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HOCHSCHILD COHOMOLOGY FOR ALGEBRAS OF
SEMIDIHEDRAL TYPE. X. COHOMOLOGY ALGEBRA
FOR THE EXCEPTIONAL LOCAL ALGEBRAS

A. I. Generalov∗ UDC 512.5

Hochschild cohomology algebra is described in term of generators and relations for a family of local
algebras of semidihedral type. This family appears in famous K. Erdmann’s classification only if
the characteristic of the base field is equal to 2. Bibliography: 13 titles.

Introduction

The present paper is devoted to calculation of the Hochschild cohomology algebra HH∗(R)
for the so called “exceptional” family of local algebras of semidihedral type. Recall that the
algebras of dihedral, semidihedral, and quaternion type appear in K. Erdmann’s papers on
classification of group blocks having a tame representation type (see [1]). The Hochschild
cohomology groups for this “exceptional” family were earlier calculated in [2]; this family
appears in the case when the base field has characteristic different from 2.

For another family of local algebras of semidihedral type, the Hochschild cohomology algebra
HH∗(R) was calculated in [3, 4]. Moreover, the Hochschild cohomology was investigated for
several families of algebras of semidihedral type with 2 or 3 simple modules in [5–11].

In order to calculate multiplication in HH∗(R), we use the minimal projective (= free)
resolution for algebras under consideration, which was constructed in [2].

1. Formulation of the main result

Let K be an algebraically closed field of arbitrary characteristic p := charK. For k ∈ N\{1}
and c, d ∈ K, we define a K-algebra Rk,c,d = K〈X,Y 〉/I, where I is an ideal of the free algebra
K〈X,Y 〉, generated by the elements

X2 − Y (XY )k−1 − c(XY )k, Y 2 − d(XY )k, (XY )k − (Y X)k, X(Y X)k.

The images of X and Y under the canonical homomorphism from K〈X,Y 〉 to Rk,c,d are
denoted by x and y, respectively. The algebra Rk,c,d is a symmetric local algebra of tame
representation type [1, III.1.2]; moreover, Rk,c,d is an algebra of semidihedral type, in the
terminology of [1, Chap.VIII].

The algebra Rk,c,d admits as a K-basis the set

BR = {(xy)i | 0 ≤ i ≤ k} ∪ {(yx)i | 1 ≤ i ≤ k − 1}
∪ {x(yx)i | 0 ≤ i ≤ k − 1} ∪ {y(xy)i | 0 ≤ i ≤ k − 1} (1.1)

consisting of all nonzero paths of the quiver of R (it consists of a single vertex and two loops
x and y).

The algebras Sk := Rk,0,0 (the parameters c, d are zero) form a family of local algebras that
is included in the classification in [1]. If p �= 2, then this family contains all local algebras of
semidihedral type. The Hochschild cohomology of the algebras Sk (in any characteristic p)
was studied in [3, 4].

But if (c, d) �= (0, 0) and p = 2, then the algebras Rk,c,d form a one more family of local
algebras in K. Erdmann’s classification [1]. Note that if c �= 0, then we may assume that c = 1.
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In the sequel, we assume that the base field K has characteristic 2.
In this section, we state the main result of the paper, namely, we describe the multiplicative

structure of the Hochschild cohomology algebra for algebras under consideration. Since this
description depends on the values of parameters that are included in the defining relations of
the studied algebras, we first construct several auxiliary graded K-algebras.

Let

X1 = {p1, p2, p3, p4, u1, u2, u3, v1, v2, v3, v4, w̃, z}. (1.2)

We introduce a grading on the algebra K[X1], such that

deg p1 = deg p2 = deg p3 = deg p4 = 0,

degu1 = deg u2 = degu3 = 1,

deg v1 = deg v2 = deg v3 = deg v4 = 2,

deg w̃ = 3, deg z = 4.

Then we define a graded K-algebra A1 = A1(k, c, d) = K[X1]/I1, where the ideal I1 is gener-
ated by the elements

pk1, p
2
2 , p

2
3 , p

2
4 ,

pipj for 1 ≤ i < j ≤ 4;

}

(1.3)

cp1u1 + d(p2u1 + pk−2
1 u2), p

k−1
1 u2, (1.4)

p2u2, p3u2, p4u2; (1.5)

pju3 for 1 ≤ j ≤ 4, (1.6)

u1u2, u
2
2, p

k−1
1 v4, u2u3, (1.7)

u1u3 + cp4v1, u
2
3; , (1.8)

cp1v2 + dp4v1, p4v1 + p2v2, (1.9)

p4u
2
1 + p1v2, p4u

2
1 + p3v3, p4u

2
1 + p2v4, (1.10)

p1u
2
1, p3u

2
1, (1.11)

p3v2, p4v2, p3v4, p4v4, (1.12)

p1v1, p2v1, p3v1, p1v3, p2v3, p4v3, (1.13)

cu31 + du1v1, p
2
1w̃ + u2v4, dp2w̃ + u1v4, (1.14)

u1v2 + pk−1
1 w̃ + cp2w̃, p4u

3
1, (1.15)

p3w̃, p4w̃, (1.16)

u2v1, u2v2, u2v3, (1.17)

u3v2, u3v3, u3v4, (1.18)

v 2
2 , v

2
3 ; vivj if i < j; (1.19)

u 4
1 , (1.20)

u1w̃ + (p3 + cp4)z, (1.21)

v 2
4 + p 2

1 z, (1.22)

u21vj for 1 ≤ j ≤ 4, (1.23)

for c = 0 u1v1; (1.24)

u2w̃, (1.25)

v3w̃ + p4u1z, v4w̃ + u2z, v2w̃ (1.26)

(w̃) 2 + cp4u
2
1 z. (1.27)
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Furthermore, we introduce a grading on the algebra A1, induced by the grading of the algebra
K[X1].

Next, let

X2 = {p1, p2, p3, p4, u′1, u′2, u3, v1, v2, v3, v4, w, z}. (1.28)

We introduce a grading on the algebra K[X2], such that

deg p1 = deg p2 = deg p3 = deg p4 = 0,
deg u′1 = degu′2 = deg u3 = 1,

deg v1 = deg v2 = deg v3 = deg v4 = 2,
degw = 3, deg z = 4.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1.29)

Then we define a graded K-algebra A2 = K[X2]/I2, where the ideal I2 is generated by the
elements (1.3), (1.6), (1.8), (1.12), (1.13), (1.18), (1.19), (1.22), and by the following elements
(here we use a constant θn of the field K (n ∈ N), defined by the formula

θn :=

n
∑

i=1

i ) : (1.30)

p1u
′
1 + (dp2 + cp1)u

′
2, p2u

′
1 + pk−1

1 u′2,

pk−1
1 v4 + dp4v1 + cp3v3, p4(u

′
1)

2 + p1v2, p4(u
′
1)

2 + p3v3, p4(u
′
1)

2 + p2v4,

p1(u
′
1)

2, p3(u
′
1)

2,

u′1u
′
2 + θk−1(cdp4v1 + c2p3v3),

(u′1)
3 + du′2v1, u

′
1v2 + pk−1

1 w, u′2v2 + p2w,

u′1v4 + u′2(dv2 + cv4), u
′
2v4 + p1w,

u′1v1, u
′
2v3,

p3w, p4w,

(u′1)2vj for 2 ≤ j ≤ 4,

u′1w, u′2w,
v2w + p2u

′
2z, v4w + p1u

′
2z, v3w,

w2 + (dθk+1p4v1 + cθk−1p3v3)z.

Furthermore, we introduce a grading on the algebra A2, induced by the grading of the algebra
K[X2].

Let

X3 = {p1, p2, p3, p4, u0, u1, u2, v2, v3, v4, w0, w1, z}. (1.31)

We introduce a grading on the algebra K[X3], such that

deg p1 = deg p2 = deg p3 = deg p4 = 0,

degu0 = deg u1 = degu2 = 1,

deg v2 = deg v3 = deg v4 = 2,

degw0 = degw1 = 3, deg z = 4.

Then we define a graded K-algebra A3 = K[X3]/I3, where the ideal I3 is generated by the
elements (1.3), (1.5), (1.7), (1.12), (1.19), (1.22), and by the elements

p1u0 + p3u1, p3u0 + pk−2
1 u2,

p2u1 + (p3 + cp4)u0, p1u1;

u0u2, p4u
2
1, p4u0u1,
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p1v2, p2v4, pjv3 for 1 ≤ j ≤ 4;

u0v3 + p3w0, u0v3 + pk−1
1 w1, p2w1 + p4w0,

p3w1, p4w1,

u1u
2
0 + cu0v2 + cp2w0, u0u

2
1, u

3
1,

u0v4 + u1v3, u0v4 + p1w0, u2v4 + p21w1,

u1v2 + (pk−1
1 + cp2)w1,

u1v4, u2v2, u2v3,

u1w1 + (p3 + cp4)z, u1w0 + cu0w1 + cp2z + pk−1
1 z;

v2w0 + u20w1, v3w0 + pk−2
1 u2z,

v4w0 + p3u1z, v3w1 + p4u1z, v4w1 + u2z, v2w1;

w 2
0 + (1 + c3p4)u

2
0 z,

w0w1 + v2z, w
2
1.

We introduce a grading on the algebra A3, induced by the grading of the algebra K[X3].
Let

X4 = {p1, p2, p3, p4, u0, u′1, u′2, v2, v3, v4, w0, w1, z}. (1.32)

We introduce a grading on the algebra K[X4] such that

deg p1 = deg p2 = deg p3 = deg p4 = 0,
deg u0 = degu′1 = deg u′2 = 1,
deg v2 = deg v3 = deg v4 = 2,

degw0 = degw1 = 3, deg z = 4.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1.33)

We define a graded K-algebra A4 = K[X4]/I4, where the ideal I4 is generated by the elements
(1.3), (1.12), (1.19), (1.22), and by the following elements (again we use the constant θn, see
(1.30)):

p3u0 + p2u
′
1, p3u0 + pk−1

1 u′2, p1u′1 + cp1u
′
2,

p3u
′
1 + p1u0, p2u

′
2 + p4u0, p3u

′
2, p4u

′
2;

u′1u
′
2 + c2θk−1p3v3,

p1v2 + p3v3, p1v2 + p2v4, p1v2 + p4(u
′
1)

2,

u0u
′
1, p2v2 + p4u

2
0, (u

′
2)

2 + cθk−1p3v3,

pk−1
1 v4 + cp3v3,

p1v3, p2v3, p4v3,

u′1v4 + u′2v3, u′1v4 + p1w1, u0v4 + p1w0,

u0v3 + pk−2
1 u′2v3, u0v3 + p3w0, u0v3 + u′1v2, (u′1)3,

u0v2 + u20u
′
2 + p2w0, p2w1 + p4w0, p2w1 + u′2v2,
u′2v4, u′1v3, p3w1, p4w1,

u′2w0 + u0w1, u
′
1w0, u

′
1w1, u

′
2w1,

v2w0 + u20w1 + p2u0z, v3w0 + pk−1
1 u′2z,

v2w1 + p4u0z, v4w0 + (cpk−1
1 u′2 + p1u0)z,

v4w1 + p1u
′
2z, v3w1;

w 2
0 + (1 + c3p4)u

2
0 z, w0w1 + u0u

′
2z, w

2
1 + cθk−1p3v3z.
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Furthermore, we introduce a grading on the algebra A4, induced by the grading of the
algebra K[X4].

Next, we consider a set X5 that coincides with X2 (see (1.28)) and introduce the same grading
on the algebra K[X5] as in (1.29). Then we define a graded K-algebra A5 = K[X5]/I5, where
the ideal I5 is generated by the elements

pipj for all i, j ∈ {1, 2, 3, 4};
p1u

′
1 + (dp2 + cp1)u

′
2, p2u

′
1 + p1u

′
2,

pju3 for 1 ≤ j ≤ 4, p3u
′
2, p4u

′
2,

p1v4 + dp4v1 + cp3v3, u
2
3,

p3v1 + p1v2, p3v1 + p3v3, p3v1 + p2v4, p3v1 + u′1u3, p3v1 + p4(u
′
1)

2,

p2v2 + p4v1, p2v2 + u′2u3, p3(u′1)2,
u′1u

′
2 + cdp4v1 + c2p3v1, (u

′
2)

2 + cp3v1,

u′1v4 + u′2(dv2 + cv4), u
′
2v4 + u′1v2, u′2v4 + p1w,

u′1v1 + u′1v3, p2w + u′2v2,
(u′1)

3 + du′2v1, p3w, p4w,
v 2
2 , v

2
3 , v

2
4 ; vivj if i < j;

u′1w, u′2w,
v2w + p2u

′
2z, v4w + p1u

′
2z, v3w,

w2 + cp3v3z.

Furthermore, we introduce a grading on the algebra A5, induced by the grading of the alge-
bra K[X5].

