, degz = 4.

(1.33)

We define a graded K-algebra Ay = K[X}]/I4, where the ideal I is generated by the elements

(1.3), (1.12), (1.19), (1.22), and by the following elements (again we use the constant 6, see
(1.30)):

p3uo + paul, psuo + pi b, prud + eprub,
P3Uy + Prug, Pauh + Patio, P3UY, PaUY;
ujub + c?0_1p3vs,
P12 + P3v3, P1U2 + Pava, Prva + pa(uf)?,
ugul, pave + paud, (uh)? + chy_1p3vs,
Py s + epsvs,
P13, p2v3, P43,
u’1v4 + u’2v3, u’1v4 + prwi, ugvs + prwo,
ugvs + pV2uhus, ugus 4 pawo, uovs + uhva, (u))?,
ugv2 + uguy 4 pawo, pawi + pawo, pawy + uhva,
uyvy, uhvs, 3w, pawn,
ubwo + upwy, ujwg, ujwy, uhw,
vowq + u%wl + pougz, V3w —I—plf_l
Vw1 + Parugz, vawg + (eptrub 4+ prug)z,

/ .
V4W1 + P1usZ, V3Wi;

ubz,

wd + (1 + Apa)udz, wowr + uguhz, w? + cli_1p3v32.
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Furthermore, we introduce a grading on the algebra A4, induced by the grading of the
algebra K[X].
Next, we consider a set X5 that coincides with X5 (see (1.28)) and introduce the same grading
on the algebra K[X;] as in (1.29). Then we define a graded K-algebra As; = K[X;]/I5, where
the ideal I3 is generated by the elements

pip; for alli,j e {1,2,3,4};
pruy + (dpa + cp1)ub, pauy + prub,
pjug for 1< j <4, psul, paub,
p1vg + dpsvr + cp3vs, u3,
p3v1 + P1v2, P3v1 + P3vs, psv1 + Pava, Pavr + ujug, psvr + pa(uf)?,
P2va + pav1, pava + ubug, p3(uf)?,
ujub + cdpavr + sy, (uh)? + epgur,
vy + ub(dva + cvy), uhvy + u)va, uhvs + prw,
W + s, pow + oy,
(u})? + dubvy, p3w, paw,
v22, 2132, v42; vv; if i < g
ujw, uhw,
VoW + paubz, vVaw + pruhz, vaw,

w? + Cp3V3Z2.

Furthermore, we introduce a grading on the algebra As, induced by the grading of the alge-
bra K[X5].

Next, we consider a set X that coincides with Xy (see (1.32)) and introduce the same
grading on the algebra K[Xg] as in (1.33). We define a graded K-algebra Ag = K[Xg]/Is,
where the ideal I is generated by the elements

pip; foralli,j e {1,2,3,4};
pru’ + cpsug, pauy + paug, paul + pru,
P3uy + prug, paty + Pati, P3Uy, PaUH;
P1U2 + P3v3, P12 + Pava, P12 + € Iprog, prvg + ¢ (uh)?,
prva + ¢ tufuh, prog + pa(uf)?,
Pava + paugd, p3v2, pava,
P1vs, P23, P4U3, P3V4, PaV4, uouﬁ;
ugvs + uhve, ugus + ¢ tufvy, ugvs + uhvy, ugvs + p3wo, uevs + prws,
ugvy + 13, ugus + prwo, (uh)?, uhvs,
P2wo + ugv2 + ugulz,
Paw1 + pawo, pawi + uHve, P3WL, P4WL;
viv; for alli,j € {2,3,4},
uhwo + uowy, ujwo, vjwy, uhws,
Vowo + ugwl + poupz, v3wg + V4w, VW + pluéz,
VW1 + P4UpR, VaWo + P1Uoz, VWi,
wd + (1 + Apa)udz, wowr + uguhz, w? + cp3vsz.
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Furthermore, we introduce a grading on the algebra Ag, induced by the grading of the algebra
K[Xg).
The main result of the paper is the following theorem.

Theorem 1.1. Assume that char K = 2, and let R = Ry cq with k > 2, ¢,d € K, (c,d) #
(0,0).

(1) If k is odd and d # 0, then the Hochschild cohomology algebra HH*(R) is isomorphic, as
graded K -algebra, to the algebra Aj.

(2) If k is even, k > 2, and d # 0, then, as graded K-algebra, HH*(R) ~ Aj.

(3) If k is odd and d = 0, then, as graded K -algebra, HH*(R) ~ As.

(4) If k is even, k > 2, and d = 0, then, as graded K-algebra, HH*(R) ~ Ajy.

(5)If k=2 and d # 0, then, as graded K -algebra, HH*(R) ~ As.

(6) If k=2 and d =0, then, as graded K -algebra, HH*(R) ~ Ag.

2. AUXILIARY RESULTS

Let R = Ry q with £ € N\ {1}, (¢,d) # (0,0), and let A := R ®g R°P be the enveloping
algebra of the algebra R. Let u: Qo — R be the minimal A-projective resolution of the
bimodule R, that was constructed in [2]. Recall that in the complex @, we have

Qo=A, Q1=Qy=Qs=A7"

Qn=MA&Q,_4 for n>4; (2.1)
the description of the differentials dg in @, is more complicated, see [2]. Moreover, in the rest
of the paper, we fix the decompositions of the modules @, = A" with respect to which the
matrices of the differentials are described in [2]; these decompositions are called standard. We

use also another notation in [2], in particular, we put
)k—l

Y

y =y +dz(yz

and
6" := Homy (d%, R).
Let X, be a subcomplex of the complex (Do, such that

for n >4, X, = A?
the sum of the first two direct summands in decomposition of @, in (2.1), (2.2)
for 0 <n <3, Xn = Qn.

The following statement was proved in [2, Proposition 3.2].
Proposition 2.1. There is a short exact sequence of complezes
0= Xo = Qo 5 Qu]—4] — 0, (2.3)
which splits in each degree.
The following statement is derived from [1, I11.14].
Proposition 2.2. HH(R) admits as a K-basis the set
{1y + ya, (29) + (y2)?, . (2y)" " + (o) w(ya)* Y y(ay)* " (2y)")

When studying the Hochschild cohomology groups of higher degrees, we impose additional
conditions on the parameters k, ¢, d, namely, we distinguish the cases of even and odd k, and
also of d # 0 and d = 0.

Although the dimensions of the groups HH!(R), i > 0, were calculated in [2], we need an
explicit description of bases (over K) of these groups. In order to obtain it, we first present
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bases of the vector spaces Kerd’, i € {1, 2, 3}. We obtain these bases as in [13, Proposition
4.4], namely, we represent elements in R as linear combinations of basis elements from (1.1)
and obtain systems of linear equations on coefficients of those linear combinations substituting
them in the formulas for §°. We leave the details of such computation to the reader.

Proposition 2.3. Assume that k is odd and d # 0. Then
(a) Ker 6! admits a K -basis formed by the elements

((zy) 10) for 1<i<k-—1, (2.4)
(y(zy )ﬁw1<z<k—1 (2.5)
(0, (z yx)') for 1<i<k-—1, (2.6)
(0,2(y )f0r1<2<k—1 (2.7)
(d(zy Vpey, 1+ cx), (m(yaz)k_l, 0), ((my)k, 0), (2.8)
(O,y M0, (2y)®); (2.9)

(b) Ker 6% admits a K -basis formed by the elements

((zy)’ + (yx)',0) for 1<i<k—1, (2.10)
(d(zy)* 1, y(zy)’ + c(zy)™t) for 0<i< k-2, (2.11)
(y(:py)i,O) for 0<i<k-1, (2.12)
(0, (zy)’ + (y:r)z) for 1<i<k-1, (2.13)
(0,2(yx)") for 0<i<k-—1, (2.14)
(1,0), (a:(yx)k_l,O), ((a:y)k,O), (2.15)
(0, 1), (O,y(azy)k_l), (0, (:Ey)k)7 (2.16)
(c) Ker 8% admits a K-basis formed by the elements
((zy)" + (y2)',0) for 1 <i<k-—1, (2.17)
(d(yz)", (z +( z)") for 1<i<k-1, (2.18)
(yxyz,)f0r1<z<k:—1 (2.19)
(0,y(zy)") for 1<i<k—1, (2.20)
(y,a:(y:z: ) (dy y) (:E(ya:)k 1,0), (2.21)
((@y)*,0), (0, (z1)") (2.22)
Corollary 2.4. Assume that k is odd and d # 0. Then
(a) HHY(R) admits a K -basis formed by the elements
(y(azy)’, 0) for 1<i<k-—1, (2.23)
(d(:vy)k_1 +cy,1+ Cac), (a:(yx)k_l, 0), ((a:y)k, 0), (2.24)
(0, 5(xy)* ), (0, (2)*); (2.25)

382



(b) HH%(R) admits a K -basis formed by the elements

(d(zy) ™, y(zy)’ + c(zy) ™) for 0<i<k-—2, (2.26)
(1,0), (4,0), (2.27)
(0,1), (0,2), (0, (zy)*); (2.28)
(c) HH3(R) admits a K -basis formed by the elements
(O,y(xy)i) for 1<i<k-—1, (2.29)
(dy:z:,a:y + ya:), (y,x(ya:)k_l), (0,@), (2.30)
(a:(ym)k_l,O), (0, (my)k) (2.31)
Proof. The statements follow immediately from Proposition 2.3 and the description of bases
for Im¢*, 0 <4 <2, in [2]. O

Proposition 2.5. Assume that k is even and d # 0. Then

(a) to get a basis of Ker 8, we need to replace in the set in Proposition 2.3 (a), the element
(d(:vy)k_l +cy, 1+cx) in (2.8) by the element (d(:z:y)k_l, 1—|—cac) and to add the element (y, 0)
to this set;

(b) Ker 6% admits as a K-basis the set in 2.3 (b);

(c) to get a basis of Ker 63, we need to replace in the set in Proposition 2.3 (c), the element
(dy,y) in (2.21) by the element (O,y).

Corollary 2.6. Assume that k is even and d # 0. Then

(a) to get a basis of HHY(R), we need to add the element(y,O) to the set in Corollary 2.4
(a);

(b) to get a basis of HH?*(R), we need to add the element ((zy)*,0) to the set in Corollary
2.4 (b);

(c) to get a basis of HH3(R), we need to replace in the set in Corollary 2.4 (c), the element
(0,@) in (2.30) by the element (O,y).

Proof. Again the statement follows from the description of bases for Imd%, 0 < i < 2, in [2],
and Proposition 2.5. ([l

Proposition 2.7. Assume that k is odd and d = 0. Then

(a) to get a basis of the vector space Ker &', we need to add the element (1,y(zy)k_2 +
c(zy)*1) to the set in Proposition 2.3, (a);

(b) to get a basis of the vector space Ker 62, we need to replace in the set in Proposition 2.3,
(b), the element (d(yx)*1, c(zy)* 1 + y(zy)*=2) in (2.11) by (0,y(zy)*=2), and the element
(0, (zy)F—t + (y:z:)k_l) in (2.13) by a pair of the elements (0, (:L“y)k_l), (0, (ya:)k_l);

(c) to get a basis of the vector space Ker 63, we need to replace in the set in Proposition 2.3,
(c), the element (y,z(yx)"~1) in (2.21) by the element (0,z(yz)*"'), and to add the elements

(1,0), (y,0), (0,1)
to this set.

Corollary 2.8. Assume that k is odd and d =0. Then

(a) to get a basis of HH'(R), we need to add the element (1,y(zy)*=2 + c(zy)*~1) to the set
in Corollary 2.4 (a),

(b) to get a basis of HH?(R), we need to replace in the set in Corollary 2.4 (b), the element
(d(yz)* 1, c(zy)* P+ y(zy)*=2) in (2.26) by a pair of the elements (0, y(zy)*~2), (0, (zy)*1),
and the element (0, (zy)*) in (2.28) by a pair of the elements (z(yx)*1,0), ((zy)*,0);
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(c) to get a basis of HH3(R), we need to replace in the set in Corollary 2.4 (c), the element
(y,x(ym)k_l) in (2.30) by a pair of the elements (y,0), (O,x(yac)k_l), and to add the elements

(1,0), (z(y2)*',0), (0,1)
to this set.

Proof. Again the statement follows from Proposition 2.7 (and from the description of bases
for Imo*, 0 <14 <2, in [2]). O

Proposition 2.9. Assume that k is even and d = 0. Then

(a) to get a basis of Ker §', we need to add the element (1,y($y)k_2 + c(zy)*1) to the set
in Proposition 2.5 (a);

(b) Ker 6% admits as a K -basis the set in Proposition 2.7 (b);

(c) Ker 8° admits as a K -basis the set in Proposition 2.7 (c).

Corollary 2.10. Assume that k is even and d =0. Then
(a) to get a basis HHY(R), we need to replace in the set in Corollary 2.8 (a), the element

(cy, 1+ ca:) by the pair
(y,0), (0,1 + cz);
(b) to get a basis of HH*(R), we need to add the element (0, (zy)*) to the set in Corolla-

ry 2.8 (a);
(c) HH3(R) admits as a K -basis the set in Corollary 2.8 (c).

Proof. The statement follows from Proposition 2.9 (and from the description of bases for Im &7,
0<i<2 in[2]). O

The above results imply the following statement obtained in [2], and we state it for conve-
nience of the reader.

Corollary 2.11. (I) Assume that d # 0. Then

(Ta) dimy HH! (R) = dimg HH2 (R) = k+5 Z'f k z.s even,
k+4 if k is odd,
(Ib)  dimgHE(R) = k+4.
(IT) Assume that d = 0. Then
(IIa) dimxg HHY(R) = k+6 Z.fk z’s even,
kE+5 ifk is odd;
(1Ib) dimy HH?(R) = k+7 Z.fk is even,
kE+6 if k is odd;

(ITc) dimgx HH*(R) = k + 8.

Remark 2.12. The short exact sequence (2.3) induces a long cohomology sequence in which
the connecting homomorphisms are zero starting at some place (see the proof of Proposi-
tion 4.10 in [2]), and hence, for any n > 4,

HH"(R) ~ HH"*(R) @ H"(X*),
where X* = Homy (X, R) (with X, as in (2.2)).
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Remark 2.13. From the form of the differentials d (see [2]), one can easily see that if n > 4
and

f=(r1,...,m,) € Homp(Qn, R)(~ R™)

is a cocycle (i.e., 6"(f) = 0), then its “pieces”
(ri,m9) € X"~ R* and (rs,...,rs,) € Homp(Qp_4, R)

are also cocycles in the corresponding complexes. With the help of Corollaries 2.4-2.10 (and
Proposition 2.2), this observation allows us to write down representatives of the cohomology
classes that form bases in the groups HH"(R), n > 4.

Remark 2.14. In the sequel, if x € Ker §” is a n-cocycle, we keep notation z for its cohomology
class clz € HH"(R).

3. GENERATORS AND RELATIONS

We present briefly an interpretation of the Yoneda product in the algebra HH*(R) =

@ Ext} (R, R) used earlier in [12]. Let p: Qo — R be the minimal A-projective resolution
m>0
(see Sec. 2). Consider the complex

Homp (Qe, R) = (HomA(Qna R), 5”)?

here, as above, the §" are the differentials induced by the differentials of the resolution Q. If
f € Kerd”, g € Ker 6 are cocycles, then clg-cl f = cl (uT%(g)T!(f)), where T?(h) is the ith
translate of the cocycle h. In the sequel, we define the translates T¢(h) (i > 0) with the help
of matrices that correspond to the standard decompositions of the modules @Q,,.

Now, we begin calculation of the multiplicative structure of the algebra HH*(R) for algebras
from the family under consideration. This structure depends essentially on the fact that k is
even or odd. Moreover, the case where k = 2 must be studied separately.

Case 1. First, assume that k is odd and d # 0.
We consider the following homogeneous elements of HH*(R):

k—1
p1 =2y +yx, p2 = x(yx s
— of degree 0 : { ' Y z_l ? (v )k: (3.1)
p3i=y(zy) ", pa = (2y)";
uy = (cy + d(zy)* 1,1 + cx),
— of degree 1 : { 1= (ey () 2_1 (3.2)
up := (yry,0), uz = (z(yz)" ", 0);
v1 = (1,0), v2 := (y,0), v3 := (0, 2),
— of degree 2 : 1:=(1,0), v2 = (9,0), 03 = (0.) (3.3)
vy := (dyzx,y + cxy);
— of degree 3 : w :=(0,9); (3.4)
— of degree 4 : z:=(0,0,1). (3.5)

Proposition 3.1. Assume that k is odd and d # 0. In the algebra HH*(R), the elements of
the set

yl = {pl,p2,p3,p4,’l,b1,’LL2,'LL3,’U1,U2,U3,U4,&]J, Z} (36)
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satisfy the following relations:

pf =p3=pi=pi=0, }
pipj =0 for 1 <i<j<4;
eprur = d(paur + pfug), pitug = 0,
poug = p3uz = pyug = 0;
pjuz =0 for 1 <j <45,
wuy = u3 = pf oy = uguz =0,
uyuz = cpaur, uj = 0;,
cp1v2 = dpgv1, pav1 = pave,
paui = p1vg = p3v3 = pavy,
prui = paui =0,
P32 = pava = p3vg = pavy = 0,

P1U1 = Pav1 = P3v1 = P13 = pav3 = pavz = 0,
cu:{’ = dujvy, p%@ = U4, dPoW = U4,
urvy = P + epot, paud =0,
p3w = pyw = 0,
gy = uguy = ugvy = 0,
ugve = uzvy = uzvy = 0,

v§ =vd = 0; viv; =0 for 1 < j;

ut =0,
ww = (p3 + cpa)z,
vi = piz,

uv; =0 forl < j < 4,
for ¢ =0 ujv; = 0;
’LLQIE = 0,
V3W = PalU1Z, VaW = Uz, vow = 0;

(0)2 = epyuiz.

Proof. Relations (3.7), (3.8), (3.9), (3.10), (3.14), (3.16), (3.17), (3.20) are verified directly. In
proving of the remaining relations we have to compute the translates of suitable orders for

elements in )1, which have positive degree.
Proposition 2.1 implies immediately the following statement.

Lemma 3.2. For anyi > 0, the projection onto the direct summand mjr4: Qij+a = X;j+4PQ; —

Q; 1is the ith translate T'(z) of the cocycle z.

Suitable translates of the other elements in ) with positive degree are presented in the

following lemma.

386



Lemma 3.3. As translates of the elements in Y1 \ {z} of positive degree, one can take the
homomorphisms determined by the matrices

T(u1) =(cy @ 1 +d(zy)" '@ 1L,1®@1+cx®1),

* *
’j[‘1 U — k=2 . o
() =1 4 ZO y(zy) @ y(zy)k—271  «
with
k—1 ' ' k—1 ‘ '
(T'(u1))11 = Cdz z(yz)' @ (zy)F 1+ dz:(yﬂf)Z ® (zy)F 1
=0 =0
k-3 ' '
+d) zyr) @y(Ey) T ey @1,
=0
k—1 k—1
(T (u1))12 = CE:(Z/!E)Z ® (zy) 4 CE:(@‘@/)Z ® (zy)F 1
=0 i=1
k—1 k—2
+) a(yr) @ (xy) ) (ya) @ y(ay)
i=0 1=0
+ da(yx)" !t @ (zy) 2
(Tl(ul))gg =1®1+cr®1+ d(ya;)k_2 ® y(a:y)k_l
+d(zy) @ y(zy) 2 + dy(zy)" T @ (vy)
1 ® 1 (yx)3k—5 ® Y
T?(uy) =
(u1) < 0 z@1+1Qz+yy(xy)r2)’
s+ (1®1 0 0
T (w) _< 0 1®1 =
with
k—2 4 4
(T3(u1))2s = Y x(yz)' @ z(ya) 2"
1=0
+ (y2)" @ y(2y) 2 + y(ay) @ (ay)
T(u2) = (yry ®1,0),
k—1 i .
yry®@1+d 3 (i —a(yz) © (zy)F—"
Tl('LLQ) = k—1 =2 4 '
d Zz(i — 1) (zy)" ® y(zy)* *
with
k—2 4 4 k—2 4 4
(T (ug))12 = z:i(yl’)“rl ® (zy)F 1+ CZ iz (yx) ™ @ (zy)F
i=1 =1
k—2 4 4 k—2 ' '
(TH(ug))22 = Y iy(wy)' @ y(ay) " + e i(zy) ™ @ y(ey) 17,
i=1 =1
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T?(up)

0 1@ @y t+1e (y;v)k_1> '
0 b)

y1+1Qy

(
(z(yx)"* ®1,0),
(

T°(us)

r(yz)F o1 0 .
0 z(yz)"t @ y(wy)k2 )"

ke
TO(UI) = (1 ® 1,0), Tl('ul) — (1 ®1 Z2x(yx)i ® x(yx)in)

T' (us) =

=0
0 *

with
k—1

(TH(v1))22 = > (2y)’ @ (ya)* '

7=0
+Py(zy)f 2 @ (zy)F + A (2y) ! @ (2y)";

2 _(1®1 % 0
T (Ul) - < 0 % (l,y)k—l ® (yx)k—1>

with
(T%(v1)12 = AE(ye)* L @ z(yz)* 1 + Pa(ya) L @ (xy)* L,
(T* (1)) =2®1+1@z+cx@r+ca’®1
+c2 1@ (zy)* + Pr @ y(ey) ™ + Syr @ x(yx)" L
ye1

TO(U2) = (y ® 170)7 Tl(v2) = ( 0 kz:::y(xy)z ® (y:E)klZ)

with
k—1 ‘
(THw2))12 = D (o) @ 2(yx)* 1+ P (y2) ' @ (ay)* + Pa(ya) " @ (@)
i=1

y ®1 p+ e @z(yx)t~t 0
d?(zy)F @ y(zy)k—2 * *

with
(T2(1)) =1@zy+z@y+cxQry+ca’ Dy
+d(zy)* @ y(zy)* " + da(yz)* ' 0 x,
(T%(v2))23 = y(zy)* ' & (ay)" ' + y(ay)* ' & (ya)"

0 _ 1 = 0 i
T ('1)3) - (07 r® 1)7 T ('1)3) - <d$ ® Yy + Cdy(my)k_l & Yy *>

with
(T' (v3))12 = da(yz)* " @ (zy)" " + d(zy)* ®@ x(yz)* 2,
(TH(v3))22 = yz @ 1 + 2 @y + ca® @ y + da @ w(yz)*!
+d(zy)* @ y(ey)" 2 + cd(zy)* @ (y)"
T2(v3) is a 2 x 3-matriz, in which
(T?(v3))11 = da® ® 1+ d(y2)* ' @ y + eda(ya)* ' @y
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+ d*x(yx)" 2 @ (zy)F,
(T%(v3))12 = da(yz)* 2 @ (ay)* + dae(yz) ' & (xy)" ",
(T%(vs))13 = 2(y2)* 2 @ (ay)* + 2(y2)* ' & (ay)"!