Next, we consider a set X6 that coincides with X4 (see (1.32)) and introduce the same
grading on the algebra K[X6] as in (1.33). We define a graded K-algebra A6 = K[X6]/I6,
where the ideal I6 is generated by the elements

pipj for all i, j ∈ {1, 2, 3, 4};
p1u

′
1 + cp3u0, p2u

′
1 + p3u0, p2u

′
1 + p1u

′
2,

p3u
′
1 + p1u0, p2u

′
2 + p4u0, p3u

′
2, p4u

′
2;

p1v2 + p3v3, p1v2 + p2v4, p1v2 + c−1p1v4, p1v2 + c−1(u′2)2,
p1v2 + c−1u′1u

′
2, p1v2 + p4(u

′
1)

2,

p2v2 + p4u
2
0 , p3v2, p4v2,

p1v3, p2v3, p4v3, p3v4, p4v4, u0u
′
1;

u0v3 + u′1v2, u0v3 + c−1u′1v4, u0v3 + u′2v4, u0v3 + p3w0, u0v3 + p1w1,

u0v4 + u′1v3, u0v4 + p1w0, (u
′
1)

3, u′2v3,
p2w0 + u0v2 + u 2

0 u
′
2,

p2w1 + p4w0, p2w1 + u′2v2, p3w1, p4w1;

vivj for all i, j ∈ {2, 3, 4},
u′2w0 + u0w1, u

′
1w0, u

′
1w1, u

′
2w1,

v2w0 + u20w1 + p2u0z, v3w0 + v4w1, v3w0 + p1u
′
2z,

v2w1 + p4u0z, v4w0 + p1u0z, v3w1,

w 2
0 + (1 + c3p4)u

2
0 z, w0w1 + u0u

′
2z, w

2
1 + cp3v3z.
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Furthermore, we introduce a grading on the algebra A6, induced by the grading of the algebra
K[X6].

The main result of the paper is the following theorem.

Theorem 1.1. Assume that charK = 2, and let R = Rk,c,d with k ≥ 2, c, d ∈ K, (c, d) �=
(0, 0).

(1) If k is odd and d �= 0, then the Hochschild cohomology algebra HH∗(R) is isomorphic, as
graded K-algebra, to the algebra A1.

(2) If k is even, k > 2, and d �= 0, then, as graded K-algebra, HH∗(R) 	 A2.
(3) If k is odd and d = 0, then, as graded K-algebra, HH∗(R) 	 A3.
(4) If k is even, k > 2, and d = 0, then, as graded K-algebra, HH∗(R) 	 A4.
(5) If k = 2 and d �= 0, then, as graded K-algebra, HH∗(R) 	 A5.
(6) If k = 2 and d = 0, then, as graded K-algebra, HH∗(R) 	 A6.

2. Auxiliary results

Let R = Rk,c,d with k ∈ N \ {1}, (c, d) �= (0, 0), and let Λ := R ⊗K Rop be the enveloping
algebra of the algebra R. Let μ : Q• → R be the minimal Λ-projective resolution of the
bimodule R, that was constructed in [2]. Recall that in the complex Q•, we have

Q0 = Λ, Q1 = Q2 = Q3 = Λ2,

Qn = Λ2 ⊕Qn−4 for n ≥ 4; (2.1)

the description of the differentials dQn in Q• is more complicated, see [2]. Moreover, in the rest
of the paper, we fix the decompositions of the modules Qn = Λtn with respect to which the
matrices of the differentials are described in [2]; these decompositions are called standard. We
use also another notation in [2], in particular, we put

ỹ := y + dx(yx)k−1,

and
δn := HomΛ(d

Q
n , R).

Let X• be a subcomplex of the complex Q•, such that

for n ≥ 4, Xn = Λ2

the sum of the first two direct summands in decomposition of Qn in (2.1),
for 0 ≤ n ≤ 3, Xn = Qn.

⎫

⎬

⎭

(2.2)

The following statement was proved in [2, Proposition 3.2].

Proposition 2.1. There is a short exact sequence of complexes

0 → X•
i−→ Q•

π−→ Q•[−4] → 0, (2.3)

which splits in each degree.

The following statement is derived from [1, III.14].

Proposition 2.2. HH0(R) admits as a K-basis the set

{1, xy + yx, (xy)2 + (yx)2, . . . , (xy)k−1 + (yx)k−1, x(yx)k−1, y(xy)k−1, (xy)k}.
When studying the Hochschild cohomology groups of higher degrees, we impose additional

conditions on the parameters k, c, d, namely, we distinguish the cases of even and odd k, and
also of d �= 0 and d = 0.

Although the dimensions of the groups HHi(R), i > 0, were calculated in [2], we need an
explicit description of bases (over K) of these groups. In order to obtain it, we first present
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bases of the vector spaces Ker δi, i ∈ {1, 2, 3}. We obtain these bases as in [13, Proposition
4.4], namely, we represent elements in R as linear combinations of basis elements from (1.1)
and obtain systems of linear equations on coefficients of those linear combinations substituting
them in the formulas for δi. We leave the details of such computation to the reader.

Proposition 2.3. Assume that k is odd and d �= 0. Then
(a) Ker δ1 admits a K-basis formed by the elements

(

(xy)i + (yx)i, 0
)

for 1 ≤ i ≤ k − 1, (2.4)
(

y(xy)i, 0
)

for 1 ≤ i ≤ k − 1, (2.5)
(

0, (xy)i + (yx)i
)

for 1 ≤ i ≤ k − 1, (2.6)
(

0, x(yx)i
)

for 1 ≤ i ≤ k − 1, (2.7)
(

d(xy)k−1 + cy, 1 + cx
)

,
(

x(yx)k−1, 0
)

,
(

(xy)k, 0
)

, (2.8)
(

0, y(xy)k−1
)

,
(

0, (xy)k
)

; (2.9)

(b) Ker δ2 admits a K-basis formed by the elements

(

(xy)i + (yx)i, 0
)

for 1 ≤ i ≤ k − 1, (2.10)
(

d(xy)i+1, y(xy)i + c(xy)i+1
)

for 0 ≤ i ≤ k − 2, (2.11)
(

y(xy)i, 0
)

for 0 ≤ i ≤ k − 1, (2.12)
(

0, (xy)i + (yx)i
)

for 1 ≤ i ≤ k − 1, (2.13)
(

0, x(yx)i
)

for 0 ≤ i ≤ k − 1, (2.14)
(

1, 0
)

,
(

x(yx)k−1, 0
)

,
(

(xy)k, 0
)

, (2.15)
(

0, 1
)

,
(

0, y(xy)k−1
)

,
(

0, (xy)k
)

; (2.16)

(c) Ker δ3 admits a K-basis formed by the elements

(

(xy)i + (yx)i, 0
)

for 1 ≤ i ≤ k − 1, (2.17)
(

d(yx)i, (xy)i + (yx)i
)

for 1 ≤ i ≤ k − 1, (2.18)
(

y(xy)i, 0
)

for 1 ≤ i ≤ k − 1, (2.19)
(

0, y(xy)i
)

for 1 ≤ i ≤ k − 1, (2.20)
(

y, x(yx)k−1
)

,
(

dy, y
)

,
(

x(yx)k−1, 0
)

, (2.21)
(

(xy)k, 0
)

,
(

0, (xy)k
)

. (2.22)

Corollary 2.4. Assume that k is odd and d �= 0. Then
(a) HH1(R) admits a K-basis formed by the elements

(

y(xy)i, 0
)

for 1 ≤ i ≤ k − 1, (2.23)
(

d(xy)k−1 + cy, 1 + cx
)

,
(

x(yx)k−1, 0
)

,
(

(xy)k, 0
)

, (2.24)
(

0, y(xy)k−1
)

,
(

0, (xy)k
)

; (2.25)
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(b) HH2(R) admits a K-basis formed by the elements
(

d(xy)i+1, y(xy)i + c(xy)i+1
)

for 0 ≤ i ≤ k − 2, (2.26)
(

1, 0
)

,
(

y, 0
)

, (2.27)
(

0, 1
)

,
(

0, x
)

,
(

0, (xy)k
)

; (2.28)

(c) HH3(R) admits a K-basis formed by the elements
(

0, y(xy)i
)

for 1 ≤ i ≤ k − 1, (2.29)
(

dyx, xy + yx
)

,
(

y, x(yx)k−1
)

,
(

0, ỹ
)

, (2.30)
(

x(yx)k−1, 0
)

,
(

0, (xy)k
)

. (2.31)

Proof. The statements follow immediately from Proposition 2.3 and the description of bases
for Im δi, 0 ≤ i ≤ 2, in [2]. �
Proposition 2.5. Assume that k is even and d �= 0. Then

(a) to get a basis of Ker δ1, we need to replace in the set in Proposition 2.3 (a), the element
(

d(xy)k−1+cy, 1+cx
)

in (2.8) by the element
(

d(xy)k−1, 1+cx
)

and to add the element
(

y, 0
)

to this set;
(b) Ker δ2 admits as a K-basis the set in 2.3 (b);
(c) to get a basis of Ker δ3, we need to replace in the set in Proposition 2.3 (c), the element

(

dy, y
)

in (2.21) by the element
(

0, y
)

.

Corollary 2.6. Assume that k is even and d �= 0. Then
(a) to get a basis of HH1(R), we need to add the element

(

y, 0
)

to the set in Corollary 2.4
(a);

(b) to get a basis of HH2(R), we need to add the element
(

(xy)k, 0
)

to the set in Corollary
2.4 (b);

(c) to get a basis of HH3(R), we need to replace in the set in Corollary 2.4 (c), the element
(

0, ỹ
)

in (2.30) by the element
(

0, y
)

.

Proof. Again the statement follows from the description of bases for Im δi, 0 ≤ i ≤ 2, in [2],
and Proposition 2.5. �
Proposition 2.7. Assume that k is odd and d = 0. Then

(a) to get a basis of the vector space Ker δ1, we need to add the element
(

1, y(xy)k−2 +

c(xy)k−1
)

to the set in Proposition 2.3, (a);

(b) to get a basis of the vector space Ker δ2, we need to replace in the set in Proposition 2.3,
(b), the element

(

d(yx)k−1, c(xy)k−1 + y(xy)k−2
)

in (2.11) by
(

0, y(xy)k−2
)

, and the element
(

0, (xy)k−1 + (yx)k−1
)

in (2.13) by a pair of the elements
(

0, (xy)k−1
)

,
(

0, (yx)k−1
)

;

(c) to get a basis of the vector space Ker δ3, we need to replace in the set in Proposition 2.3,
(c), the element

(

y, x(yx)k−1
)

in (2.21) by the element
(

0, x(yx)k−1
)

, and to add the elements

(1, 0), (y, 0), (0, 1)

to this set.

Corollary 2.8. Assume that k is odd and d = 0. Then
(a) to get a basis of HH1(R), we need to add the element

(

1, y(xy)k−2+ c(xy)k−1
)

to the set
in Corollary 2.4 (a),

(b) to get a basis of HH2(R), we need to replace in the set in Corollary 2.4 (b), the element
(

d(yx)k−1, c(xy)k−1+y(xy)k−2
)

in (2.26) by a pair of the elements
(

0, y(xy)k−2
)

,
(

0, (xy)k−1
)

,

and the element
(

0, (xy)k
)

in (2.28) by a pair of the elements
(

x(yx)k−1, 0
)

,
(

(xy)k, 0
)

;
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(c) to get a basis of HH3(R), we need to replace in the set in Corollary 2.4 (c), the element
(

y, x(yx)k−1
)

in (2.30) by a pair of the elements (y, 0),
(

0, x(yx)k−1
)

, and to add the elements

(1, 0), (x(yx)k−1, 0), (0, 1)

to this set.

Proof. Again the statement follows from Proposition 2.7 (and from the description of bases
for Im δi, 0 ≤ i ≤ 2, in [2]). �

Proposition 2.9. Assume that k is even and d = 0. Then
(a) to get a basis of Ker δ1, we need to add the element

(

1, y(xy)k−2 + c(xy)k−1
)

to the set
in Proposition 2.5 (a);

(b) Ker δ2 admits as a K-basis the set in Proposition 2.7 (b);
(c) Ker δ3 admits as a K-basis the set in Proposition 2.7 (c).

Corollary 2.10. Assume that k is even and d = 0. Then
(a) to get a basis HH1(R), we need to replace in the set in Corollary 2.8 (a), the element

(

cy, 1 + cx
)

by the pair
(

y, 0
)

,
(

0, 1 + cx
)

;

(b) to get a basis of HH2(R), we need to add the element
(

0, (xy)k
)

to the set in Corolla-
ry 2.8 (a);

(c) HH3(R) admits as a K-basis the set in Corollary 2.8 (c).

Proof. The statement follows from Proposition 2.9 (and from the description of bases for Im δi,
0 ≤ i ≤ 2, in [2]). �

The above results imply the following statement obtained in [2], and we state it for conve-
nience of the reader.

Corollary 2.11. (I) Assume that d �= 0. Then

(Ia) dimK HH1(R) = dimK HH2(R) =

{

k + 5 if k is even,

k + 4 if k is odd;

(Ib) dimK HH3(R) = k + 4.

(II) Assume that d = 0. Then

(IIa) dimK HH1(R) =

{

k + 6 if k is even,

k + 5 if k is odd;

(IIb) dimK HH2(R) =

{

k + 7 if k is even,

k + 6 if k is odd;

(IIc) dimK HH3(R) = k + 8.

Remark 2.12. The short exact sequence (2.3) induces a long cohomology sequence in which
the connecting homomorphisms are zero starting at some place (see the proof of Proposi-
tion 4.10 in [2]), and hence, for any n ≥ 4,

HHn(R) 	 HHn−4(R)⊕Hn(X •),

where X • = HomΛ(X•, R) (with X• as in (2.2)).
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Remark 2.13. From the form of the differentials dQn (see [2]), one can easily see that if n ≥ 4
and

f = (r1, . . . , rtn) ∈ HomΛ(Qn, R)(	 Rtn)

is a cocycle (i.e., δn(f) = 0), then its “pieces”

(r1, r2) ∈ X n 	 R2 and (r3, . . . , rtn) ∈ HomΛ(Qn−4, R)

are also cocycles in the corresponding complexes. With the help of Corollaries 2.4–2.10 (and
Proposition 2.2), this observation allows us to write down representatives of the cohomology
classes that form bases in the groups HHn(R), n ≥ 4.

Remark 2.14. In the sequel, if x ∈ Ker δn is a n-cocycle, we keep notation x for its cohomology
class cl x ∈ HHn(R).

3. Generators and relations

We present briefly an interpretation of the Yoneda product in the algebra HH∗(R) =
⊕

m≥0
ExtmΛ (R,R) used earlier in [12]. Let μ : Q• → R be the minimal Λ-projective resolution

(see Sec. 2). Consider the complex

HomΛ(Q•, R) =
(

HomΛ(Qn, R), δn
)

;

here, as above, the δn are the differentials induced by the differentials of the resolution Q•. If
f ∈ Ker δn, g ∈ Ker δt are cocycles, then cl g · cl f = cl (μT0(g)Tt(f)), where Ti(h) is the ith
translate of the cocycle h. In the sequel, we define the translates Ti(h) (i ≥ 0) with the help
of matrices that correspond to the standard decompositions of the modules Qn.

Now, we begin calculation of the multiplicative structure of the algebra HH∗(R) for algebras
from the family under consideration. This structure depends essentially on the fact that k is
even or odd. Moreover, the case where k = 2 must be studied separately.

Case 1. First, assume that k is odd and d �= 0.
We consider the following homogeneous elements of HH∗(R):

— of degree 0 :

{

p1 := xy + yx, p2 := x(yx)k−1,

p3 := y(xy)k−1, p4 := (xy)k;
(3.1)

— of degree 1 :

{

u1 := (cy + d(xy)k−1, 1 + cx),

u2 := (yxy, 0), u3 := (x(yx)k−1, 0);
(3.2)

— of degree 2 :

{

v1 := (1, 0), v2 := (y, 0), v3 := (0, x),

v4 := (dyx, y + cxy);
(3.3)

— of degree 3 : w̃ := (0, ỹ); (3.4)

— of degree 4 : z := (0, 0, 1). (3.5)

Proposition 3.1. Assume that k is odd and d �= 0. In the algebra HH∗(R), the elements of
the set

Y1 = {p1, p2, p3, p4, u1, u2, u3, v1, v2, v3, v4, w̃, z} (3.6)
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satisfy the following relations:

pk1 = p 2
2 = p 2

3 = p 2
4 = 0,

pipj = 0 for 1 ≤ i < j ≤ 4;

}

(3.7)

cp1u1 = d(p2u1 + pk−2
1 u2), p

k−1
1 u2 = 0, (3.8)

p2u2 = p3u2 = p4u2 = 0; (3.9)

pju3 = 0 for 1 ≤ j ≤ 4; , (3.10)

u1u2 = u22 = pk−1
1 v4 = u2u3 = 0, (3.11)

u1u3 = cp4v1, u
2
3 = 0; , (3.12)

cp1v2 = dp4v1, p4v1 = p2v2, (3.13)

p4u
2
1 = p1v2 = p3v3 = p2v4, (3.14)

p1u
2
1 = p3u

2
1 = 0, (3.15)

p3v2 = p4v2 = p3v4 = p4v4 = 0, (3.16)

p1v1 = p2v1 = p3v1 = p1v3 = p2v3 = p4v3 = 0, (3.17)

cu31 = du1v1, p
2
1w̃ = u2v4, dp2w̃ = u1v4, (3.18)

u1v2 = pk−1
1 w̃ + cp2w̃, p4u

3
1 = 0, (3.19)

p3w̃ = p4w̃ = 0, (3.20)

u2v1 = u2v2 = u2v3 = 0, (3.21)

u3v2 = u3v3 = u3v4 = 0, (3.22)

v 2
2 = v 2

3 = 0; vivj = 0 for i < j; (3.23)

u 4
1 = 0, (3.24)

u1w̃ = (p3 + cp4)z, (3.25)

v 2
4 = p 2

1 z, (3.26)

u21vj = 0 for 1 ≤ j ≤ 4, (3.27)

for c = 0 u1v1 = 0; (3.28)

u2w̃ = 0, (3.29)

v3w̃ = p4u1z, v4w̃ = u2z, v2w̃ = 0; (3.30)

(w̃) 2 = cp4u
2
1 z. (3.31)

Proof. Relations (3.7), (3.8), (3.9), (3.10), (3.14), (3.16), (3.17), (3.20) are verified directly. In
proving of the remaining relations we have to compute the translates of suitable orders for
elements in Y1, which have positive degree.

Proposition 2.1 implies immediately the following statement.

Lemma 3.2. For any i ≥ 0, the projection onto the direct summand πi+4 : Qi+4 = Xi+4⊕Qi →
Qi is the ith translate Ti(z) of the cocycle z.

Suitable translates of the other elements in Y1 with positive degree are presented in the
following lemma.
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Lemma 3.3. As translates of the elements in Y1 \ {z} of positive degree, one can take the
homomorphisms determined by the matrices

T0(u1) =
(

cy ⊗ 1 + d(xy)k−1 ⊗ 1, 1 ⊗ 1 + cx⊗ 1
)

,

T1(u1) =

⎛

⎝

∗ ∗
d
k−2
∑

i=0
y(xy)i ⊗ y(xy)k−2−i ∗

⎞

⎠

with

(T1(u1))11 = cd
k−1
∑

i=0

x(yx)i ⊗ (xy)k−1−i + d
k−1
∑

i=0

(yx)i ⊗ (xy)k−1−i

+ d

k−3
∑

i=0

x(yx)i ⊗ y(xy)k−2−i + cy ⊗ 1,

(T1(u1))12 = c

k−1
∑

i=0

(yx)i ⊗ (xy)k−1−i + c

k−1
∑

i=1

(xy)i ⊗ (xy)k−1−i

+ c2
k−1
∑

i=0

x(yx)i ⊗ (xy)k−1−i +
k−2
∑

i=0

(yx)i ⊗ y(xy)k−2−i

+ dx(yx)k−1 ⊗ (xy)k−2,

(T1(u1))22 = 1⊗ 1 + cx⊗ 1 + d(yx)k−2 ⊗ y(xy)k−1

+ d(xy)k−1 ⊗ y(xy)k−2 + dy(xy)k−1 ⊗ (xy)k−2;

T2(u1) =

(

1⊗ 1 (yx)3k−5 ⊗ y
0 x⊗ 1 + 1⊗ x+ y ⊗ y(xy)k−2

)

,

T3(u1) =

(

1⊗ 1 0 0
0 1⊗ 1 ∗

)

with

(T3(u1))23 =

k−2
∑

i=0

x(yx)i ⊗ x(yx)k−2−i

+ (yx)k−1 ⊗ y(xy)k−2 + y(xy)k−2 ⊗ (xy)k−1;

T0(u2) =
(

yxy ⊗ 1, 0
)

,

T1(u2) =

⎛

⎜

⎜

⎝

yxy ⊗ 1 + d
k−1
∑

i=2
(i− 1)x(yx)i ⊗ (xy)k−i ∗

d
k−1
∑

i=2
(i− 1)(xy)i ⊗ y(xy)k−i ∗

⎞

⎟

⎟

⎠

with

(T1(u2))12 =

k−2
∑

i=1

i(yx)i+1 ⊗ (xy)k−1−i + c

k−2
∑

i=1

ix(yx)i+1 ⊗ (xy)k−1−i,

(T1(u2))22 =

k−2
∑

i=1

iy(xy)i ⊗ y(xy)k−1−i + c

k−2
∑

i=1

i(xy)i+1 ⊗ y(xy)k−1−i,
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T2(u2) =

(

0 1⊗ (xy)k−1 + 1⊗ (yx)k−1

0 y ⊗ 1 + 1⊗ y

)

;

T0(u3) =
(

x(yx)k−1 ⊗ 1, 0
)

,

T1(u3) =

(

x(yx)k−1 ⊗ 1 0
0 x(yx)k−1 ⊗ y(xy)k−2

)

;

T0(v1) =
(

1⊗ 1, 0
)

, T1(v1) =

⎛

⎝

1⊗ 1
k−2
∑

i=0
x(yx)i ⊗ x(yx)k−2−i

0 ∗

⎞

⎠

with

(T1(v1))22 =

k−1
∑

i=0

(xy)i ⊗ (yx)k−1−i

+ c2y(xy)k−2 ⊗ (xy)k + c3(xy)k−1 ⊗ (xy)k;

T2(v1) =

(

1⊗ 1 ∗ 0
0 ∗ (xy)k−1 ⊗ (yx)k−1

)

with

(T2(v1))12 = c2(yx)k−1 ⊗ x(yx)k−1 + c2x(yx)k−1 ⊗ (xy)k−1,

(T2(v1))22 = x⊗ 1 + 1⊗ x+ cx⊗ x+ cx2 ⊗ 1

+ c2 · 1⊗ (xy)k + c2x⊗ y(xy)k−1 + c3yx⊗ x(yx)k−1;

T0(v2) =
(

y ⊗ 1, 0
)

, T1(v2) =

⎛

⎝

y ⊗ 1 ∗
0

k−1
∑

i=0
y(xy)i ⊗ (yx)k−1−i

⎞

⎠

with

(T1(v2))12 =

k−1
∑

i=1

(yx)i ⊗ x(yx)k−1−i + c2(yx)k−1 ⊗ (xy)k + c3x(yx)k−1 ⊗ (xy)k;

T2(v2) =

(

y ⊗ 1 ρ+ c2x2 ⊗ x(yx)k−1 0
d2(xy)k ⊗ y(xy)k−2 ∗ ∗

)

with

(T2(v2))22 = 1⊗ xy + x⊗ y + cx⊗ xy + cx2 ⊗ y

+ d(xy)k ⊗ y(xy)k−2 + dx(yx)k−1 ⊗ x,

(T2(v2))23 = y(xy)k−1 ⊗ (xy)k−1 + y(xy)k−1 ⊗ (yx)k−1;

T0(v3) =
(

0, x⊗ 1
)

, T1(v3) =

(

0 ∗
dx⊗ y + cdy(xy)k−1 ⊗ y ∗

)

with

(T1(v3))12 = dx(yx)k−1 ⊗ (xy)k−1 + d(xy)k ⊗ x(yx)k−2,

(T1(v3))22 = yx⊗ 1 + x⊗ y + cx2 ⊗ y + dx⊗ x(yx)k−1

+ d(xy)k ⊗ y(xy)k−2 + cd(xy)k ⊗ (yx)k−1;

T2(v3) is a 2× 3-matrix, in which

(T2(v3))11 = dx2 ⊗ 1 + d(yx)k−1 ⊗ y + cdx(yx)k−1 ⊗ y
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+ d2x(yx)k−2 ⊗ (xy)k,

(T2(v3))12 = dx(yx)k−2 ⊗ (xy)k + dx(yx)k−1 ⊗ (xy)k−1,

(T2(v3))13 = x(yx)k−2 ⊗ (xy)k + x(yx)k−1 ⊗ (xy)k−1

+ (yx)k−1 ⊗ x(yx)k−1,

(T2(v3))21 = c2d2y(xy)k−1 ⊗ (xy)k + d2
k−1
∑

i=0

(xy)i ⊗ (xy)k−i,

(T2(v3))22 = d

k
∑

i=1

(xy)i ⊗ (xy)k−i + d

k−1
∑

i=1

y(xy)i−1 ⊗ x(yx)k−i

+ dx⊗ y(xy)k−1 + c2d(xy)k ⊗ y(xy)k−1,

(T2(v3))23 =

k
∑

i=1

y(xy)i−1 ⊗ x(yx)k−i +

k−1
∑

i=1

(xy)i ⊗ (xy)k−i

+ x⊗ y(xy)k−1 + (yx)k−1 ⊗ xy

+ cyx⊗ x(yx)k−1 + c2(xy)k ⊗ y(xy)k−1;

T0(v4) =
(

dyx⊗ 1, y ⊗ 1 + cxy ⊗ 1
)