+ (y2)" ! @ a(yx)

k—1
(T%(v3))21 = Ad?y(zy)* ' @ (zy)* + d° Z(wy)i ® (zy)*,
(T(v3))as = d Y (2y)’ @ (wy)* " +d > y(ay) ™" @ (ya)"
=1 =1
+dz @ y(ry)* ! + Ad(ay) @ ylay)

k k—1
(T*(v3))2s = Y _y(zy) ' @a(yz) " + ) (zy)' @ (ay)*
i=1 =1

+a@y(ey) ™ + (y2) T @y
+ cyz @ x(yx) 1 + A (xzy)k @ y(ay) L

TO(vy) = (dym R1LyR1+cry® 1),

1 _ dr ®y *
T'(va) = (dy®y+d2-1®(:py)k x

with
(T o))z = yz @ 1 + 2y © 1 + dz @ x(yx)* ™ + cd(zy)* @ (zy)* 1,
(T (v4))e =y @y + d(azy)k ®1+dy® x(yx)k_l +d-1® (a:y)k
+Pd(zy)* @ y(zy)
) = (gt D et o )
with

(T2(va))12 = yz ® 1 + 2y @ 1 + cd(zy)* ® (zy)*,
(T?(v4))22 = dyz @ x + d*(zy)"*
(T2(v4))23 =zyrQl4+yrRXr+ryRQr+y y(azy)k—

+cxyr @ x + dx(ya:)k_l ® y(my)k_l,

® (zy)* + d*(zy)* @ (yx)* 1,

1

(@) = (0,7 ® 1),

TY(w) is a 2 x 3-matriz, in which

k—2
(Tl(@)ll =dy®1+ d? Z zx(yx)l ® ({L’y)k_l_i7
=1
k—2 4 4
(Tl('&j)12 = g@ 1+ dzzx(yx)z ® (xy)k—l—z
=1
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k—2

+d Y i(yr) T @a(yr) P edy(ay)t T @ (ay)H Y,
=1

N

—2
s =D _in(ye) @ (ay)" 7"+ D ilya)' @ wlya)

i=1

k—1 ® (.Ty)k_l

)

(T (@)o1 = d? ZZ(wy)i ® y(zy)" ',

=1
k—2 k—2 ‘
(TH(@)o2 = d Y ilay)' @ y(ay) 7" +d ) iy(zy)’ @ (yz)* ',
=1 =1
k—2 k—1 '
(TH(@)as = Y i(wy)' @ ylay) 17+ (i + Dy(ay)' @ (ya) '+
i= =0

@ = (g 2 )
with
(T3 (@))12 =1 @ § + Ada(yx)" ! @ (xy)F,
(T*(@))o3 =yz @1 +y @ x + cyz @ x + dr @ z(yz)* !
+dy(xy) ' @ (y2)" 7+ d(ay) T @ y(ay) !
+ cd(zy)* @ (ya)*,
(T*(@)))2s =y(zy)* " @ 1+ c(ay)* @ 1+ ey(ay) ' @2
+ A (zy)* @ z;
vo=(§5 0
with

(T3(@)12 = 1 @Y + da(yz)* ' @ (zy)",

k—2
(TS({E))Q?’ =ley+ dz m(yx)l ® (my)k_l_i + Cde(yx)k_l ® y(my)k—17
— '221 i k2 . .
(T?(@))2s = > iyz)' @ (wy)* 1" + CZ:z'm(ya:)Z ® (xy)k—17
=1 i=1

The proof of the lemma is a direct verification of the relations pTO(b) = b, d;_1Tb)
=T (b)ditdegp—1 (i > 0), where b € V1 \ {z} with degb > 0.

Now the proof of Proposition 3.1 is completed with using direct calculations with matrices
described in Lemma 3.3, and we leave it to the reader. O
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Remark 3.4. It should be noted that the formulas for the translates of us, v, v4 (see Lem-
ma 3.3) remain valid for any even k (if d # 0), and also the translates of vy are valid for even
k > 2 (if these elements are included in the set of generators of the algebra HH*(R)).

Proposition 3.5. For any £ € N, we have
vf = (1,0) € HH*(R), viuz = (z(yz)*~1,0) € HH*T!(R), (3.32)
v ugw = (0, (zy)*,0) € HH*T2(R), o{"'w = (0,7,0) € HH**!(R). (3.33)

Remark 3.6. Owing to the description of the bases for the groups H2(X'®) (with £ > 2) given
in [2, Lemma 4.11], the elements

(1,0r41), (0, (zy)*,0,) (3.34)

(for suitable ) form a basis of the image of H2(X*) in the group HH?*(R) (see Remark 2.12).
Similarly, the elements

(07 377 OT )7 (aj(yl‘)k_la Or—i—l ) (335)
form a basis of the image of H2*1(X*) in the group HH**!(R).

Proof of Proposition 3.5. 1) A simple verification (with using Lemma 3.3) shows that v? =
(1, (0D ) Next, assuming v{ = (1, O) (¢ > 2), we get the following translates of this element:

() = (1®1,0),

k—2 , .
1e1 > x(yx)’ @ a(yx) > 0
Tl(v{) = k—1 =0 9
0 %(wy)i ® (yo) 1+ Syl e (ay)k O
Tz(vg) (1wl Ar(yx)F 1 @ x(yx)k! 0 O
VLo * (zy)F 1 @ (yx)*~1 O

with
(T2 (v}))p=2@1+1@r+cx@r+c’el
+ 021,2 QT+ 621‘3 @14+ c?’y(acy)k_l ®y(azy)k_1.
Hence, we have
o™t = uT0(o)) (1) = (1,0).
2) We have seen that vius = (z(yz)*~1,0). Next, assuming that v{us = (z(yz)*~1,0)
(¢ >0), we get the following translates:

T (vjuz) = (x(y2)" ' ©1,0),

v (e e 0 0

T (1)1U3) - < 0 m(yx)k—l ® (yx)k—l 0/’
9, ¢ _ a:(yx)k_l ®1 0 0]

T (vrus) = < 0 riyx)f oz O)°

Then
vf“u?, = ,uTO(vl)TQ(vfu?,) = (x(ym)k_l, O).
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3) A direct calculation gives usw = (0, (zy)*,0 ). Next, assuming Vi g = (0, (zy)*,0)
(for £ € N), we obtain

T0 U1 ’LL3’UJ (0, xy) k ),
dzy)f 1 (zy)Fe1 0 0
Tef ) = (1) 0 @)oot o)
2/ 01 my)k ®1 0 @)
T us) = (O dzy)f @z (zy)fe@2z O )"

Then
viug® = pTO(v) T2 (v @) = (0, (zy)*, 0).

4) Assuming vf_liﬂ = (0, v, O) (¢ € N), we obtain the following translates:
T(vi o) = (0,0 ®1,0),

k—1
- dv®1l w®l 2)' @ x(yx)k1% O
T!(of ') = 2 (yo)' @ 2(yz)
0 0 * 0]
with
(T (vf ' @))23 = Zy (zy)’ @ (y2)" 17 + da(yx) ! @ (ya)h
T ('UZ la) _ 0 y & 1 + ng(ﬂfy) ® l’(y:l?)k_l 0 0 O
1 0 dyr@l+dy@z+cdyr@z * *x O
with
(T2 D))y =yz @1+ 7Rz + cyzr @,
(T? (07 ))9s = y(zy)" ™ @ (yx)F L.
Then

W@ = T () T2~ '@) = (0,5.0).
O

Proposition 3.7. Assume that k is odd and d # 0. The set Yy in (3.6) generates HH*(R) as
a K-algebra.

Proof. Let H denote a K-subalgebra of HH*(R), generated by the set }y U{1} (here, 1 denotes
3 ,
the unity of the algebra HH*(R)). First, we prove that |J HH*(R) C H, and then the inclusion
=0
HH"(R) C H follows by induction on n. Since pi = (zy)! + (yz)’, 1 <i < k — 1, we obtain
the inclusion HHY(R) C H.
The basis elements of HH!(R) described in Corollary 2.4 (a), satisfy the relations

(y(my)i,O) = pf Lug for 1 <i<k—1,
((xy)*,0) = d 'prus, (0,y(zy)* ) = (p3 + cpa)ua, (0, (xy)*) = paus.

Hence, HH'(R) C H.
Next, the basis elements of HH2(R), described in Corollary 2.4 (b), satisfy the relations

(d(zy) ™+ y(aey)’ + cley)™h) = plog for 0<i<k—2,
(0,1) = uf, (0, (zy)*) = paui.
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Consequently, HH?(R) C H. Here and below, we multiply the elements of Y;, having a
positive degree, with the help of translates of these elements presented in Lemma 3.3 (see also
Lemma 3.2).

We establish that the basis elements of HH3(R), described in Corollary 2.4 (c), satisfy the
relations

(0,y(zy)’) = piw for 1 <i <k -1,

(dy.’lf,.’lfy—f—yl’) = Uu1vs, (y7 (yx)k 1) - d_lui{’a

(x(ym)k_l,O) = ugvy, (0 (zy)k ) = pow,

whence HH?(R) C H.

Now, we prove the inclusion HH"(R) C H by induction on n. Assume that n > 4, and
let f € Homp(Qn, R) be a cocycle representing an element of HH"(R). By Remark 2.13,
we can restrict ourselves to basis elements f = (f1, f2) where f; € Homy (X, R) and fy €
Homp (Qp—4, R). Moreover, using Remark 3.6, we may assume that (f;,0) is one of the
elements in (3.34) or (3.35) (depending on whether k is even or odd). Then by Proposition 3.5,
(f1,0) lies in H. Finally, by induction hypothesis, fo € H, and then (Og, fo) = z - f3 also lies
in H. O

Let Ay = K[X;]/I; be the graded K-algebra defined in Sec. 1, where & is as in (1.2) and I;
is the corresponding ideal of relations (see (1.3)—(1.27)). The (nonzero) images of monomials
in K[X;] under the canonical epimorphism K[X;] — A; are also called monomials. Any
element a € A; is represented as a linear combination of monomials (with coefficients in K).
Propositions 3.1 and 3.7 imply that there exists a surjective homomorphism ¢: A4; — HH*(R)
of graded K-algebras that takes the generators in A} to the corresponding generators in )
(see (3.6)); here, we use the same letter to denote elements of both sets that correspond to each

other. Let A; = @ A7 be the direct decomposition of the algebra A; into homogeneous direct
m>0
summands. Now, statement (1) of Theorem 1.1 is a consequence of the following statement.

Proposition 3.8. For any m > 0,
dimg A" = dimg HH™(R).

Remark 3.9. It is easily verified that if ¢ # 0, then the relation uf = 0 (see (3.23)) is
derived from the remaining relations defining the algebra A;; moreover, the relation pgu% =0
is satisfied in A;.

Proof of Proposition 3.8. We introduce a lexicographic order on the polynomial ring K[X],
such that

U3 > V] > V3 > Vg > Vg > WS> UL S Uy > 2> Po > P3 > Py > Pl
Any nonzero monomial in A; is represented in the form

f= 101102 2psBpy uluéBQU?’?%lngvg%Z“w 25 (3.36)

In view of the defining relations of Ay, we have
042,043,044,ﬁ2,ﬁ3,’}/2,’)/3,’}/4,5 € {071}7i7€7T73 eNU {0}7Z < k — 17£ <3.