,

T1(v4) =

(

dx⊗ y ∗
dy ⊗ y + d2 · 1⊗ (xy)k ∗

)

with

(T1(v4))12 = yx⊗ 1 + xy ⊗ 1 + dx⊗ x(yx)k−1 + cd(xy)k ⊗ (xy)k−1,

(T1(v4))22 = y ⊗ y + d(xy)k ⊗ 1 + dy ⊗ x(yx)k−1 + d · 1⊗ (xy)k

+ c2d(xy)k ⊗ y(xy)k−1;

T2(v4) =

(

dxy ⊗ 1 ∗ 0
d3(xy)k−1 ⊗ (xy)k ∗ ∗

)

with

(T2(v4))12 = yx⊗ 1 + xy ⊗ 1 + cd(xy)k ⊗ (xy)k−1,

(T2(v4))22 = dyx⊗ x+ d2(xy)k−1 ⊗ (xy)k + d2(xy)k ⊗ (yx)k−1,

(T2(v4))23 = xyx⊗ 1 + yx⊗ x+ xy ⊗ x+ y ⊗ y(xy)k−1

+ cxyx⊗ x+ dx(yx)k−1 ⊗ y(xy)k−1,

T0(w̃) =
(

0, ỹ ⊗ 1
)

,

T1(w̃) is a 2× 3-matrix, in which

(T1(w̃)11 = dỹ ⊗ 1 + d2
k−2
∑

i=1

ix(yx)i ⊗ (xy)k−1−i,

(T1(w̃)12 = ỹ ⊗ 1 + d

k−2
∑

i=1

ix(yx)i ⊗ (xy)k−1−i
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+ d

k−2
∑

i=1

i(yx)i+1 ⊗ x(yx)k−2−i + cdy(xy)k−1 ⊗ (xy)k−1,

(T1(w̃)13 =

k−2
∑

i=1

ix(yx)i ⊗ (xy)k−1−i +

k−2
∑

i=1

i(yx)i ⊗ x(yx)k−1−i

+ cy(xy)k−1 ⊗ (xy)k−1,

(T1(w̃)21 = d2
k−2
∑

i=1

i(xy)i ⊗ y(xy)k−1−i,

(T1(w̃)22 = d

k−2
∑

i=1

i(xy)i ⊗ y(xy)k−1−i + d

k−2
∑

i=1

iy(xy)i ⊗ (yx)k−1−i,

(T1(w̃)23 =
k−2
∑

i=1

i(xy)i ⊗ y(xy)k−1−i +
k−1
∑

i=0

(i+ 1)y(xy)i ⊗ (yx)k−1−i+

+ dx(yx)k−1 ⊗ (yx)k−1;

T2(w̃) =

(

0 ∗ 0 0
0 0 ∗ ∗

)

with

(T2(w̃))12 =1⊗ ỹ + c3dx(yx)k−1 ⊗ (xy)k,

(T2(w̃))23 =yx⊗ 1 + y ⊗ x+ cyx⊗ x+ dx⊗ x(yx)k−1

+ dy(xy)k−1 ⊗ (yx)k−1 + d(xy)k−1 ⊗ y(xy)k−1

+ cd(xy)k ⊗ (yx)k−1,

(T2(w̃)))24 =y(xy)k−1 ⊗ 1 + c(xy)k ⊗ 1 + cy(xy)k−1 ⊗ x

+ c2(xy)k ⊗ x;

T3(w̃) =

(

0 ∗ 0 0
0 0 ∗ ∗

)

with

(T3(w̃))12 = 1⊗ ỹ + c3dx(yx)k−1 ⊗ (xy)k,

(T3(w̃))23 = 1⊗ ỹ + d

k−2
∑

i=1

ix(yx)i ⊗ (xy)k−1−i + c2dx(yx)k−1 ⊗ y(xy)k−1,

(T3(w̃))24 =

k−2
∑

i=1

i(yx)i ⊗ (xy)k−1−i + c

k−2
∑

i=1

ix(yx)i ⊗ (xy)k−1−i.

The proof of the lemma is a direct verification of the relations μT0(b) = b, di−1T
i(b)

= Ti−1(b)di+deg b−1 (i > 0), where b ∈ Y1 \ {z} with deg b > 0.

Now the proof of Proposition 3.1 is completed with using direct calculations with matrices
described in Lemma 3.3, and we leave it to the reader. �
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Remark 3.4. It should be noted that the formulas for the translates of u3, v1, v4 (see Lem-
ma 3.3) remain valid for any even k (if d �= 0), and also the translates of v2 are valid for even
k > 2 (if these elements are included in the set of generators of the algebra HH∗(R)).

Proposition 3.5. For any � ∈ N, we have

v�1 =
(

1,O
) ∈ HH2�(R), v�1u3 =

(

x(yx)k−1,O
) ∈ HH2�+1(R), (3.32)

v�−1
1 u3w̃ =

(

0, (xy)k,O
) ∈ HH2�+2(R), v�−1

1 w̃ =
(

0, ỹ,O
) ∈ HH2�+1(R). (3.33)

Remark 3.6. Owing to the description of the bases for the groups H2�(X •) (with � ≥ 2) given
in [2, Lemma 4.11], the elements

(

1,Or+1

)

,
(

0, (xy)k,Or

)

(3.34)

(for suitable r) form a basis of the image of H2�(X •) in the group HH2�(R) (see Remark 2.12).
Similarly, the elements

(

0, ỹ,Or

)

,
(

x(yx)k−1,Or+1

)

(3.35)

form a basis of the image of H2�+1(X •) in the group HH2�+1(R).

Proof of Proposition 3.5. 1) A simple verification (with using Lemma 3.3) shows that v21 =
(

1,O2

)

. Next, assuming v�1 =
(

1,O
)

(� ≥ 2), we get the following translates of this element:

T0(v�1) =
(

1⊗ 1,O
)

,

T1(v�1) =

⎛

⎜

⎜

⎝

1⊗ 1
k−2
∑

i=0
x(yx)i ⊗ x(yx)k−2−i O

0
k−1
∑

i=0
(xy)i ⊗ (yx)k−1−i + c3(xy)k−1 ⊗ (xy)k O

⎞

⎟

⎟

⎠

,

T2(v�1) =

(

1⊗ 1 c3x(yx)k−1 ⊗ x(yx)k−1 0 O
0 ∗ (xy)k−1 ⊗ (yx)k−1 O

)

with

(T2(v�1))22 = x⊗ 1 + 1⊗ x+ cx⊗ x+ cx2 ⊗ 1

+ c2x2 ⊗ x+ c2x3 ⊗ 1 + c3y(xy)k−1 ⊗ y(xy)k−1.

Hence, we have

v�+1
1 = μT0(v1)T

2(v�1) =
(

1,O
)

.

2) We have seen that v1u3 =
(

x(yx)k−1, 0
)

. Next, assuming that v�1u3 =
(

x(yx)k−1,O
)

(� ≥ 0), we get the following translates:

T0(v�1u3) =
(

x(yx)k−1 ⊗ 1,O
)

,

T1(v�1u3) =

(

x(yx)k−1 ⊗ 1 0 O
0 x(yx)k−1 ⊗ (yx)k−1 O

)

,

T2(v�1u3) =

(

x(yx)k−1 ⊗ 1 0 O
0 x(yx)k−1 ⊗ x O

)

.

Then

v�+1
1 u3 = μT0(v1)T

2(v�1u3) =
(

x(yx)k−1,O
)

.
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3) A direct calculation gives u3w̃ =
(

0, (xy)k,O
)

. Next, assuming v�−1
1 u3w̃ =

(

0, (xy)k,O
)

(for � ∈ N), we obtain

T0(v�−1
1 u3w̃) =

(

0, (xy)k ⊗ 1,O
)

,

T1(v�−1
1 u3w̃) =

(

d(xy)k ⊗ 1 (xy)k ⊗ 1 0 O
0 0 (xy)k ⊗ (yx)k−1 O

)

,

T2(v�−1
1 u3w̃) =

(

0 (xy)k ⊗ 1 0 O
0 d(xy)k ⊗ x (xy)k ⊗ x O

)

.

Then

v�1u3w̃ = μT0(v1)T
2(v�−1

1 u3w̃) =
(

0, (xy)k,O
)

.

4) Assuming v�−1
1 w̃ =

(

0, ỹ,O
)

(� ∈ N), we obtain the following translates:

T0(v�−1
1 w̃) =

(

0, w̃ ⊗ 1,O
)

,

T1(v�−1
1 w̃) =

⎛

⎝

dw̃ ⊗ 1 w̃ ⊗ 1
k−1
∑

i=1
(yx)i ⊗ x(yx)k−1−i O

0 0 ∗ O

⎞

⎠

with

(T1(v�−1
1 w̃))23 =

k−1
∑

i=0

y(xy)i ⊗ (yx)k−1−i + dx(yx)k−1 ⊗ (yx)k−1;

T2(v�−1
1 w̃) =

(

0 ỹ ⊗ 1 + c3d(xy)k ⊗ x(yx)k−1 0 0 O
0 dyx⊗ 1 + dỹ ⊗ x+ cdyx⊗ x ∗ ∗ O

)

with
(T2(v�−1

1 w̃))23 = yx⊗ 1 + ỹ ⊗ x+ cyx⊗ x,

(T2(v�−1
1 w̃))24 = y(xy)k−1 ⊗ (yx)k−1.

Then

v�1w̃ = μT0(v1)T
2(v�−1

1 w̃) =
(

0, ỹ,O
)

.

�

Proposition 3.7. Assume that k is odd and d �= 0. The set Y1 in (3.6) generates HH∗(R) as
a K-algebra.

Proof. Let H denote a K-subalgebra of HH∗(R), generated by the set Y1∪{1} (here, 1 denotes

the unity of the algebra HH∗(R)). First, we prove that
3
⋃

i=0
HHi(R) ⊂ H, and then the inclusion

HHn(R) ⊂ H follows by induction on n. Since pi1 = (xy)i + (yx)i, 1 ≤ i ≤ k − 1, we obtain
the inclusion HH0(R) ⊂ H.

The basis elements of HH1(R) described in Corollary 2.4 (a), satisfy the relations
(

y(xy)i, 0
)

= p i−1
1 u2 for 1 ≤ i ≤ k − 1,

(

(xy)k, 0
)

= d−1p1u1,
(

0, y(xy)k−1
)

= (p3 + cp4)u1,
(

0, (xy)k
)

= p4u1.

Hence, HH1(R) ⊂ H.
Next, the basis elements of HH2(R), described in Corollary 2.4 (b), satisfy the relations

(

d(xy)i+1, y(xy)i + c(xy)i+1
)

= pi1v4 for 0 ≤ i ≤ k − 2,
(

0, 1
)

= u 2
1 ,

(

0, (xy)k
)

= p4u
2
1.
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Consequently, HH2(R) ⊂ H. Here and below, we multiply the elements of Y1, having a
positive degree, with the help of translates of these elements presented in Lemma 3.3 (see also
Lemma 3.2).

We establish that the basis elements of HH3(R), described in Corollary 2.4 (c), satisfy the
relations

(

0, y(xy)i
)

= p i
1w̃ for 1 ≤ i ≤ k − 1,

(

dyx, xy + yx
)

= u1v3,
(

y, x(yx)k−1
)

= d−1u31,
(

x(yx)k−1, 0
)

= u3v1,
(

0, (xy)k
)

= p2w̃,

whence HH3(R) ⊂ H.
Now, we prove the inclusion HHn(R) ⊂ H by induction on n. Assume that n ≥ 4, and

let f ∈ HomΛ(Qn, R) be a cocycle representing an element of HHn(R). By Remark 2.13,
we can restrict ourselves to basis elements f = (f1, f2) where f1 ∈ HomΛ(Xn, R) and f2 ∈
HomΛ(Qn−4, R). Moreover, using Remark 3.6, we may assume that (f1,O) is one of the
elements in (3.34) or (3.35) (depending on whether k is even or odd). Then by Proposition 3.5,
(f1,O) lies in H. Finally, by induction hypothesis, f2 ∈ H, and then (O2, f2) = z · f2 also lies
in H. �

Let A1 = K[X1]/I1 be the graded K-algebra defined in Sec. 1, where X1 is as in (1.2) and I1
is the corresponding ideal of relations (see (1.3)–(1.27)). The (nonzero) images of monomials
in K[X1] under the canonical epimorphism K[X1] → A1 are also called monomials. Any
element a ∈ A1 is represented as a linear combination of monomials (with coefficients in K).
Propositions 3.1 and 3.7 imply that there exists a surjective homomorphism ϕ : A1 → HH∗(R)
of graded K-algebras that takes the generators in X1 to the corresponding generators in Y1

(see (3.6)); here, we use the same letter to denote elements of both sets that correspond to each
other. LetA1 =

⊕

m≥0
Am

1 be the direct decomposition of the algebraA1 into homogeneous direct

summands. Now, statement (1) of Theorem 1.1 is a consequence of the following statement.

Proposition 3.8. For any m ≥ 0,

dimK Am
1 = dimK HHm(R).