Such representations of monomials in 4; are identified with the corresponding monomials
in K[Xl]
Let us consider separately the cases ¢ # 0 and ¢ = 0.
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1) Assume that ¢ # 0. By definition, reduction of a monomial f in A; is the process
of replacement of some submonomials in f by other elements of 4; in accordance with the
following rules (a — b means the replacement of every occurrence of the monomial a by the
element b):

pour — d~Leprug + pi s, U ug > cpavy,

pav1 > pava > dLeprvg, P3V3 > P24 > P1U2 > p4U%,
ULVg — dpot, ULv > cd_lui{’,

Uy > PIW, uyvg = (PF 1+ epo) @,

u W — (p3 + cp4)z, v3 — piz,

V3W — pauL 2, VAW — Uz,

W2 — cpyulz.

Any replacement in the above list is called an elementary step of reduction. These elementary
steps correspond to (nonmonomial) defining relations of the algebra A;, and under such an
elementary step of reduction, any nonzero monomial turns into a linear combination of mono-
mials which are strictly smaller with respect to the lexicographic order. Hence, after finitely
many steps, we obtain polynomials to which we cannot apply any elementary step of reduc-
tion. We say that a presentation of an element a € A; as a linear combination of monomials
has a normal form if the reduction cannot be applied to any of these monomials. Clearly, any
element in A; admits at least one representation in the normal form.

Put ¢; = dimg Aj. Denote the number of monomials in A% represented in the normal
form by g;; it is clear that ¢; > ¢;. Since there is an epimorphism A% — HH'(R), we have
¢; > dimg HHY(R). Consequently, it suffices to show that

¢; = dimyx HH'(R). (3.37)

Assume that a monomial f in (3.36) has the normal form. If f contains the factor us, then
f does not contain wug,vg,vs, v4, and p; for all i (here, we use some monomial relations with
factor ug). Furthermore, f does not contain a factor u; (since there is a reduction ujug — ...).
Consequently, f coincides with one of the monomials

uszvyz®, uzwviz®.
Assume that wug is not a factor of f, but f contains vy as a factor. Then f does not
contain the factors ve, vs, vy4, ug, p1,p2, p3 (because of the corresponding monomial relations);

moreover, f does not contain u; (since there is a reduction ujv; — ...) and py (there is a
reduction pyv1 — ... ). Hence, f coincides with one of the monomials

viz%, viZ'w (r>1).

Next, we assume that ug, vy are not factors of f, but f contains vs as a factor. Then f does
not contain the factors ve, vy, ug, p1, p2, p4 (because of the corresponding monomial relations);
moreover, f does not contain w (since there is a reduction vsw +— ...) and ps (there is a
reduction pgvs — ... ). Hence, f = u? Luzz® with 81 < 1 (since there is the relation u2vz = 0).
Consequently,

f € {v3z®, ujv32°}.
Now, assume that wus,v1,v3 are not factors of f, but f contains vy as a factor. Then f

does not contain the factors vg, ps, pg; moreover, f does not contain po,uy,us,w (because of
k—1

the corresponding reductions). Furthermore, i < k — 2 (since p; "v4 = 0). Consequently, f
coincides with one of the monomials
piv4zs, 0<i<k-—2.
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Assume that ug, v1, v3, v4 are not factors of f, but f contains vy as a factor. Then f does not
contain the factors us, p3, p4, w (because of the corresponding monomial relations); moreover, f
does not contain py, pa, uy (because of the corresponding reductions). Consequently, f = vyz°.

Now, assume that us and v; (j € {1,2,3,4}) are not factors of f, but f contains w as a
factor. Then f does not contain the factors us, p3, p4; moreover, f does not contain u; (because
of the reduction ujw > ...). Consequently, f coincides with one of the monomials

plwz*(0<i<k—1), ppwz’.
Assume that uz,v; (j € {1,2,3,4}) and w are not factors of f, but f contains u; as a

factor. Then f does not contain the factors ug (since ujuz = 0) and py (there is a reduction

pouy — ...). Hence, f = p1p3 pi‘*u‘its Moreover, i < 1, since p3u; = 0 [if ¢ # 0, then this
relation is derived from pju; = dc~ (p'f 2uy + pouy)], and if £ > 2, then i = 3 = 0, because
p1u? = psu? = 0. Consequently, f coincides with one of the monomials

s s s s 2_s 2_s 3_s
uiz ) plulz 9 pg'LL]_Z 9 p4U1Z ) ZLlZ 9 p4U12' ) 'U,lZ .

Now, we assume that uq,us,v; (j € {1,2,3,4}) and w are not factors of f, but f contains
a factor up. Then f does not contain factors p;, j € {2,3,4}. Consequently,

f=pluz®, 0<i<k-2.
Finally, if does not contain factors w;, vy, for all possible j,m, and w, then it is clear that f
coincides with one of the monomials
pi2°(0 <i <k —1), pa2®, ps2®, psz®.
Inspecting the degrees of the above monomials, we obtain the following list of all (nonzero)

monomials that have normal form. Put a > 0.

The monomials of degree 4a:

2((1 m m a—1

2lamm)=2 m}m 0,{’[) m=0>’

{uzwo]

ark—1
(i 2" Yoy p2z®, 3z, paz®

(the number of them equals 2a + k + 3).
The monomials of degree 4a + 1:

{U3’U2(a m) mg@ 07{~2am -1 m}

k—2
{p1U2z }i:oﬂhz ,Prur 2, paut 2, paur 2

(the number of them equals 2a + k + 4).
The monomials of degree 4a + 2:

~ 2(a— —1 +1
{ug@oy @™yt et mya
{p1U4Z }f;(?,mz ,v32%, uf 2%, paus 2

(the number of them equals 2a + k + 4).
The monomials of degree 4a + 3:

mO’

O P (e e

i ark—1 3
{piwz"};"5 , urv3z®, powz®, uy 2"

(the number of them equals 2a + k + 4). It is easily seen that all monomials in this list have
the normal form. Using Corollary 2.11, we obtain equality (3.37).

2) If ¢ = 0, then we need minor modifications in the above arguments. Now we choose the
following elementary steps of reduction:
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k—2
pauyl — py U2, P3U3 > PaUy > P1VU2 p4U%,

ULVg — dpot, uUIv] > cd_lui{’,
k—1~ ~
ujve = py W, u1w — (p3 + cpa)z,
2 2 ~
vy > piz, V3W > PAULZ,
V4W > U2, W2 — cp4u%z.

We remark that new monomial relations appear in the algebra A; (in comparison with the
previous case), namely,

~9
uug = pavy = pav1 = ugvy = w* = 0.
Now, successively analyzing several possibilities for occurrence of the elements from the

set A} in the representation of monomials in (3.36), we obtain the same list of monomials
having the normal form as in the case ¢ # 0. O

Case 2. Assume that k is even, k > 2, and d # 0.
We pick the following homogeneous elements of HH*(R):

— of degree 0 : P1,P2,P3,p4 in (3.1);
uz in (3.2), and

— of degree 1 : , b1 , (3.38)
Uy = (d(xy) 5 1 + C{L’), Ug = (y7 0)7

— of degree 2 : v1, V2, 03,04 in (3.4);

— of degree 3 : w = (0,y);

— of degree 4 : z in (3.5).

Proposition 3.10. Assume that k is even, k > 2, and d # 0. In the algebra HH*(R), the
elements of the set
y2 = {pl7p27p37p47 ulla u/27 us, v, v2, V3,04, W, Z} (339)

satisfy the relations (3.7), (3.10), (3.12), (3.16), (3.17), (3.22), (3.23), (3.26), and the following
relations:

pruy = (dpa + cp1)uly, pouly = phlub,

P v = dpavr + epsvs, pa(u))? = prvy = psvs = pavs,
p1(uy)? = ps(uf)* =0,
uuy = Ox—1(cdpavr + psus),
(u))? = dubvy, ujve = pi w, uhvs = paw,
uhvy = uh(dv + cvy), uyvy = prw,
ujvy = uhvsy = 0,
p3w = pgw =0,
(u})?v; =0 for 2<j <4,
wjw = ubw = 0,
vow = poubz, vaw = prubz, vaw = 0,
w? = (dfg11pav1 + Op_1p3v3)z.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. For this, we
need to know the translates those elements in (3.39) for which they have not been calculated
earlier (see Remark 3.4). These translates are described in the following lemma.
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Lemma 3.11. As the translates of the elements u}, ub,vs, and w, one can take the homomor-
phisms determined by the following matrices:

TO(u)) = (d(azy)k_1 ®1L1®1+4cr®1);

TL(u)) is represented by a 2 x 2-matriz in which

k-2 k-1
(T (ui))n = dZ(ajy)" ® (xy)F 170+ dz(y$)i © (zy)F 1
L
+ed Z ir(yz) " @ (zy)*
T |
(T (u)))12 = Zy(xy)’ ® (zy)k—2
Zggl i i A2 . .
+ey (ey)' @ (e e (4 D (ya) @ (ey)
=0 i=2

k—2
+ ¢+ Daly)' @ (@)
1=0

+ da(yz)* ™ @ (zy)* 2,
k—2 . ' k—1 . .
(T W)))n = d Y ylay) @ y(ay) > +ed > i(zy) @ ylay) 7,
=0 =1
k—2 '
(TYu)))pe =10 1+cz®1+ CZ(Z + Dy(zy)' @ y(ay)k 27
i=0
k—1 . .
+ Y ilay) @ y(ey) T+ d(ay) T @ y(ay)
=1
T%(uy) =(y ®1,0),

* *
1 I\ k—1 ) ‘
T (UQ) 4 Z z'(a;y)z ® y(xy)k—l—z %
i=1
with
k—1 4 |
(TH ) =y @ 1 +d Y iz(ye) ® (ey)* 1,
i=1
k1 4 ! ' |
(T uh))12 = Y _i(yz)' ® (xy)* 17 4+ ¢ in(ya) @ (zy)F ',
=1 i=1
k=2 , kel ' |
(THuh))oo = Y (i 4 Dy(zy)! @ y(ay)* 27 + Cz i(zy)' @ y(ay) 1
=0 i=1

T%(v3) and T (v3) can be given by the same formulas as for add k (see Lemma 3.3);
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T2(v3) is a 2 x 3-matriz in which
(T?(v3))11 = da® @ 1+ d(ya)" @ y + cdz(ye)* " @y
+ d*a(ya)" 2 @ (zy)*,
(T?(v3))12 = da(y2)* 2 @ (ay)* + da(yz)* " @ (ay)*
+ cdz(yz)* 1 @ x(yz)* 1,
(T?(v3))13 = 2(y2)* 2 @ (2y)* + 2(y2)" " @ (zy)"
+ (yo)" @ a(ya) !+ ca(yr) T @ a(ya)t Y,

k—1
(T2(v3))21 = Pdy(ay) ' @ (ay)* + ) (xy)' @ (wy)"
i=0
+ ed®z(yz)F 1 @ wy,
k-1 4
%(v3) 22—dZZEy ;vykz+d2y:ny11®a:(y:n) -
1=1

+dr ® y(xy)’“ Lt Pd(zy)* ® y(wy)’“‘1 + cdy(zy)" ! @ y(zy) L,

k E—
(T?(v3))23 = Zy(my)i_l Rz ’f i Z i
i=1 P

+ P (zy)F @ y(ay) ' + ey(ay) ! @ y(ay)

T(w) = (0,y ® 1),

TY(w) is a 2 x 3-matriz in which

k—1
(Tl (w)ll =dy®1+ d? Zz;p(yx)z ® (.Ty)k_l_i7
i=1
k—1 ' |
(Tl ('LU)12 =Yy ®1+ dz Zx(ym)z ® (xy)k—l—z
i=1
k-2 ' |
FAI (= )y @ alye) I+ edy(oy)t @ (ay)
i=2
, k-l . |
Nwhg =Y in(yr)’ @ (@y) 4D iye) @ e(ya)t
= i=1
+ey(ay) ! @ (zy)
k—1 ' |
(TH(w)ar = d* Y ilay)' @ y(ay)* ',
i=1
k—1 4 | b1 | |
(Tl(w)22 = dz i(zy)' ® y(xy)k—l—z + dz iy(zy)' @ (yx)k—1—17
=1 i=1

ko
N

-
(T (w)e3 = Z i(zy) @ y(zy)* 4+ G+ Dylzy) ® (yx)k—l—i;

@
Il
—
<.
Il
)
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with
(T2(w)12 =7 @1+ c3d(9cy) ® z(yz)" 1,
(Tz(w))lg =1® :r(ya:) Ly P2 @ ac(y:r)k_l,
(T*(w)))1a = (y2)* ' @ (zy)* " + c(yx)* ' @ a(yz)* 1,
(T?(w)))2 = dyz @ 1 + dy @ & + cdyz @ = + d*z(yz)* ' @ z,
(T*(w)))2s = 1@ zy+ 2 QY+ cx @ zy + cr” @y + dy(zy)* ' @ (yx)*
= 5 L)
with

(T3(w))11 = dy ® 1+ d®z(yz)" ! @ 1+ AdPz(ya)" ' @ (xy)”,
1

(T3(w)2 =y @1+ da;(yac)k Yo 1+ Ade(yz)* 1 @ (ay)F,
(T3(w))13 = z(yz)" ' @ 1+ cy(ay)" ' @ (ay)*!
+ c(yar:)k_1 ® y(:z:g,/)k_1 +? @ a:(y:r)k_l;
k-3
(T3(w)ez = 1@y + dz:w:(y:r)Z @ (zy)k—17
i=1
k-1
—l—dz (yx)' @ z(yz)k 11
i=1
k—1 k—1
(T3(w)oy = Z:z(ya:)Z v (zy)Ft + csz yz)t @ (zy)F 1
i=1 i=1
E—1 .
+ey (ya) @x(yr)" ' 4 Ay(ey) T @ (ay)
=0

The proof of this lemma is similar to the proof of Lemma 3.3.

Now the proof of Proposition 3.10 is completed similarly to the proof of Proposition 3.1
with the help of direct computations with matrices presented in Lemma 3.11. We leave to the
reader the corresponding detailed computations. O

Proposition 3.12. Assume that k is even, k > 2, and d # 0. The set Y5 in (3.39) generates
HH*(R) as a K-algebra.

We need the following auxiliary statement.
Lemma 3.13. For any ¢ € N\ {1}, we have

vi (0w +ugz) = (0,5, 0) € HH*FI(R),
v ugw = (0, (zy)*,0) € HH*2(R).

Proof. Tt is directly verified that viw + uzz = (0,9, O2). Then the proof of the first equality is
carried out by induction on ¢ similarly to the proof of Proposition 3.5. We also note that the
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translates T'(f), i € {1,2}, of the element f = (0,7, 0) can be taken in the same form as in
the proof of that proposition.
The second equality is proved similarly. O

Proof of Proposition 3.12. Let H be a K-subalgebra of HH*(R), generated by the set Yo U{1}.

3 ,
First, we prove that | J HH'(R) C H, and then prove the inclusion HH"(R) C H by induction
=0
on n.

It is clear that HH°(R) C H (see the proof of Proposition 3.7). The basis elements of
HH'(R) described in Corollary 2.6 (a), satisfy the relations
(y(wy)',0) = piupy for 1 <i <k —1, ((z)*,0) = pyuh,
(0,y(zy)* 1) = (p3 + cpa)ul, (0, (zy)*) = pau.
Hence, HHY(R) C H.
Next, the basis elements of HH?(R) described in Corollary 2.6 (b), satisfy the relations
(d(acy)”l,y(xy)i + c(acy)”l) = ploy for 0<i<k-—2,
(0,1) = (u})? + PdOx_1pav1 + Oy 1p303,
((zy)*,0) = pav1, (0, (zy)*) = p3vs.
Consequently, HH?(R) C H.
Then the basis elements of HH?(R) described in Corollary 2.6 (c), satisfy the relations
(0,y(zy)") = piw for 1 <i<k—1,
(dyz,zy + yz) = whvs, (y,2(yz)*) = uhoy,
(x(ym)k_l,O) = ugvy, (0, (my)k) = uhvs,

whence HH3(R) C H.

Now the inclusion HH"(R) C H follows by induction on n similarly to the proof of Proposi-
tion 3.7. Here, it is worth to note that relations (3.32) are valid for even k too, and one needs
to use relations in Lemma 3.13 instead of relations (3.33). O

Let Ay = K[X3]/Iz be the graded K-algebra defined in Sec. 1 with A5 as in (1.28), and
I, the corresponding ideal of relations. Propositions 3.10 and 3.12 imply that there exists a
surjective homomorphism ¢: Ay — HH*(R) of graded K-algebras, that takes the generators

in X3 to the corresponding generators in ), (see (3.39)). Let Ay = € A3 be the direct
m>0

decomposition of the algebra Ay into homogeneous direct summands. Now, statement (2) of

Theorem 1.1 is a consequence of the following statement.

Proposition 3.14. For any m > 0,
dimg A3 = dimg HH™(R).
First, we state the following auxiliary assertion.

Lemma 3.15. The following relations are satisfied in the algebra As:

4

! ! / ! ! / 1\3 2 2
P2UsV2 = PaligUy = P1Uylp = P3U V3 = Paliaty = (u7)” = (uy)” = pive = pavi =0,

k—2,/ /
pl U2'U4 — ul'UQ.

All relations in the lemma follow directly from the defining relations of the algebra As.
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Proof of Proposition 3.14. We introduce a lexicographic order on the polynomial ring K[A5],
such that

w > uy > uh > uz > vy >3 > v > > 2 > pa > p3 > py > Pl
Any nonzero monomial in Ay is represented in the form

F = pipg2pgap (u))? (uh) P2ug v vt o] @ 2% (3.40)

here, by the defining relations of the algebra As, we have
042,(137@47537’}’27737’}’475 S {07 1},1'7677“,8 € NU {0}77' S k— 17181 S 37182 S 2.

As in the proof of Proposition 3.8, we introduce the following list of elementary steps
of reduction and then study the normal forms of monomials (with respect to such steps of
reductions):

pruj = (dpa + epy)uh, paul > pi b,

P2av2 > pav, pa(u})? = pavy — p3vg — prva,
p’f‘lm — dpavy + cp1va, uuly — Ox_1c(dpsvr + cprva),
(uh)? = dbgy1pavr + clp_1p3vs, ubug — pavr,

(u}))? = dubvy, P = vy,

PLW — Uy, P2wW > UYLy,

p’f_zuém — u)vg, pow > ubvg,

wjvg = (dvg + cvg)ub, V3 piz,

Vow > Patlhz, vgw > prubz,

w? > (dB1pavy + cOp_1p3v3)z.

Put ¢; = dimg A%. Denote the number of monomials in A% occurring in the normal form by
;- Since there is an epimorphism A% — HH'(R), we have ¢; > dimx HH(R). Consequently,
it suffices to show that

¢; = dimyx HH'(R). (3.41)

Assume that a monomial f in (3.40) has the normal form. If f contains the factor w,
then f does not contain ps, ps,u}, u),vs (here, we use some monomial relations with factor

w); moreover, f does not contain py, pe (since there are reductions pjw — ..., pow — ...),
and vg, vy (there are reductions vow +— ..., vqw — ...). Hence, f coincides with one of the
monomials

woy 2%, ugwuiz®.
Assume that w is not a factor of f, but f contains v} as a factor. Then f does not contain
the factors vy, us. Moreover, f does not contain pi, ps, u), and vy since there are reductions
pruy = .o, pou — oo and wiuh — ..o, ujug — ... respectively. Note that 51 < 2 in (3.40)

(since (u})3 + ...). Hence, f coincides with one of the monomials
. m . m romo ! m ./ m N2, m
uyz™, p3ui 2", pauy 2™ uyvez™, uugR™, (up) 2

Now, assume that w, u) are not factors of f, but f contains u), as a factor. Then f does not
contain the factors ps3, p4, v3 (because of the corresponding monomial relations), and ug (since
there is a reduction whus — ...). Moreover, i < k — 3 in (3.40), since there is a reduction

p]f _2u’2214 — ... (see Lemma 3.15). It easily follows that f coincides with one of the monomials

piubz™ (0 < i <k — 1), paubz™, ubv1 2™, ubve 2™, plubvgz™ (0 < i < k — 3).

Note that, in the above argument, we use the relations poubvy = 0 (see Lemma 3.15) and
/.2
U2’U1 — 0
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Now, assume that w,u),u, are not factors of f, but f contains us as a factor. Then f
does not contain the factors p; for all i, and vy, v3,v4 (because of the corresponding monomial
relations). Consequently, f coincides with one of the monomials

f=wuzviz™ for r > 0.

Assume that w, u],ub, us are not factors of f, but f contains vy as a factor. Then f does

not contain the factors ps, py, v1, v2, v3, and also does not contain po (since there is a reduction

pavg > ... ). Moreover, i < k — 2 (because of p]f_lv4 — ...). Consequently,

fzpilv4zm for 0<i<k-—2.

Now, assume that w,u},uf, u3, vy are not factors of f, but f contains v3 as a factor. It is
easily seen that f does not contain p; for all i as factors, and hence, f = v3z™.

Now we assume that w, u}, u, ug,vq,v3 are not factors of f, but f contains vy as a factor.
It is easily seen that f does not contain ps,ps,ps. Moreover, i < 1 in (3.40) (since pfvy = 0).
Consequently, f coincides with one of the monomials

22", prugz™.
If f does not contain w,u},ub,us,vs,vs3,v9 as factors, but contains vy, then f does not
contain p1, p2,p3. Clearly, f coincides with one of the monomials
v 2™, pavi ™.

Finally, if w,u),u}, us, vy, v3,v2,v1 are not factors of f, then f coincides with one of the
monomials

P (0<i<k—1)z", ppz™, p3z", psz™.
Inspecting the degrees of these monomials, we obtain the following list of all (nonzero)
monomials that have the normal form. Put a > 0.
The monomials of degree 4a:

2(a—m)—2 mya—1 2(a—m) _mya—1
{’LL3’UJU1 z }m=0’ 1 2 Im=0s

{p12" V20 p22®, p3z®, paz”
(the number of them equals 2a + k + 3).
The monomials of degree 4a + 1:
I i (TR
{plzuéza f:_olv ullzavp3ullza7p4u/1za7p2ul2’za
(the number of them equals 2a + k + 5).
The monomials of degree 4a + 2:

{ugwo? @M el pemmtl ma

) ak—2 a a a a I\2 _a
{plvaz }i:o;pélvlz L 022% u32", pruaz®, (uy) 2

(the number of them equals 2a + k + 5).
The monomials of degree 4a + 3:

2([1—1’)’1,)—‘1-1 mya 2(a—m) mya
{’LL3’U1 z }m:07{wvl 2 fm=0s

{pliuévﬁlza}f:_g’ U/1U22:a, ullv?)za) U/2U1 Za7 u/2U2za
(the number of them equals 2a + k + 4). It is easily seen that all monomials in this list have
normal form. Using Corollary 2.11, we derive from this the equality (3.41). g
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Case 3. Assume that k is odd and d = 0.
We consider the following homogeneous elements of HH*(R):

— of degree 0 : p1,P2,p3,pa in (3.1);

ug,ug in (3.2), and
— of degree 1 : {uo = (L) + cay)*): (3.42)
— of degree 2 : v2, U3, v4 in (3.3);
— of degree 3 : wp = (0,1), wy := (0,y); (3.43)
— of degree 4 : z in (3.5).