Remark 3.9. It is easily verified that if c �= 0, then the relation u41 = 0 (see (3.23)) is
derived from the remaining relations defining the algebra A1; moreover, the relation p2u

2
1 = 0

is satisfied in A1.

Proof of Proposition 3.8. We introduce a lexicographic order on the polynomial ring K[X1],
such that

u3 > v1 > v3 > v4 > v2 > w̃ > u1 > u2 > z > p2 > p3 > p4 > p1.

Any nonzero monomial in A1 is represented in the form

f = p i
1p

α2
2 pα3

3 pα4
4 u �

1u
β2
2 u β3

3 vr1v
γ2
2 vγ33 vγ44 w̃ εzs. (3.36)

In view of the defining relations of A1, we have

α2, α3, α4, β2, β3, γ2, γ3, γ4, ε ∈ {0, 1}, i, �, r, s ∈ N ∪ {0}, i ≤ k − 1, � ≤ 3.

Such representations of monomials in A1 are identified with the corresponding monomials
in K[X1].

Let us consider separately the cases c �= 0 and c = 0.
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1) Assume that c �= 0. By definition, reduction of a monomial f in A1 is the process
of replacement of some submonomials in f by other elements of A1 in accordance with the
following rules (a �→ b means the replacement of every occurrence of the monomial a by the
element b):

p2u1 �→ d−1cp1u1 + pk−2
1 u2, u1u3 �→ cp4v1,

p4v1 �→ p2v2 �→ d−1cp1v2, p3v3 �→ p2v4 �→ p1v2 �→ p4u
2
1,

u1v4 �→ dp2w̃, u1v1 �→ cd−1u31,

u2v4 �→ p21w̃, u1v2 �→ (pk−1
1 + cp2)w̃,

u1w̃ �→ (p3 + cp4)z, v24 �→ p21z,
v3w̃ �→ p4u1z, v4w̃ �→ u2z,
w̃2 �→ cp4u

2
1z.

Any replacement in the above list is called an elementary step of reduction. These elementary
steps correspond to (nonmonomial) defining relations of the algebra A1, and under such an
elementary step of reduction, any nonzero monomial turns into a linear combination of mono-
mials which are strictly smaller with respect to the lexicographic order. Hence, after finitely
many steps, we obtain polynomials to which we cannot apply any elementary step of reduc-
tion. We say that a presentation of an element a ∈ A1 as a linear combination of monomials
has a normal form if the reduction cannot be applied to any of these monomials. Clearly, any
element in A1 admits at least one representation in the normal form.

Put qi = dimK Ai
1. Denote the number of monomials in Ai

1 represented in the normal
form by q̃i; it is clear that q̃i ≥ qi. Since there is an epimorphism Ai

1 → HHi(R), we have
qi ≥ dimK HHi(R). Consequently, it suffices to show that

q̃i = dimK HHi(R). (3.37)

Assume that a monomial f in (3.36) has the normal form. If f contains the factor u3, then
f does not contain u2, v2, v3, v4, and pi for all i (here, we use some monomial relations with
factor u3). Furthermore, f does not contain a factor u1 (since there is a reduction u1u3 �→ . . . ).
Consequently, f coincides with one of the monomials

u3v
r
1z

s, u3w̃v
r
1z

s.

Assume that u3 is not a factor of f , but f contains v1 as a factor. Then f does not
contain the factors v2, v3, v4, u2, p1, p2, p3 (because of the corresponding monomial relations);
moreover, f does not contain u1 (since there is a reduction u1v1 �→ . . . ) and p4 (there is a
reduction p4v1 �→ . . . ). Hence, f coincides with one of the monomials

vr1z
s, vr1z

sw̃ (r ≥ 1).

Next, we assume that u3, v1 are not factors of f , but f contains v3 as a factor. Then f does
not contain the factors v2, v4, u2, p1, p2, p4 (because of the corresponding monomial relations);
moreover, f does not contain w̃ (since there is a reduction v3w̃ �→ . . . ) and p3 (there is a

reduction p3v3 �→ . . . ). Hence, f = uβ1
1 v3z

s with β1 ≤ 1 (since there is the relation u21v3 = 0).
Consequently,

f ∈ {v3zs, u1v3zs}.
Now, assume that u3, v1, v3 are not factors of f , but f contains v4 as a factor. Then f

does not contain the factors v2, p3, p4; moreover, f does not contain p2, u1, u2, w̃ (because of

the corresponding reductions). Furthermore, i ≤ k − 2 (since pk−1
1 v4 = 0). Consequently, f

coincides with one of the monomials

pi1v4z
s, 0 ≤ i ≤ k − 2.
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Assume that u3, v1, v3, v4 are not factors of f , but f contains v2 as a factor. Then f does not
contain the factors u2, p3, p4, w̃ (because of the corresponding monomial relations); moreover, f
does not contain p1, p2, u1 (because of the corresponding reductions). Consequently, f = v2z

s.
Now, assume that u3 and vj (j ∈ {1, 2, 3, 4}) are not factors of f , but f contains w̃ as a

factor. Then f does not contain the factors u2, p3, p4; moreover, f does not contain u1 (because
of the reduction u1w̃ �→ . . . ). Consequently, f coincides with one of the monomials

pi1w̃z
s(0 ≤ i ≤ k − 1), p2w̃z

s.

Assume that u3, vj (j ∈ {1, 2, 3, 4}) and w̃ are not factors of f , but f contains u1 as a
factor. Then f does not contain the factors u2 (since u1u2 = 0) and p2 (there is a reduction
p2u1 �→ . . . ). Hence, f = pi1p

ε3
3 pε44 u�1t

s. Moreover, i ≤ 1, since p21u1 = 0 [if c �= 0, then this

relation is derived from p1u1 = dc−1(pk−2
1 u2 + p2u1)], and if � ≥ 2, then i = ε3 = 0, because

p1u
2
1 = p3u

2
1 = 0. Consequently, f coincides with one of the monomials

u1z
s, p1u1z

s, p3u1z
s, p4u1z

s, u21z
s, p4u

2
1z

s, u31z
s.

Now, we assume that u1, u3, vj (j ∈ {1, 2, 3, 4}) and w̃ are not factors of f , but f contains
a factor u2. Then f does not contain factors pj, j ∈ {2, 3, 4}. Consequently,

f = pi1u2z
s, 0 ≤ i ≤ k − 2.

Finally, if does not contain factors uj , vm for all possible j,m, and w̃, then it is clear that f
coincides with one of the monomials

pi1z
s(0 ≤ i ≤ k − 1), p2z

s, p3z
s, p4z

s.

Inspecting the degrees of the above monomials, we obtain the following list of all (nonzero)
monomials that have normal form. Put a ≥ 0.

The monomials of degree 4a:

{u3w̃v2(a−m)−2
1 zm}a−1

m=0, {v2(a−m)
1 zm}a−1

m=0,

{pi1za}k−1
i=0 , p2z

a, p3z
a, p4z

a

(the number of them equals 2a+ k + 3).
The monomials of degree 4a+ 1:

{u3v2(a−m)
1 zm}am=0, {w̃v

2(a−m)−1
1 zm}a−1

m=0,

{p i
1u2z

a}k−2
i=0 , u1z

a, p1u1z
a, p3u1z

a, p4u1z
a

(the number of them equals 2a+ k + 4).
The monomials of degree 4a+ 2:

{u3w̃v2(a−m)−1
1 zm}a−1

m=0, {v2(a−m)+1
1 zm}am=0,

{pi1v4za}k−2
i=0 , v2z

a, v3z
a, u21z

a, p4u
2
1z

a

(the number of them equals 2a+ k + 4).
The monomials of degree 4a+ 3:

{u3v2(a−m)+1
1 zm}am=0, {w̃v

2(a−m)
1 zm}a−1

m=0,

{p i
1w̃z

a}k−1
i=0 , u1v3z

a, p2w̃z
a, u31z

a

(the number of them equals 2a + k + 4). It is easily seen that all monomials in this list have
the normal form. Using Corollary 2.11, we obtain equality (3.37).

2) If c = 0, then we need minor modifications in the above arguments. Now we choose the
following elementary steps of reduction:
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p2u1 �→ pk−2
1 u2, p3v3 �→ p2v4 �→ p1v2 �→ p4u

2
1,

u1v4 �→ dp2w̃, u1v1 �→ cd−1u31,

u1v2 �→ pk−1
1 w̃, u1w̃ �→ (p3 + cp4)z,

v24 �→ p21z, v3w̃ �→ p4u1z,
v4w̃ �→ u2z, w̃2 �→ cp4u

2
1z.

We remark that new monomial relations appear in the algebra A1 (in comparison with the
previous case), namely,

u1u3 = p2v2 = p4v1 = u1v1 = w̃ 2 = 0.

Now, successively analyzing several possibilities for occurrence of the elements from the
set X1 in the representation of monomials in (3.36), we obtain the same list of monomials
having the normal form as in the case c �= 0. �

Case 2. Assume that k is even, k > 2, and d �= 0.
We pick the following homogeneous elements of HH∗(R):

— of degree 0 : p1, p2, p3, p4 in (3.1);

— of degree 1 :

{

u3 in (3.2), and

u′1 := (d(xy)k−1, 1 + cx), u′2 := (y, 0);
(3.38)

— of degree 2 : v1, v2, v3, v4 in (3.4);

— of degree 3 : w := (0, y);

— of degree 4 : z in (3.5).

Proposition 3.10. Assume that k is even, k > 2, and d �= 0. In the algebra HH∗(R), the
elements of the set

Y2 = {p1, p2, p3, p4, u′1, u′2, u3, v1, v2, v3, v4, w, z} (3.39)

satisfy the relations (3.7), (3.10), (3.12), (3.16), (3.17), (3.22), (3.23), (3.26), and the following
relations:

p1u
′
1 = (dp2 + cp1)u

′
2, p2u

′
1 = pk−1

1 u′2,

pk−1
1 v4 = dp4v1 + cp3v3, p4(u

′
1)

2 = p1v2 = p3v3 = p2v4,

p1(u
′
1)

2 = p3(u
′
1)

2 = 0,

u′1u′2 = θk−1(cdp4v1 + c2p3v3),

(u′1)3 = du′2v1, u′1v2 = pk−1
1 w, u′2v2 = p2w,

u′1v4 = u′2(dv2 + cv4), u
′
2v4 = p1w,

u′1v1 = u′2v3 = 0,

p3w = p4w = 0,

(u′1)2vj = 0 for 2 ≤ j ≤ 4,

u′1w = u′2w = 0,

v2w = p2u
′
2z, v4w = p1u

′
2z, v3w = 0,

w2 = (dθk+1p4v1 + cθk−1p3v3)z.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. For this, we
need to know the translates those elements in (3.39) for which they have not been calculated
earlier (see Remark 3.4). These translates are described in the following lemma.
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Lemma 3.11. As the translates of the elements u′1, u′2, v3, and w, one can take the homomor-
phisms determined by the following matrices:

T0(u′1) =
(

d(xy)k−1 ⊗ 1, 1 ⊗ 1 + cx⊗ 1
)

;

T1(u′1) is represented by a 2× 2-matrix in which

(T1(u′1))11 = d
k−2
∑

i=1

(xy)i ⊗ (xy)k−1−i + d
k−1
∑

i=0

(yx)i ⊗ (xy)k−1−i

+ cd

k−1
∑

i=1

ix(yx)i−1 ⊗ (xy)k−i;

(T1(u′1))12 =

k−2
∑

i=0

y(xy)i ⊗ (xy)k−2−i

+ c
k−1
∑

i=0

(xy)i ⊗ (xy)k−1−i + c
k−2
∑

i=2

(i+ 1)(yx)i ⊗ (xy)k−1−i

+ c2
k−2
∑

i=0

(i+ 1)x(yx)i ⊗ (xy)k−1−i

+ dx(yx)k−1 ⊗ (xy)k−2,

(T1(u′1))21 = d
k−2
∑

i=0

y(xy)i ⊗ y(xy)k−2−i + cd
k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i,

(T1(u′1))22 = 1⊗ 1 + cx⊗ 1 + c

k−2
∑

i=0

(i+ 1)y(xy)i ⊗ y(xy)k−2−i

+ c2
k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i + d(xy)k−1 ⊗ y(xy)k−2;

T0(u′2) =
(

y ⊗ 1, 0
)

,

T1(u′2) =

⎛

⎝

∗ ∗
d
k−1
∑

i=1
i(xy)i ⊗ y(xy)k−1−i ∗

⎞

⎠

with

(T1(u′2))11 = y ⊗ 1 + d
k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i,

(T1(u′2))12 =
k−1
∑

i=1

i(yx)i ⊗ (xy)k−1−i + c
k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i,

(T1(u′2))22 =

k−2
∑

i=0

(i+ 1)y(xy)i ⊗ y(xy)k−2−i + c

k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i;

T0(v3) and T1(v3) can be given by the same formulas as for add k (see Lemma 3.3);
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T2(v3) is a 2× 3-matrix in which