Proposition 3.16. Assume that k is odd and d = 0. In the algebra HH*(R), the elements of
the set

Y3 = {p1,p2, P3, P4, Uy, U1, Uz, V2, V3, V4, Wy, W1, 2} (3.44)

satisfy the relations (3.7), (3.9), (3.11), (3.16), (3.23), (3.26), and the following relations:

PLuo = p3ui1, psug = py Uz,
pau1 = (p3 + cpa)ug, prur = 0;
ugug = paui = pyupuy =0,
p1v2 = pavg = 0, pjug =0 for 1 <j < 4;
ugvs = pawo = p§ w1, paws = pawo,
psw1 = pawy = 0,
ulu% = cugvg + cpawy, uou% = ui{’ =0,
UGV = U1V3 = P1wp, UgVs = PLWL,
ujvy = (p]f_l + cp2)wr,
UIV4 = UQV2 = UQV3 = 0,
urwy = (p3 + €pa)2z, urwy = cugwy + cpaz + pi 1z
VoWgy = ugwl, V3Wy = p]f_2u2,z,
VW = P3ULZ, V3WT = PAULZ, V4W1 = UZ, Vw1 = 0;
wd = (1 + Apy)udz,
WoW1 = V22, w% = 0.
Proof. The proof of the above relations is similar to the proof of Proposition 3.1. But we need
to know the translates of those elements in (3.44) for which they have not been calculated

earlier. These translates are described in the following lemma.

Lemma 3.17. As the translates of ug, wg, one can take the homomorphisms determined by
the following matrices:

Tup) =(1® 1, yxy) 2 @1+ clzy) e 1),
Tl(uo):<1%1 :)
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with

(T uo))12 = Y _2(yz)' ® (2y)* > + cy(ay)*? ® (ay)F
=0
+(zy) @ (ay)F
k—2 k—2
(T (uo))22 = Y (zy)' @ y(zy)* 27+ (ya)’ @ y(ay) >~
=0 - 2:41 |
+y(ay) P @1+ a(yr) @ y(ay) > + olay)t !
=0

0 1 {0 1®1 =«
T%(wo) = (0,1®1), T'(wp) = <0 0 *>
with
k-2
(T (wp)13 = z(yz)' @ z(yz) 27 + e(yx)* 2 @ (xy)*,
i=0
E—1 ‘ k—2
(T (wo)2s = Y _(xy)' @ (ya)" "+ (ay)' @ (zy)* "
i=0 1=0
k-1
+) () @ (o) 1+ ey(ay) T @ ylay)
=1
2 (0 1®1 *x =
T (wo) <0 0 *>
with

(T%(wo))13 =c(ay)* @ (zy)* 2,

(T?(wo))1a =(y2)" " @ 2(ya)* > + 2(y2)* @ (ay)*!
+2(ya) 1 @ (2y)F 2 + calyz) T © 2(ya) 2,
(T*(wp))2s =z @1+ 1®@a+ kf y(zy)' @ y(zy) >
ter®@a+ cy(a:;:)(’)‘f‘l @1+ Ay(zy) e,
(T?(wo)))2s = :(wy)i ® (y2)* 1+ z @ y(ay)t

+ (y2) L @ 1+ ey(ay)?

@ y(ry)"

0 I1®1 % O
Tg(“’(’):<o 0 = *>
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with

(T3 (wo))13 = A(yx)" ' @ z(yz)* ! + Se(yz) 1 @ z(yx)F 1,
(T%(wo))2s = 1® 1+ C2y($y)k_1 ®1+ 63(:13y)k ® 1,
k—2
(T3(wo))2s = > x(yz)’ @ (wy)" 7" + c(ya)" " @ y(ay)F >
i=0

+ey(ey)* 2 @ (ay)* !+ Falye) T @ y(ay) T+ Aya) T @ (ay)t
The proof of this lemma is similar to the proof of Lemma 3.3.

Now the proof of Proposition 3.16 is completed with the help of direct calculation. We leave
to the reader the corresponding details. O

Remark 3.18. Note that formulas for the translates of wy are obtained from the corresponding
translates of w (see Lemma 3.3) for d = 0. Recall that formulas for the translates of vy, v3, vy
described in that lemma are valid also for d = 0.

Proposition 3.19. For any £ € N, we have
uf = (1,0) € HHY(R), ufvs = (y,0) € HH?(R), (3.45)
ufwo = (0,1,0) € HH"(R), wufuwy = (0,y,0) € HH(R). (3.46)

Remark 3.20. Owing to the description of bases for the groups H2(X®) (£ > 4) given
in [2, Lemma 4.11], the elements

(1707"—‘,-1)7 (y, OT+1)7 (071707")7 (07y7o7‘) (347)

(for suitable r) are included in a basis of the image of H(X*) in the group HH*(R). Moreover,
the remaining basis elements of the image are expressed in terms of the above elements,

(z(yx)" 1, 0r41) = p2(1, 0041 ), ((zy)*,0541) = pa(1,0,41),
(O,x(yx)k_l, OT) = py (0, 1,0, ), (0, (acy)k, OT) = p4(0, 1,0, )

Proof of Proposition 3.19. The base of induction for all mentioned elements is established di-
rectly (using Lemma 3.17).
1) Now, assuming u = (1, O) (¢ > 2), we find the following translates of this element:

T(uf) = (1®1,0),

k—2
1®1 > r(yr)’ @ x(yx)k—27 O
Tl(ug) = k—1 ' =0 '
0 Y(ey)'® o)+ Aay) @ eyt O

i=0
Consequently,
ub™ = pTO(ug) T (uf) = (1,0).
2) Assuming uévg = (y, O), we find the translates

T(ufve) = (y® 1,0),

k=1 4
L, yol > (yz)'® z(yx) 17+ Sa(yz) @ (ay)f O
T (ugv2) = = k—1 , ,
0 > ylay)' @ (yz)t O

i=0
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Then
ugt vy = pT%(ug) T (vive) = (y,0).

3) Assuming ujwg = (0, 1,0 ), we find

TO(ufwo) = (0,1®1,0),

k—2 4 4
L 0 1®1 Z: r(yx) @ z(yx) 2% O
T (ugwo) = T .
00 Xyewnt 0

Then
ul™wo = pT(up) T (ufwo) = (0,1,0).
4) Assuming ufw; = (0, Y, O) (¢ € N), we find the translates

To(uéwl) = (Ovy ®1, 0)7

k-1 ,
0yl > (yz)@z(yz)'" O
Tl(ugwl) = i=1

0 0 Yyly) o) O
i=0
Then
ué“wl = uTo(uo)Tl(ugwl) = (O,y, O). O

Proposition 3.21. Assume that k is odd and d = 0. The set Vs in (3.44) generates HH*(R)
as a K-algebra.

Proof. Let H denote a K-subalgebra of HH*(R), generated by the set Y3U{1}. First, we prove
3 .
that |J HH'(R) C H.
i=0
It is clear that HHY(R) C H (see the proof of Proposition 3.7). The basis elements of
HH!(R), described in Corollary 2.8 (a), satisfy the relations
(y(azy)i,O) = pli_lug for1<i<k-1,
(m(yl’)k_lyo) = pauo, ((zy)",0) = pauo,
(O,Q(l“y)k_l) = (p3 + cpa)u1, (0, (zy)*) = pauy.
Hence, HHY(R) C H.
Next, the basis elements of HH2(R), described in Corollary 2.8 (b), satisfy the relations
(0,y(zy)" + c(zy)" ™) = plvg for 0<i < k-3,
(17 0) = ug? (x(yl‘)k_lv 0) = p2u02, ((Zvy)k, 0) = p4u02,
(07 1) = u127 (Ovy(xy)k_z) = upu1 + cve,
(0, (xy)k_l) = ¢ H(p¥ s + uour) + vo.
Consequently, HH?(R) C H.
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Then the basic elements of HH3(R) described in Corollary 2.8 (c), satisfy the relations

(O,y(xy)i) =piw for 1 <i<k—1,
(170) = Ug, (y,O) = UQV2,
(x(ya)*1,0) = paug, ((x)*,0) = paug,
(07 xry + ny’) = uU1vs, (07 x(yx)k_l) = p2wo,
(0, (zy)*) = pawr,
whence HH?(R) C H.
Now the inclusion HH"(R) C H is verified by induction on n. Assume that n > 4. Let
f = (f1, f2) € Homy(Q,, R) be a cocycle representing an element of HH"(R), where f; €

Homp (X, R) and fo € Homp(Qp—4, R). By Proposition 3.19, (f1,0) lies in H. Finally, by
induction hypothesis, fo € H, and hence (Og, fo) = z - f2 also lies in H. d

Let A3 = K[X3]/I3 be the graded K-algebra defined in Sec. 1 with X3 as in (1.31) and
I3 the corresponding ideal of relations. Propositions 3.16 and 3.21 imply that there exists a
surjective homomorphism ¢: A3 — HH*(R) of graded K-algebras that takes the generators
in X3 to the corresponding generators in V3 (see (3.44)). Let A3 = @D,,~¢ A5" be the direct
decomposition of A3 into homogeneous direct summands. Now, statement (3) of Theorem 1.1
is a consequence of the following statement.

Proposition 3.22. For any m > 0,
dimg A5 = dimg HH™(R).
First, we state an auxiliary assertion.
Lemma 3.23. The following relations are satisfied in the algebra As:
Plwo = prugwo = prugwi = paugus = paug = piug = pjug = 0.

All relations in lemma 3.23 follow directly from the defining relations of the algebra Ajs.

Proof of Proposition 3.22. We introduce a lexicographic order on the polynomial ring K [Aj],
such that

V3 > V4 > Wy >V >WL >UL > Uy > Uy > 2 >P2 >P3 > Pa > Pl
Any nonzero monomial in Aj is represented in the form

Qg 03, 04 B, B2, Y2, 73, V4 €18
£ =pips?pseptugus uy v ol vl wg wit 2% (3.48)

here, by the defining relations of the algebra Az, we have
Oé2,0é3,0é4,52,’)/2,’}/3,’)/4,50,61 € {07 1}7 Z.7£7 617 seNU {0}72 <k- 17ﬁ1 <2

As in the proof of Proposition 3.8, we introduce the following list of elementary steps of
reduction, and study the normal forms of monomials (with respect to these steps of reductions):
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p3u1l — p1uo, paur — (p3 + cpa)uo,

plf_2uz — D3U0, pave — paud,
UV3 — UQU4 — P1Wo, UQU3 — P3wg — p]f_lwla
Pawp — upgv2 + C_lugul, PawWg — pawi,
upvy > Py, wve = (PF 1 + epa)wi,
ujwy — (p3 + cp4)z, ulwo »—> cupwy + (cp2 +pr 1)z,
V4Wo > P3ULZ, v3 — piz,
V3W1 > Paulz, V4W1 > UZ,
VowWq > u%wl, V3wWo — p]f_zugz,
2 (1+Apy)udz, WoW] — Vaz.

Put ¢; = dimg Ag. Denote the number of monomials in A%, represented in the normal
form by g;. It is clear that ¢; > g;. Since there is an epimorphism AL — HH'(R), we have
q; > dimyx HH'(R). Consequently, it suffices to show that

¢; = dimgx HH'(R). (3.49)

Finally, successively analyzing several cases (cf. the proof of Proposition 3.8), we prove that
all (nonzero) monomials having the normal form are contained in the following list (where
a>0).

The monomials of degree 4a:

3 2
{woug ™73yl Lugug* T Ry
4 3 4(a 3
{wiug ™™yt pwug T e
4 1 _
{UIU (a=m)= m}m o’{uo )Zm gazlo’
—m) mya—1 — ) mya—1

a
{p2uo 2 fm= 07{p4u0 2 Sm=0s
a k 1
{pi 2" Yy p22”, p32®, paz”®

(the number of them equals 8a + k + 3).
The monomials of degree 4a + 1:

2 1
{wouo(a "= LA A 07{”2U0a " m}m 0
4 2 2
{wyug (a=m)= A S 0,{p2wluo( )= A0 S
4(a— 1
{UIU( )Zm ﬁl—o’{ oa ot m}m 0>

1 4 1
{paug ™My {pgug T e,
{pIUQZa}i:_Oap4ulz ,P1ugz®, p3ugz”

(the number of them equals 8a + k + 5).
The monomials of degree 4a + 2:

{wo uo(a m A . 07{U2U4(a m)zm =0

4 —1 4 —1
{wrug @™ 2y gy ¢ T e

{Uluo(a m)+1 m}m 0 ug(a—m)+2 m}m 0
a—m LM 4(a—m)+2 Sm
)+2 } ( )+ }

{pQuO m=0> {p4u

m=0>
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7 a k-2 2 _a a
{plvaz} o5, uiz®, vz

(the number of them equals 8a + k + 6).
The monomials of degree 4a + 3:

4(a—m) mya 4([1—1’)’1,)—‘1-1 mya
{WOUO Z m:07{2)2u0 z }m:07

4(a—m) _mna 4(a—m) _mya

{wluo z m=0> {p2wlu0 z m=0>
4(a—m)+2 _mya 4(a—m)+3 _mna
{uryg 2" b m—os LU 2" =0
4(a—m)+3 _mna 4(a—m)+3 _mra

{piw12* ;= pruwgz*
(the number of them equals 8a + k + 8).
Using Corollary 2.11, we derive from this the equality (3.49). O

Case 4. Now assume that k is even, k > 2, and d = 0.
We consider the following homogeneous elements of HH*(R):

— of degree 0 : P1,D2,P3, P4 in (3.1);
ug in (3.42),uf in (3.38), and
— of degree 1 : ,
uy = (0,14 cz);
— of degree 2 : V2,03, V4 in (3.3);
— of degree 3 : wo, wy in (3.43);
— of degree 4 : z in (3.5).

Proposition 3.24. Assume that k is even, k > 2, and d = 0. In the algebra HH*(R), the
elements of the set
V1= {p17p27p37p47 Ug, u&) U,2, V2, V3, V4, Wo, W1, Z} (350)

satisfy the relations (3.7), (3.16), (3.23), (3.26), and the following relations:

! k—1,1 / /
p3uo = pauy, p3upg = Py; Uy, P1UT = CP1Uy

P3uy = prug, Pauh = Palig, 3ty = paus = 0;
ujuy = 0p_1p3vs3,
P1V2 = p3v3 = pP2v4 = p4(’u/1)27
upuy = 0, povy = paud, (uh)? = chy_1psvs,
plf_lm = P33,
p1v3 = pau3 = pavsg = 0,

Uy vy = uhv3 = prwi, Uguy = P,
UQU3 = p'f_zu’Qvg = pswg = v, (1)) =0,
UgU2 = U%U/Q + pawo, Paw1 = Pawo = UHV2,

uyvy = ujv3 = p3wy = pawy = 0,
uhwy = upwy, uywy = vjwy = uhw; =0,
vowgy = udwy + paugz, v3wy = p]f_luéz,

vowy = paugz, vawg = (cpf~ b + prug)z,
Vw1 = pruyz, vawy = 0;
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2 _ 3 2 _ / 2 _
wg = (14 ’pa)ugz, wowr = uguyz, wi = cr_1p3v32.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. But we need
to know the translates of the element u in Vy; the translates for the other elements have been
calculated earlier.

Lemma 3.25. As the translates of the element u), one can take the homomorphisms deter-
mined by the following matrices:

T(u}) =(0,1®@1+cx®1), TH(u)) = <0 :)

0
with
k—2 ' 4 k—2 ' 4
(T W)z =D ylay)' @ ()" 27+ (i + 1) (ya) @ (ay)"
i=0 1=0
k—1 4 4 k—1 4 '
e () @ @y) T+ ) in(yr) ! @ (ay)
i=1 =1
k—2 4 4
(T' W) =101+ l+cy (i+1)yly) @yly) >
=0
k—1 ' ‘
+ ¢ Z i(zy)t @ y(xy)—17%
=1

The proof of this lemma is similar to that of Lemma 3.3.

Now the proof of Proposition 3.24 is completed with the help of direct calculation. We leave
to the reader the corresponding details. O

Remark 3.26. Note that formulas for the translates of wy are obtained from the corresponding
translates of w, that have been calculated earlier (see Lemma 3.11) for d # 0 (and even k).

Recall that formulas for the translates of vs, v3, v4 in Lemmas 3.3, 3.11 are valid also for even k
(and d = 0).

Proposition 3.27. For any { € N,
ué = (1, O) e HHY(R), uévg = (y,O) e HH"2(R),
uhwy = (0,1,0) € HH 3 (R),  ufuy +p2u€_1z =(0,9,0) € HH"(R).
The proof of this statement is completely similar to the proof of Proposition 3.19.

Proposition 3.28. Assume that k is even, k > 2, and d = 0. The set Y4 in (3.50) generates
HH*(R) as a K-algebra.

Proof. Let H denote a K-subalgebra of HH*(R), generated by the set Y, U{1}. First, we prove
3 .
that |J HH*(R) C H.
=0
It is clear that HH°(R) C H (see the proof of Proposition 3.7). The basis elements of
HH'(R), described in Corollary 2.10 (a), satisfy the relations

(y(:py)i,O) =pluy for 1 <i<k—1,
(x(y$)k_1,0) = pauo, ((my)kao) = p4uo,
(0,y(zy)* ) = (p3 + epa)us, (0, (xy)*) = pau.
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Hence, HHY(R) C H.
Next, the basis elements of HH?(R), described in Corollary 2.10 (b), satisfy the relations

(0,y(zy)" + c(zy)™t) = plog for 0<i<k—3,

(1,0) = UOa ( (y2)F71,0) = paug,

(0,1) = + (1 + Ok_1)psvs, ((zy)",0) = paug,
(0 y(wy)*~ 2) —p]f Yoy 4 c(uguly + va),

(0, (zy)* ") = wouh + va.

Consequently, HH?(R) C H.
Then the basis elements of HH?(R) described in Corollary 2.10 (c), satisfy the relations

(0 y(zy) 2)—pfwl for1<i<k-1,

(1,0) = ug, (y,0) = uovs,

(2(y2)*~1,0) = pau, ((xy)*,0) = pau,
(0, zy + yz) = ugvs, (Oax(ym)k_l) = pawy,
( ) ) = P4Wo,

whence HH?(R) C H.
Now the inclusion HH"(R) C H is verified by induction on n similarly to the proof of
Proposition 3.21. O

Let Ay = K[X4]/14 be the graded K-algebra defined in Sec. 1 with X4 as in (1.32) and
14 the corresponding ideal of relations. Propositions 3.24 and 3.28 imply that there exists a
surjective homomorphism ¢: Ay — HH*(R) of graded K-algebras that takes the generators in

X4 to the corresponding generators in Vy. Let Ay = @ A} be the direct decomposition of A4
m>0
into homogeneous direct summands. Now, statement (4) of Theorem 1.1 is a consequence of

the following statement.
Proposition 3.29. For any m > 0,
dimg AJ' = dimxg HH™(R).
First, we need the following auxiliary assertion.
Lemma 3.30. The following relations are satisfied in the algebra Ay:
piuo = prug = ugvs = ugvs = paug = (uh)® = prugvy = 0.

All relations in lemma 3.30 follow directly from the defining relations of the algebra Aj4.

Proof of Proposition 3.29. We introduce a lexicographic order on the polynomial ring K[X,],
such that

wo > wy > uj > uh > v >v3 > vy > ug > 2 > Po > p3 > py > Pl
Any nonzero monomial in A4 is represented in the form
f = pipspsp{tug (u)) 7 (uy) o3 v o] wg w2 (3.51)
here, by the defining relations of the algebra 44 (see also Lemma 3.30), we have
ag, a3, g, Ba, V2, V3, V4, €0,61 € 10,1}, 0,4, 81,s e NU{0},i <k —1,8 <2, B2 <2.
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We introduce the following list of elementary steps of reduction and study the normal forms
of monomials (with respect to these steps of reductions):

pouy > Py b > p3ug, p1uf — cpiuh,

p3U1 — p1uo, p2u/2 — P4uo,

p4(ul1)2 = P1U2 > P3U3 > Py, p2214 =c lp’f Loy,

uhuly > 0y 1psvg (ifff i1 #0), (ub)? > cbj_1psvs (ifff cO_1 #0),

pav2 = paud, prwy > wjvg > ubus,

pawo > wyve > PR Rubug > ugus,  pawo > uduly + ugu,

Pawo —> pawy U/QUQ, p1wo '—> UYV4,

ubwy — upws, v3 i piz,

vawy — prubz, V3w — plf luzz

vowp — udwy + paupz, vgwo — (eptul + prug)z,

VoW > PaUoZ, w% — cOk_1psvsz (ifff i1 # 0),
2 (14 Apy)udz, wowy — uguhz.

Put ¢; = dimg A}. Denote the number of monomials in A} represented in the normal form
by q;. It is clear that g; > ¢;. Consequently, it suffices to show that

gi = dimg HH'(R). (3.52)

Now, successively analyzing several cases (cf. the proof of Proposition 3.8), we prove that
all (nonzero) monomials having the normal form are contained in the following list (where
a>0).

The monomials of degree 4a:

-3 2
{woug *™™ 2 am e {ugug T2y
4 3 4 -3
{wr U (am)= m}m 07{U2’U2U0(a "= m}m 0
4 1 _
{U (a )= A . o’{uo )Zm gazlo’

a—m) mya—1 - ) mya—1
{p2uo 2 fm= 07{p4u0 2 fm=01

a k-1
(P2} p22®, p3z®, paz®

(the number of them equals 8a + k + 3).
The monomials of degree 4a + 1:

2 1
o= m}m 07{1)2“0(1 "= m}m 0>

4 2
m= 07{U2’U2U0(a "= A

4(a—m)+1 m}

{wouy

4(a—m)—2 Sm

{wyug M2 o
4(a—m mya

{U2U( )Z m—O’{ Uy

m=0>

{po Uo 4(a—m)+1 smya

m= 07{p4u m=0>
k—2

{pluzza i=1 ,uy 2%, pauy 2%, pruoz®, paug2”
(the number of them equals 8a + k + 6).
The monomials of degree 4a + 2:

{wo Uo(a m m}m 07{v2u4(a m)zm =0

4 -1 4 1
{wr U (a=m) m}m 07{U2’U2U0(a "= m}m 0

a—m)+1 m} u4(a—m)+2 m}

{U20 m=0s 1YUg m=0s
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a—m)+2 _mya 4(a—m)+2 _mna
z }m:07{p4u0 z }m:07

{pioaz =g, (u))?2, vz

{paug!