(T2(v3))11 = dx2 ⊗ 1 + d(yx)k−1 ⊗ y + cdx(yx)k−1 ⊗ y

+ d2x(yx)k−2 ⊗ (xy)k,

(T2(v3))12 = dx(yx)k−2 ⊗ (xy)k + dx(yx)k−1 ⊗ (xy)k−1

+ cdx(yx)k−1 ⊗ x(yx)k−1,

(T2(v3))13 = x(yx)k−2 ⊗ (xy)k + x(yx)k−1 ⊗ (xy)k−1

+ (yx)k−1 ⊗ x(yx)k−1 + cx(yx)k−1 ⊗ x(yx)k−1,

(T2(v3))21 = c2d2y(xy)k−1 ⊗ (xy)k + d2
k−1
∑

i=0

(xy)i ⊗ (xy)k−i

+ cd2x(yx)k−1 ⊗ xy,

(T2(v3))22 = d

k
∑

i=1

(xy)i ⊗ (xy)k−i + d

k−1
∑

i=1

y(xy)i−1 ⊗ x(yx)k−i

+dx⊗ y(xy)k−1 + c2d(xy)k ⊗ y(xy)k−1 + cdy(xy)k−1 ⊗ y(xy)k−1,

(T2(v3))23 =

k
∑

i=1

y(xy)i−1 ⊗ x(yx)k−i +

k−1
∑

i=1

(xy)i ⊗ (xy)k−i

+ c2(xy)k ⊗ y(xy)k−1 + cy(xy)k−1 ⊗ y(xy)k−1;

T0(w) =
(

0, y ⊗ 1
)

,

T1(w) is a 2× 3-matrix in which

(T1(w)11 = dy ⊗ 1 + d2
k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i,

(T1(w)12 = y ⊗ 1 + d
k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i

+ d

k−2
∑

i=2

(i− 1)(yx)i ⊗ x(yx)k−1−i + cdy(xy)k−1 ⊗ (xy)k−1,

(T1(w)13 =

k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i +

k−1
∑

i=1

i(yx)i ⊗ x(yx)k−1−i+

+ cy(xy)k−1 ⊗ (xy)k−1,

(T1(w)21 = d2
k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i,

(T1(w)22 = d

k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i + d

k−1
∑

i=1

iy(xy)i ⊗ (yx)k−1−i,

(T1(w)23 =

k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i +

k−2
∑

i=0

(i+ 1)y(xy)i ⊗ (yx)k−1−i;
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T2(w) =

(

0 ∗ ∗ ∗
0 ∗ ∗ 0

)

with
(T2(w))12 = ỹ ⊗ 1 + c3d(xy)k ⊗ x(yx)k−1,

(T2(w))13 = 1⊗ x(yx)k−1 + c2x2 ⊗ x(yx)k−1,

(T2(w)))14 = (yx)k−1 ⊗ (xy)k−1 + c(yx)k−1 ⊗ x(yx)k−1,

(T2(w)))22 = dyx⊗ 1 + dy ⊗ x+ cdyx⊗ x+ d2x(yx)k−1 ⊗ x,

(T2(w)))23 = 1⊗ xy + x⊗ y + cx⊗ xy + cx2 ⊗ y + dy(xy)k−1 ⊗ (yx)k−1;

T3(w) =

(∗ ∗ ∗ 0
0 0 ∗ ∗

)

with

(T3(w))11 = dy ⊗ 1 + d2x(yx)k−1 ⊗ 1 + c3d2x(yx)k−1 ⊗ (xy)k,

(T3(w))12 = y ⊗ 1 + dx(yx)k−1 ⊗ 1 + c3dx(yx)k−1 ⊗ (xy)k,

(T3(w))13 = x(yx)k−1 ⊗ 1 + cy(xy)k−1 ⊗ (xy)k−1

+ c(yx)k−1 ⊗ y(xy)k−1 + c2x2 ⊗ x(yx)k−1;

(T3(w)23 = 1⊗ y + d
k−3
∑

i=1

ix(yx)i ⊗ (xy)k−1−i

+ d

k−1
∑

i=1

(yx)i ⊗ x(yx)k−1−i,

(T3(w)24 =

k−1
∑

i=1

i(yx)i−1 ⊗ (xy)k−i + c

k−1
∑

i=1

ix(yx)i ⊗ (xy)k−1−i

+ c
k−1
∑

i=0

(yx)i ⊗ x(yx)k−1−i + c2y(xy)k−1 ⊗ (xy)k−1.

The proof of this lemma is similar to the proof of Lemma 3.3.

Now the proof of Proposition 3.10 is completed similarly to the proof of Proposition 3.1
with the help of direct computations with matrices presented in Lemma 3.11. We leave to the
reader the corresponding detailed computations. �

Proposition 3.12. Assume that k is even, k > 2, and d �= 0. The set Y2 in (3.39) generates
HH∗(R) as a K-algebra.

We need the following auxiliary statement.

Lemma 3.13. For any � ∈ N \ {1}, we have

v�−2
1 (v1w + u3z) = (0, ỹ,O) ∈ HH2�+1(R),

v�−1
1 u3w =

(

0, (xy)k,O
) ∈ HH2�+2(R).

Proof. It is directly verified that v1w+ u3z = (0, ỹ,O2). Then the proof of the first equality is
carried out by induction on � similarly to the proof of Proposition 3.5. We also note that the
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translates Ti(f), i ∈ {1, 2}, of the element f = (0, ỹ,O) can be taken in the same form as in
the proof of that proposition.

The second equality is proved similarly. �
Proof of Proposition 3.12. Let H be a K-subalgebra of HH∗(R), generated by the set Y2∪{1}.
First, we prove that

3
⋃

i=0
HHi(R) ⊂ H, and then prove the inclusion HHn(R) ⊂ H by induction

on n.
It is clear that HH0(R) ⊂ H (see the proof of Proposition 3.7). The basis elements of

HH1(R) described in Corollary 2.6 (a), satisfy the relations
(

y(xy)i, 0
)

= p i
1u

′
2 for 1 ≤ i ≤ k − 1,

(

(xy)k, 0
)

= p2u
′
2,

(

0, y(xy)k−1
)

= (p3 + cp4)u
′
1,
(

0, (xy)k
)

= p4u
′
1.

Hence, HH1(R) ⊂ H.
Next, the basis elements of HH2(R) described in Corollary 2.6 (b), satisfy the relations

(

d(xy)i+1, y(xy)i + c(xy)i+1
)

= pi1v4 for 0 ≤ i ≤ k − 2,
(

0, 1
)

= (u′1)
2 + c2dθk−1p4v1 + c3θk+1p3v3,

(

(xy)k, 0
)

= p4v1,
(

0, (xy)k
)

= p3v3.

Consequently, HH2(R) ⊂ H.
Then the basis elements of HH3(R) described in Corollary 2.6 (c), satisfy the relations

(

0, y(xy)i
)

= p i
1w for 1 ≤ i ≤ k − 1,

(

dyx, xy + yx
)

= u′1v3,
(

y, x(yx)k−1
)

= u′2v1,
(

x(yx)k−1, 0
)

= u3v1,
(

0, (xy)k
)

= u′2v2,

whence HH3(R) ⊂ H.
Now the inclusion HHn(R) ⊂ H follows by induction on n similarly to the proof of Proposi-

tion 3.7. Here, it is worth to note that relations (3.32) are valid for even k too, and one needs
to use relations in Lemma 3.13 instead of relations (3.33). �

Let A2 = K[X2]/I2 be the graded K-algebra defined in Sec. 1 with X2 as in (1.28), and
I2 the corresponding ideal of relations. Propositions 3.10 and 3.12 imply that there exists a
surjective homomorphism ϕ : A2 → HH∗(R) of graded K-algebras, that takes the generators
in X2 to the corresponding generators in Y2 (see (3.39)). Let A2 =

⊕

m≥0
Am

2 be the direct

decomposition of the algebra A2 into homogeneous direct summands. Now, statement (2) of
Theorem 1.1 is a consequence of the following statement.

Proposition 3.14. For any m ≥ 0,

dimK Am
2 = dimK HHm(R).

First, we state the following auxiliary assertion.

Lemma 3.15. The following relations are satisfied in the algebra A2:

p2u
′
2v2 = p2u

′
2v4 = p1u

′
2v2 = p3u

′
1v3 = p4u

′
2v1 = (u′1)

4 = (u′2)
3 = p21v2 = p4v

2
1 = 0,

pk−2
1 u′2v4 = u′1v2.

All relations in the lemma follow directly from the defining relations of the algebra A2.
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Proof of Proposition 3.14. We introduce a lexicographic order on the polynomial ring K[X2],
such that

w > u′1 > u′2 > u3 > v4 > v3 > v2 > v1 > z > p2 > p3 > p4 > p1.

Any nonzero monomial in A2 is represented in the form

f = p i
1p

α2
2 pα3

3 pα4
4 (u′1)

β1(u′2)
β2u β3

3 vr1v
γ2
2 vγ33 vγ44 w̃ εzs; (3.40)

here, by the defining relations of the algebra A2, we have

α2, α3, α4, β3, γ2, γ3, γ4, ε ∈ {0, 1}, i, �, r, s ∈ N ∪ {0}, i ≤ k − 1, β1 ≤ 3, β2 ≤ 2.

As in the proof of Proposition 3.8, we introduce the following list of elementary steps
of reduction and then study the normal forms of monomials (with respect to such steps of
reductions):

p1u
′
1 �→ (dp2 + cp1)u

′
2, p2u

′
1 �→ pk−1

1 u′2,
p2v2 �→ p4v1, p4(u

′
1)

2 �→ p2v4 �→ p3v3 �→ p1v2,

pk−1
1 v4 �→ dp4v1 + cp1v2, u′1u

′
2 �→ θk−1c(dp4v1 + cp1v2),

(u′2)2 �→ dθk+1p4v1 + cθk−1p3v3, u′2u3 �→ p4v1,

(u′1)
3 �→ du′2v1, pk−1

1 w �→ u′1v2,
p1w �→ u′2v4, p2w �→ u′2v2,
pk−2
1 u′2v4 �→ u′1v2, p2w �→ u′2v2,

u′1v4 �→ (dv2 + cv4)u
′
2, v24 �→ p21z,

v2w �→ p2u
′
2z, v4w �→ p1u

′
2z,

w2 �→ (dθk+1p4v1 + cθk−1p3v3)z.

Put qi = dimK Ai
2. Denote the number of monomials in Ai

2 occurring in the normal form by
q̃i. Since there is an epimorphism Ai

2 → HHi(R), we have qi ≥ dimK HHi(R). Consequently,
it suffices to show that

q̃i = dimK HHi(R). (3.41)

Assume that a monomial f in (3.40) has the normal form. If f contains the factor w,
then f does not contain p3, p4, u

′
1, u

′
2, v3 (here, we use some monomial relations with factor

w); moreover, f does not contain p1, p2 (since there are reductions p1w �→ . . . , p2w �→ . . . ),
and v2, v4 (there are reductions v2w �→ . . . , v4w �→ . . . ). Hence, f coincides with one of the
monomials

wvr1z
s, u3wv

r
1z

s.

Assume that w is not a factor of f , but f contains u′1 as a factor. Then f does not contain
the factors v1, u3. Moreover, f does not contain p1, p2, u

′
2 and v4 since there are reductions

p1u
′
1 �→ . . . , p2u

′
1 �→ . . . , and u′1u

′
2 �→ . . . , u′1v4 �→ . . . respectively. Note that β1 ≤ 2 in (3.40)

(since (u′1)3 �→ . . . ). Hence, f coincides with one of the monomials

u′1z
m, p3u

′
1z

m, p4u
′
1z

m, u′1v2z
m, u′1v3z

m, (u′1)
2zm.

Now, assume that w, u′1 are not factors of f , but f contains u′2 as a factor. Then f does not
contain the factors p3, p4, v3 (because of the corresponding monomial relations), and u3 (since
there is a reduction u′2u3 �→ . . . ). Moreover, i ≤ k − 3 in (3.40), since there is a reduction

pk−2
1 u′2v4 �→ . . . (see Lemma 3.15). It easily follows that f coincides with one of the monomials

pi1u
′
2z

m (0 ≤ i ≤ k − 1), p2u
′
2z

m, u′2v1z
m, u′2v2z

m, pi1u
′
2v4z

m (0 ≤ i ≤ k − 3).

Note that, in the above argument, we use the relations p2u
′
2v4 = 0 (see Lemma 3.15) and

u′2v21 = 0.
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Now, assume that w, u′1, u′2 are not factors of f , but f contains u3 as a factor. Then f
does not contain the factors pi for all i, and v2, v3, v4 (because of the corresponding monomial
relations). Consequently, f coincides with one of the monomials

f = u3v
r
1z

m for r ≥ 0.

Assume that w, u′1, u′2, u3 are not factors of f , but f contains v4 as a factor. Then f does
not contain the factors p3, p4, v1, v2, v3, and also does not contain p2 (since there is a reduction

p2v4 �→ . . . ). Moreover, i ≤ k − 2 (because of pk−1
1 v4 �→ . . . ). Consequently,

f = pi1v4z
m for 0 ≤ i ≤ k − 2.

Now, assume that w, u′1, u′2, u3, v4 are not factors of f , but f contains v3 as a factor. It is
easily seen that f does not contain pi for all i as factors, and hence, f = v3z

m.
Now we assume that w, u′1, u′2, u3, v4, v3 are not factors of f , but f contains v2 as a factor.

It is easily seen that f does not contain p2, p3, p4. Moreover, i ≤ 1 in (3.40) (since p21v2 = 0).
Consequently, f coincides with one of the monomials

v2z
m, p1v2z

m.

If f does not contain w, u′1, u
′
2, u3, v4, v3, v2 as factors, but contains v1, then f does not

contain p1, p2, p3. Clearly, f coincides with one of the monomials

vr1z
m, p4v

r
1z

m.

Finally, if w, u′1, u
′
2, u3, v4, v3, v2, v1 are not factors of f , then f coincides with one of the

monomials

pi1 (0 ≤ i ≤ k − 1)zm, p2z
m, p3z

m, p4z
m.

Inspecting the degrees of these monomials, we obtain the following list of all (nonzero)
monomials that have the normal form. Put a ≥ 0.

The monomials of degree 4a:

{u3wv2(a−m)−2
1 zm}a−1

m=0, {v2(a−m)
1 zm}a−1

m=0,

{pi1za}k−1
i=0 , p2z

a, p3z
a, p4z

a

(the number of them equals 2a+ k + 3).
The monomials of degree 4a+ 1:

{wv2(a−m)−1
1 zm}a−1

m=0, {u3v2(a−m)
1 zm}am=0,

{p i
1u

′
2z

a}k−1
i=0 , u

′
1z

a, p3u
′
1z

a, p4u
′
1z

a, p2u
′
2z

a

(the number of them equals 2a+ k + 5).
The monomials of degree 4a+ 2:

{u3wv2(a−m)−1
1 zm}a−1

m=0, {v2(a−m)+1
1 zm}am=0,

{pi1v4za}k−2
i=0 , p4v1z

a, v2z
a, v3z

a, p1v2z
a, (u′1)

2za

(the number of them equals 2a+ k + 5).
The monomials of degree 4a+ 3:

{u3v2(a−m)+1
1 zm}am=0, {wv2(a−m)

1 zm}am=0,

{p i
1u

′
2v4z

a}k−3
i=0 , u

′
1v2z

a, u′1v3z
a, u′2v1z

a, u′2v2z
a

(the number of them equals 2a + k + 4). It is easily seen that all monomials in this list have
normal form. Using Corollary 2.11, we derive from this the equality (3.41). �
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Case 3. Assume that k is odd and d = 0.
We consider the following homogeneous elements of HH∗(R):

— of degree 0 : p1, p2, p3, p4 in (3.1);

— of degree 1 :

{

u1, u2 in (3.2), and

u0 := (1, y(xy)k−2 + c(xy)k−1);
(3.42)

— of degree 2 : v2, v3, v4 in (3.3);

— of degree 3 : w0 := (0, 1), w1 := (0, y); (3.43)

— of degree 4 : z in (3.5).

Proposition 3.16. Assume that k is odd and d = 0. In the algebra HH∗(R), the elements of
the set

Y3 = {p1, p2, p3, p4, u0, u1, u2, v2, v3, v4, w0, w1, z} (3.44)

satisfy the relations (3.7), (3.9), (3.11), (3.16), (3.23), (3.26), and the following relations:

p1u0 = p3u1, p3u0 = pk−2
1 u2,

p2u1 = (p3 + cp4)u0, p1u1 = 0;

u0u2 = p4u
2
1 = p4u0u1 = 0,

p1v2 = p2v4 = 0, pjv3 = 0 for 1 ≤ j ≤ 4;

u0v3 = p3w0 = pk−1
1 w1, p2w1 = p4w0,

p3w1 = p4w1 = 0,

u1u
2
0 = cu0v2 + cp2w0, u0u

2
1 = u31 = 0,

u0v4 = u1v3 = p1w0, u2v4 = p21w1,

u1v2 = (pk−1
1 + cp2)w1,

u1v4 = u2v2 = u2v3 = 0,

u1w1 = (p3 + cp4)z, u1w0 = cu0w1 + cp2z + pk−1
1 z;

v2w0 = u20w1, v3w0 = pk−2
1 u2z,

v4w0 = p3u1z, v3w1 = p4u1z, v4w1 = u2z, v2w1 = 0;

w 2
0 = (1 + c3p4)u

2
0 z,

w0w1 = v2z, w
2
1 = 0.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. But we need
to know the translates of those elements in (3.44) for which they have not been calculated
earlier. These translates are described in the following lemma.

Lemma 3.17. As the translates of u0, w0, one can take the homomorphisms determined by
the following matrices:

T0(u0) =
(

1⊗ 1, y(xy)k−2 ⊗ 1 + c(xy)k−1 ⊗ 1
)

,

T1(u0) =

(

1⊗ 1 ∗
0 ∗

)
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with

(T1(u0))12 =

k−2
∑

i=0

x(yx)i ⊗ (xy)k−2−i + cy(xy)k−2 ⊗ (xy)k−1

+ c2(xy)k−1 ⊗ (xy)k−1,

(T1(u0))22 =
k−2
∑

i=0

(xy)i ⊗ y(xy)k−2−i +
k−2
∑

i=1

(yx)i ⊗ y(xy)k−2−i

+ y(xy)k−2 ⊗ 1 + c

k−2
∑

i=0

x(yx)i ⊗ y(xy)k−2−i + c(xy)k−1 ⊗ 1;

T0(w0) =
(

0, 1 ⊗ 1
)

, T1(w0) =

(

0 1⊗ 1 ∗
0 0 ∗

)

with

(T1(w0)13 =

k−2
∑

i=0

x(yx)i ⊗ x(yx)k−2−i + c(yx)k−2 ⊗ (xy)k,

(T1(w0)23 =

k−1
∑

i=0

(xy)i ⊗ (yx)k−1−i +

k−2
∑

i=0

(xy)i ⊗ (xy)k−1−i

+
k−1
∑

i=1

(yx)i ⊗ (yx)k−1−i + cy(xy)k−2 ⊗ y(xy)k−1;

T2(w0) =

(

0 1⊗ 1 ∗ ∗
0 0 ∗ ∗

)

with

(T2(w0))13 =c(xy)k ⊗ (xy)k−2,

(T2(w0))14 =(yx)k−1 ⊗ x(yx)k−2 + x(yx)k−2 ⊗ (xy)k−1

+ x(yx)k−1 ⊗ (xy)k−2 + cx(yx)k−1 ⊗ x(yx)k−2,

(T2(w0))23 =x⊗ 1 + 1⊗ x+

k−2
∑

i=0

y(xy)i ⊗ y(xy)k−2−i

+ cx⊗ x+ cy(xy)k−1 ⊗ 1 + c2y(xy)k−1 ⊗ x,

(T2(w0)))24 =

k−1
∑

i=0

(xy)i ⊗ (yx)k−1−i + x⊗ y(xy)k−2

+ (yx)k−1 ⊗ 1 + cy(xy)k−2 ⊗ y(xy)k−1;

T3(w0) =

(

0 1⊗ 1 ∗ 0
0 0 ∗ ∗

)
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with

(T3(w0))13 = c2(yx)k−1 ⊗ x(yx)k−1 + c3x(yx)k−1 ⊗ x(yx)k−1,

(T3(w0))23 = 1⊗ 1 + c2y(xy)k−1 ⊗ 1 + c3(xy)k ⊗ 1,

(T3(w0))24 =
k−2
∑

i=0

x(yx)i ⊗ (xy)k−2−i + c(yx)k−1 ⊗ y(xy)k−2

+ cy(xy)k−2 ⊗ (xy)k−1 + c2x(yx)k−1 ⊗ y(xy)k−2 + c2(yx)k−1 ⊗ (xy)k−1.

The proof of this lemma is similar to the proof of Lemma 3.3.

Now the proof of Proposition 3.16 is completed with the help of direct calculation. We leave
to the reader the corresponding details. �
Remark 3.18. Note that formulas for the translates of w1 are obtained from the corresponding
translates of w̃ (see Lemma 3.3) for d = 0. Recall that formulas for the translates of v2, v3, v4
described in that lemma are valid also for d = 0.

Proposition 3.19. For any � ∈ N, we have

u�0 =
(

1,O
) ∈ HH�(R), u�0v2 =

(

y,O
) ∈ HH�+2(R), (3.45)

u�0w0 =
(

0, 1,O
) ∈ HH�+3(R), u�0w1 =

(

0, y,O
) ∈ HH�+3(R). (3.46)

Remark 3.20. Owing to the description of bases for the groups H2�(X •) (� ≥ 4) given
in [2, Lemma 4.11], the elements

(

1,Or+1

)

,
(

y,Or+1

)

,
(

0, 1,Or

)

,
(

0, y,Or

)

(3.47)

(for suitable r) are included in a basis of the image of H�(X •) in the group HH�(R). Moreover,
the remaining basis elements of the image are expressed in terms of the above elements,

(

x(yx)k−1,Or+1

)

= p2
(

1,Or+1

)

,
(

(xy)k,Or+1

)

= p4
(

1,Or+1

)

,
(

0, x(yx)k−1,Or

)

= p2
(

0, 1,Or

)

,
(

0, (xy)k,Or

)

= p4
(

0, 1,Or

)

.

Proof of Proposition 3.19. The base of induction for all mentioned elements is established di-
rectly (using Lemma 3.17).

1) Now, assuming u�0 =
(

1,O
)

(� ≥ 2), we find the following translates of this element:

T0(u�0) =
(

1⊗ 1,O
)

,

T1(u�0) =

⎛

⎜

⎜

⎝

1⊗ 1
k−2
∑

i=0
x(yx)i ⊗ x(yx)k−2−i O

0
k−1
∑

i=0
(xy)i ⊗ (yx)k−1−i + c3(xy)k−1 ⊗ (xy)k O

⎞

⎟

⎟

⎠

.

Consequently,

u�+1
0 = μT0(u0)T

1(u�0) =
(

1,O
)

.

2) Assuming u�0v2 =
(

y,O
)

, we find the translates

T0(u�0v2) =
(

y ⊗ 1,O
)

,

T1(u�0v2) =

⎛

⎜

⎜

⎝

y ⊗ 1
k−1
∑

i=1
(yx)i ⊗ x(yx)k−1−i + c3x(yx)k−1 ⊗ (xy)k O

0
k−1
∑

i=0
y(xy)i ⊗ (yx)k−1−i O

⎞

⎟

⎟

⎠

.
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Then

u�+1
0 v2 = μT0(u0)T

1(v�1v2) =
(

y,O
)

.

3) Assuming u�0w0 =
(

0, 1,O
)

, we find

T0(u�0w0) =
(

0, 1⊗ 1,O
)

,

T1(u�0w0) =

⎛

⎜

⎜

⎝

0 1⊗ 1
k−2
∑

i=0
x(yx)i ⊗ x(yx)k−2−i O

0 0
k−1
∑

i=0
(xy)i ⊗ (yx)k−1−i O

⎞

⎟

⎟

⎠

.

Then

u�+1
0 w0 = μT0(u0)T

1(u�0w0) =
(

0, 1,O
)

.

4) Assuming u�0w1 =
(

0, y,O
)

(� ∈ N), we find the translates

T0(u�0w1) =
(

0, y ⊗ 1,O
)

,

T1(u�0w1) =

⎛

⎜

⎜

⎝

0 y ⊗ 1
k−1
∑

i=1
(yx)i ⊗ x(yx)k−1−i O

0 0
k−1
∑

i=0
y(xy)i ⊗ (yx)k−1−i O

⎞

⎟

⎟

⎠

.

Then

u�+1
0 w1 = μT0(u0)T

1(u�0w1) =
(

0, y,O
)

. �

Proposition 3.21. Assume that k is odd and d = 0. The set Y3 in (3.44) generates HH∗(R)
as a K-algebra.

Proof. Let H denote a K-subalgebra of HH∗(R), generated by the set Y3∪{1}. First, we prove
that

3
⋃

i=0
HHi(R) ⊂ H.

It is clear that HH0(R) ⊂ H (see the proof of Proposition 3.7). The basis elements of
HH1(R), described in Corollary 2.8 (a), satisfy the relations

(

y(xy)i, 0
)

= p i−1
1 u2 for 1 ≤ i ≤ k − 1,

(

x(yx)k−1, 0
)

= p2u0,
(

(xy)k, 0
)

= p4u0,
(

0, y(xy)k−1
)

= (p3 + cp4)u1,
(

0, (xy)k
)

= p4u1.

Hence, HH1(R) ⊂ H.
Next, the basis elements of HH2(R), described in Corollary 2.8 (b), satisfy the relations

(

0, y(xy)i + c(xy)i+1
)

= pi1v4 for 0 ≤ i ≤ k − 3,
(

1, 0
)

= u 2
0 ,

(

x(yx)k−1, 0
)

= p2u
2
0 ,

(

(xy)k, 0
)

= p4u
2
0 ,

(

0, 1
)

= u 2
1 ,

(

0, y(xy)k−2
)

= u0u1 + cv2,
(

0, (xy)k−1
)

= c−1(pk−2
1 v4 + u0u1) + v2.