(the number of them equals 8a + k + 7).
The monomials of degree 4a + 3:

4(a—m) _mya

{WOUO z m:Oa{UWS(a_m)Hzm}%:o,
{wrug ™™ 28 o, {uhvaug ® ™ 2y g,
AT AR (A )
{poug @M mye o {paug Tz

i ! a1 k—3 a a
{Piusvsz }izo , U3UQR ™, V4UQR

(the number of them equals 8a + k + 8).
Using Corollary 2.11, we derive from this the equality (3.52). O

Case 5. Assume that k=2 and d # 0.
We consider the homogeneous elements
D1, D2, D3, P4, Uy, Us, Ug, V1, Vg, U3, Vg, W, 2 (3.53)
of HH*(R), defined by the same formulas as in the Case 2 (for k = 2).
Proposition 3.31. Let )5 be the set formed by the elements in (3.53). In the algebra HH*(R),
these elements satisfy the following relations:
pip; =0 foralli,j e {1,2,3,4};
pruy = (dp2 + cpr)uy, pauy = prus,
pjuz =0 for 1 <j <4, pguy = pyuy = 0,
p1vs = dpavy + cp3vs, uj = 0,
p3v1 = p1vg = p3v3 = pavy = ujug = pa(u})?,
pava = pav1 = uhug, ps(uf)? =0,
uhuhy, = edpyvy + Apgvr, (uh)? = cpsvr,
ujvy = uh(dvy + cvy), ubvy = ufve = prw,
ujvr = ujvs, pow = ubve
(u})? = dubvy, psw = pyw =0,
v22:v32:v42:0; vv; =0 fori < j,
wjw = uhw = 0;
VoW = poubz, vaw = prubz, vaw = 0;

w2 = Cp3V3Zz.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. Note that
the formulas for the translates of the elements in )5, that have been calculated earlier are
valid in the case under consideration. O

Proposition 3.32. Assume that k = 2 and d # 0. The set Vs generates HH*(R) as a
K-algebra.

We need the following auxiliary statement.
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Lemma 3.33. For any ¢ € N\ {1},
v 2 (nw + ugz) = (0,7,0) € HH* T (R),
v ugw = (0, (zy)%,0) € HH?*2(R).

Proof. Tt is immediately verified that viw + uzz = (0,7,02). Then the proof of the first
equality is carried out by induction on ¢ similarly to the proof of Proposition 3.5. Note that
the translates T?(f), i € {1,2}, of the element f = (0,7, 0) can be taken in the form obtained
in the proof of this proposition.

The second equality is proved similarly. O

Proof of Proposition 3.32. Let H denote a K-subalgebra of HH*(R), generated by the set
Vs U {1}. First, we prove that | J;_, HH'(R) C H.

It is clear that HHY(R) C H (see the proof of Proposition 3.7). The basis elements of
HH!(R), described in Corollary 2.6 (a), satisfy the relations

(yacy, 0) = pliu,27 ((ZL‘y)2, 0) = p2U,27
(0,yzy) = (ps + cpa)ul, (0, (zy)?) = par].

Hence, HHY(R) C H.
Next, the basis elements of HH?(R), described in Corollary 2.6 (b), satisfy the relations

(0,1) = (u})? + *dpsvy + cdpsvs,
((zy)?,0) = pav1, (0, (zy)?) = psvs.

Consequently, HH?(R) C H.
Then the basis elements of HH?(R), described in Corollary 2.6 (c), satisfy the relations

(07 yl‘y) = p1w,
(dyz, zy + yz) = vyvs, (y,zyz) = ujor,
(zyz,0) = ugvy, (0, (zy)?) = uhovs,

whence HH3(R) C H.

Now the inclusion HH"(R) C H is proved by induction on n similarly to the proof of
Proposition 3.7. Note that relations (3.32) are valid also for even k, and the equalities in
Lemma 3.33 should be used instead of relations (3.33). O

Let A5 = K|[A5]/I5 be the graded K-algebra defined in Sec. 1, where X5 coincides with the
set Xy in (1.28), and I5 the corresponding ideal of relations. Since there exists a surjective
homomorphism ¢: A; — HH*(R) of graded K-algebras that takes the generators in X5 to the
corresponding generators in Vs, statement (5) of Theorem 1.1 is a consequence of the following
statement.

Proposition 3.34. For any m > 0,
dimg A5 = dimxg HH™(R).
First, we need the following auxiliary assertion.

Lemma 3.35. The following relations are satisfied in the algebra As:

! ! / ! 1\4 1\3 2 /.2 /2
PolyVa = D1Usyve = P3uyv] = pauiv; = (uy)” = (uy)° = pav] = uyv] = uyvi = 0.

All relations in Lemma 3.35 follow directly from the defining relations of the algebra As.
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Proof of Proposition 3.34. We introduce a lexicographic order on the polynomial ring K[Xj],
such that
w > uy > uh > uz > vy > 03> 09 >0 > 2 > po > py > py > Pl
Then we introduce the following list of elementary steps of reduction, and study the normal
forms of monomials (with respect to these steps):

pruy = (dpa + cp1)us, paul > pruy,

uHU3 > P > PavI, p4(ull)2 = P24 > P3U3 > P1U2 > P31,
ujuz — p3v1, P14 — dpav1 + cp3vs,

uhuby — c(dpy + cp3)v, (uh)? — cpsvr,

(u})? = dulyvy, ujvg = ujvr,

ujvy — uh(dva + cvy), prw — ubvy — ujvg,

Pow > ubva, Vow > pauhz,

VW > pruhyz, w? — cp3vsz.

And then, as in the proof of Proposition 3.14, we obtain the list of monomials having the
normal form, which almost coincides with such list in the Case 2: the monomial pjv9z® is
replaced by psv12%, and the monomial ujv3z® is replaced by wjv12%. This completes the proof
of Proposition 3.34. ([l

Case 6. Now, we assume that £ = 2 and d = 0.
We consider the homogeneous elements
P1: P2, D3, Pas Uo, Uy, Uy, V2, U3, Vs, Wo, W1, 2 (3.54)
of HH*(R), defined by the same formulas as in the Case 4 (for k = 2).
Proposition 3.36. Let Vs be the set formed by the elements in (3.54). In the algebra HH*(R),
these elements satisfy the following relations:
pip; =0 for alli,j € {1,2,3,4};
p1uy = Cp3uo, Pauy = P3up = P1iy,
P3uy = P1uo, Pauy = Pauo, P3uy = pausy = 0;
P1v2 = p3vz = pavg = ¢ 'prog = ¢ H(uh)? = ¢!
P2v2 = paug, p3vz = pava =0,
P1U3 = Pav3 = pav3 = p3vy = pavy = 0, uguy = 0;
ugv3 = ujvg = ¢ uj vy = Uhvy = p3wy = prw,

uuy = pa(uy)?,

ugvy = whvg = prwo, (uh)* = uhvs = 0,
Pa2woy = UgV2 + u(]zuéa
Paw1 = pawo = uyva, p3wy = pywy = 0;
viv; =0 forall i,j € {2,3,4},
ubwy = upwy, wywy = vjwy = uhwy = 0,
VoW = u%wl + paupz, vawy = vawy = pyubz,
VW1 = PaupZ, V4w = P1uoz, vawi = 0,
wi = (1 + Apa)udz, wowy = uguhz, wi = cp3vsz.
The proof of the above relations is similar to the proof of Proposition 3.1 (cf. Proposi-

tion 3.24). But we need to know the translates T?(wg) for i = 2,3, whose description differs
from that in the Case 3 (and, respectively, in Case 4) (see Lemma 3.17).
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Lemma 3.37. The translates TO(wg), T (wo) can be defined by the formulas in Lemma 3.17.
Furthermore, the translates T*(wq), ¢ = 2,3, can be described by the following matrices:

0 1®1 x =
TQ(“’O):<0 0 = *>

with
(T?(wo))13 =c(zy)* ® 1 + ¢+ 1 ® (2y)?,
(T*(wo))14 =yr @z + T @2y +ayz ® 1
+ cxyr @ x + A (2y)* @ xy,
(T*(wo))s =2 @1+ 1@z +yQy+cz @z
+ eyry @ 1 + Cyry ©
(T*(wo)))oa =1 @yz+ 2y 1+20yY
+yr ® 1+ cy @ yay;
T3 (wp) = <8 1(?1 * *>
with

(T3(wo))13 = c(zy)’* ® L+ ¢ 1® (zy)?

+ czyaz & zyr + c3my:r & ryzw,
(T3(wo)) 14 = yr @y + (zy)? @1

+ cyr @ ryxr + cryr ® ry,
(T3(wp))23 = 1® 1+ yzy @ 1+ A (2y)* @ 1,
(T3(wo))2a =2 @1+ c- 1@ yzy +cyry @ 1

+ Pyr @ zy + A(yr)? ® 1.

Now the proof of Proposition 3.36 is completed with the help of direct calculation. We leave
to the reader the corresponding details.

Proposition 3.38. Assume that k = 2 and d = 0. The set Vs generates HH*(R) as a
K-algebra.

Proof. The proof is carried out similarly to the proof of Proposition 3.28. The formulas
in Proposition 3.27, that are used in the proof, are all valid with one exception: we have
uh=(1,0) € HH‘(R) only for £>4. O

Let Ag = K[X;]/I6 be the graded K-algebra defined in Sec. 1, where X coincides with the
set Xy in (1.32), and I is the corresponding ideal of relations. Since there exists a surjective
homomorphism ¢: Ag — HH*(R) of graded K-algebras that takes the generators in X to the
corresponding generators in Vg, statement (6) of Theorem 1.1 is a consequence of the following
statement.

Proposition 3.39. For any m > 0,
dimg Af' = dimg HH™(R).

Proof. The proof of this statement is similar to the proof of Proposition 3.29. We introduce a
lexicographic order on the polynomial ring K[Xg], such that

wo > wy > uj > uh > v >v3 > vy > ug > 2 > Po > p3 > py > Pl
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Then we introduce the following list of elementary steps of reduction, and study the normal
forms of monomials (with respect to these steps):

Ppauy > Pruh > P3uo, pruy — cpsug,

p3uy = piuo, paub > Py,

P4(U/1)2 > PLU2 > P3U3 > Pavy > € TPy,

wyuy e (uh)? = prog, pav2 — paug,

u) vy > ubvy = UgL3, P3Wo —r PLWy > UQU3,
uj vy — cugus, pawg — udub + ugue,
Pawp — powy u'gv2, p1wo — ’LL/1U3 = UQU4,
U'zwo = upwi, V3W > V4w > plugz,
VW u%wl + paupz, V4 W — PLUQZ,

VW1 > P4z, w > cp3vsz,

w% = (1 + C3p4)U%Z, wWow — uou’Qz.

Then, as in the proof of Proposition 3.29, we obtain the list of monomials having the normal

form that coincides with the list in Case 4. This completes the proof of Proposition 3.39. [

1.

2.

3.

10.

11.

12.

13.

Translated by the author.
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