Consequently, HH2(R) ⊂ H.
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Then the basic elements of HH3(R) described in Corollary 2.8 (c), satisfy the relations

(

0, y(xy)i
)

= p i
1w̃ for 1 ≤ i ≤ k − 1,

(

1, 0
)

= u30,
(

y, 0
)

= u0v2,
(

x(yx)k−1, 0
)

= p2u
3
0,

(

(xy)k, 0
)

= p4u
3
0,

(

0, xy + yx
)

= u1v3,
(

0, x(yx)k−1
)

= p2w0,
(

0, (xy)k
)

= p2w1,

whence HH3(R) ⊂ H.
Now the inclusion HHn(R) ⊂ H is verified by induction on n. Assume that n ≥ 4. Let

f = (f1, f2) ∈ HomΛ(Qn, R) be a cocycle representing an element of HHn(R), where f1 ∈
HomΛ(Xn, R) and f2 ∈ HomΛ(Qn−4, R). By Proposition 3.19, (f1,O) lies in H. Finally, by
induction hypothesis, f2 ∈ H, and hence (O2, f2) = z · f2 also lies in H. �

Let A3 = K[X3]/I3 be the graded K-algebra defined in Sec. 1 with X3 as in (1.31) and
I3 the corresponding ideal of relations. Propositions 3.16 and 3.21 imply that there exists a
surjective homomorphism ϕ : A3 → HH∗(R) of graded K-algebras that takes the generators
in X3 to the corresponding generators in Y3 (see (3.44)). Let A3 =

⊕

m≥0 Am
3 be the direct

decomposition of A3 into homogeneous direct summands. Now, statement (3) of Theorem 1.1
is a consequence of the following statement.

Proposition 3.22. For any m ≥ 0,

dimK Am
3 = dimK HHm(R).

First, we state an auxiliary assertion.

Lemma 3.23. The following relations are satisfied in the algebra A3:

p21w0 = p1u0w0 = p1u0w1 = p4u
2
0u1 = p3u

2
0 = p1u

2
0 = p21u0 = 0.

All relations in lemma 3.23 follow directly from the defining relations of the algebra A3.

Proof of Proposition 3.22. We introduce a lexicographic order on the polynomial ring K[X3],
such that

v3 > v4 > w0 > v2 > w1 > u1 > u2 > u0 > z > p2 > p3 > p4 > p1.

Any nonzero monomial in A3 is represented in the form

f = p i
1p

α2
2 pα3

3 pα4
4 u �

0u
β1
1 u β2

2 vγ22 vγ33 vγ44 w ε0
0 w ε1

1 zs; (3.48)

here, by the defining relations of the algebra A3, we have

α2, α3, α4, β2, γ2, γ3, γ4, ε0, ε1 ∈ {0, 1}, i, �, β1, s ∈ N ∪ {0}, i ≤ k − 1, β1 ≤ 2.

As in the proof of Proposition 3.8, we introduce the following list of elementary steps of
reduction, and study the normal forms of monomials (with respect to these steps of reductions):
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p3u1 �→ p1u0, p2u1 �→ (p3 + cp4)u0,

pk−2
1 u2 �→ p3u0, p2v2 �→ p4u

2
0,

u1v3 �→ u0v4 �→ p1w0, u0v3 �→ p3w0 �→ pk−1
1 w1,

p2w0 �→ u0v2 + c−1u20u1, p4w0 �→ p2w1,

u2v4 �→ p21w1, u1v2 �→ (pk−1
1 + cp2)w1,

u1w1 �→ (p3 + cp4)z, u1w0 �→ cu0w1 + (cp2 + pk−1
1 )z,

v4w0 �→ p3u1z, v24 �→ p21z,
v3w1 �→ p4u1z, v4w1 �→ u2z,

v2w0 �→ u20w1, v3w0 �→ pk−2
1 u2z,

w2
0 �→ (1 + c3p4)u

2
0z, w0w1 �→ v2z.

Put qi = dimK Ai
3. Denote the number of monomials in Ai

3, represented in the normal
form by q̃i. It is clear that q̃i ≥ qi. Since there is an epimorphism Ai

3 → HHi(R), we have
qi ≥ dimK HHi(R). Consequently, it suffices to show that

q̃i = dimK HHi(R). (3.49)

Finally, successively analyzing several cases (cf. the proof of Proposition 3.8), we prove that
all (nonzero) monomials having the normal form are contained in the following list (where
a ≥ 0).

The monomials of degree 4a:

{w0u
4(a−m)−3
0 zm}a−1

m=0, {v2u4(a−m)−2
0 zm}a−1

m=0,

{w1u
4(a−m)−3
0 zm}a−1

m=0, {p2w1u
4(a−m)−3
0 zm}a−1

m=0,

{u1u4(a−m)−1
0 zm}a−1

m=0, {u4(a−m)
0 zm}a−1

m=0,

{p2u4(a−m)
0 zm}a−1

m=0, {p4u4(a−m)
0 zm}a−1

m=0,

{pi1za}k−1
i=0 , p2z

a, p3z
a, p4z

a

(the number of them equals 8a+ k + 3).
The monomials of degree 4a+ 1:

{w0u
4(a−m)−2
0 zm}a−1

m=0, {v2u4(a−m)−1
0 zm}a−1

m=0,

{w1u
4(a−m)−2
0 zm}a−1

m=0, {p2w1u
4(a−m)−2
0 zm}a−1

m=0,

{u1u4(a−m)
0 zm}am=0, {u4(a−m)+1

0 zm}am=0,

{p2u4(a−m)+1
0 zm}am=0, {p4u4(a−m)+1

0 zm}am=0,

{pi1u2za}k−3
i=0 , p4u1z

a, p1u0z
a, p3u0z

a

(the number of them equals 8a+ k + 5).
The monomials of degree 4a+ 2:

{w0u
4(a−m)−1
0 zm}a−1

m=0, {v2u4(a−m)
0 zm}am=0,

{w1u
4(a−m)−1
0 zm}a−1

m=0, {p2w1u
4(a−m)−1
0 zm}a−1

m=0,

{u1u4(a−m)+1
0 zm}am=0, {u4(a−m)+2

0 zm}am=0,

{p2u4(a−m)+2
0 zm}am=0, {p4u4(a−m)+2

0 zm}am=0,
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{pi1v4za}k−2
i=0 , u

2
1z

a, v3z
a

(the number of them equals 8a+ k + 6).
The monomials of degree 4a+ 3:

{w0u
4(a−m)
0 zm}am=0, {v2u4(a−m)+1

0 zm}am=0,

{w1u
4(a−m)
0 zm}am=0, {p2w1u

4(a−m)
0 zm}am=0,

{u1u4(a−m)+2
0 zm}am=0, {u4(a−m)+3

0 zm}am=0,

{p2u4(a−m)+3
0 zm}am=0, {p4u4(a−m)+3

0 zm}am=0,

{pi1w1z
a}k−1

i=1 , p1w0z
a

(the number of them equals 8a+ k + 8).
Using Corollary 2.11, we derive from this the equality (3.49). �

Case 4. Now assume that k is even, k > 2, and d = 0.
We consider the following homogeneous elements of HH∗(R):

— of degree 0 : p1, p2, p3, p4 in (3.1);

— of degree 1 :

{

u0 in (3.42), u′2 in (3.38), and

u′1 := (0, 1 + cx);

— of degree 2 : v2, v3, v4 in (3.3);

— of degree 3 : w0, w1 in (3.43);

— of degree 4 : z in (3.5).

Proposition 3.24. Assume that k is even, k > 2, and d = 0. In the algebra HH∗(R), the
elements of the set

Y4 = {p1, p2, p3, p4, u0, u′1, u′2, v2, v3, v4, w0, w1, z} (3.50)

satisfy the relations (3.7), (3.16), (3.23), (3.26), and the following relations:

p3u0 = p2u
′
1, p3u0 = pk−1

1 u′2, p1u
′
1 = cp1u

′
2

p3u
′
1 = p1u0, p2u

′
2 = p4u0, p3u

′
2 = p4u

′
2 = 0;

u′1u′2 = c2θk−1p3v3,

p1v2 = p3v3 = p2v4 = p4(u
′
1)

2,

u0u
′
1 = 0, p2v2 = p4u

2
0, (u

′
2)

2 = cθk−1p3v3,

pk−1
1 v4 = cp3v3,

p1v3 = p2v3 = p4v3 = 0,

u′1v4 = u′2v3 = p1w1, u0v4 = p1w0,

u0v3 = pk−2
1 u′2v3 = p3w0 = u′1v2, (u

′
1)

3 = 0,

u0v2 = u20u
′
2 + p2w0, p2w1 = p4w0 = u′2v2,

u′2v4 = u′1v3 = p3w1 = p4w1 = 0,

u′2w0 = u0w1, u
′
1w0 = u′1w1 = u′2w1 = 0,

v2w0 = u20w1 + p2u0z, v3w0 = pk−1
1 u′2z,

v2w1 = p4u0z, v4w0 = (cpk−1
1 u′2 + p1u0)z,

v4w1 = p1u
′
2z, v3w1 = 0;
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w 2
0 = (1 + c3p4)u

2
0 z, w0w1 = u0u

′
2z, w

2
1 = cθk−1p3v3z.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. But we need
to know the translates of the element u′1 in Y4; the translates for the other elements have been
calculated earlier.

Lemma 3.25. As the translates of the element u′1, one can take the homomorphisms deter-
mined by the following matrices:

T0(u′1) =
(

0, 1 ⊗ 1 + cx⊗ 1
)

, T1(u′1) =
(

0 ∗
0 ∗

)

with

(T1(u′1))12 =
k−2
∑

i=0

y(xy)i ⊗ (xy)k−2−i + c
k−2
∑

i=0

(i+ 1)(yx)i ⊗ (xy)k−1−i

+ c

k−1
∑

i=1

(xy)i ⊗ (xy)k−1−i + c2
k−1
∑

i=1

ix(yx)i−1 ⊗ (xy)k−i,

(T1(u′1))22 = 1⊗ 1 + cx⊗ 1 + c

k−2
∑

i=0

(i+ 1)y(xy)i ⊗ y(xy)k−2−i

+ c2
k−1
∑

i=1

i(xy)i ⊗ y(xy)k−1−i.

The proof of this lemma is similar to that of Lemma 3.3.

Now the proof of Proposition 3.24 is completed with the help of direct calculation. We leave
to the reader the corresponding details. �
Remark 3.26. Note that formulas for the translates of w1 are obtained from the corresponding
translates of w, that have been calculated earlier (see Lemma 3.11) for d �= 0 (and even k).
Recall that formulas for the translates of v2, v3, v4 in Lemmas 3.3, 3.11 are valid also for even k
(and d = 0).

Proposition 3.27. For any � ∈ N,

u�0 =
(

1,O
) ∈ HH�(R), u�0v2 =

(

y,O
) ∈ HH�+2(R),

u�0w0 =
(

0, 1,O
) ∈ HH�+3(R), u�0w1 + p2u

�−1
0 z =

(

0, y,O
) ∈ HH�+3(R).

The proof of this statement is completely similar to the proof of Proposition 3.19.

Proposition 3.28. Assume that k is even, k > 2, and d = 0. The set Y4 in (3.50) generates
HH∗(R) as a K-algebra.

Proof. Let H denote a K-subalgebra of HH∗(R), generated by the set Y4∪{1}. First, we prove
that

3
⋃

i=0
HHi(R) ⊂ H.

It is clear that HH0(R) ⊂ H (see the proof of Proposition 3.7). The basis elements of
HH1(R), described in Corollary 2.10 (a), satisfy the relations

(

y(xy)i, 0
)

= p i
1u

′
2 for 1 ≤ i ≤ k − 1,

(

x(yx)k−1, 0
)

= p2u0,
(

(xy)k, 0
)

= p4u0,
(

0, y(xy)k−1
)

= (p3 + cp4)u
′
1,

(

0, (xy)k
)

= p4u
′
1.
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Hence, HH1(R) ⊂ H.
Next, the basis elements of HH2(R), described in Corollary 2.10 (b), satisfy the relations

(

0, y(xy)i + c(xy)i+1
)

= pi1v4 for 0 ≤ i ≤ k − 3,
(

1, 0
)

= u 2
0 ,

(

x(yx)k−1, 0
)

= p2u
2
0 ,

(

0, 1
)

= (u′1)
2 + c3(1 + θk−1)p3v3,

(

(xy)k, 0
)

= p4u
2
0 ,

(

0, y(xy)k−2
)

= pk−1
1 v4 + c(u0u

′
2 + v2),

(

0, (xy)k−1
)

= u0u
′
2 + v2.

Consequently, HH2(R) ⊂ H.
Then the basis elements of HH3(R) described in Corollary 2.10 (c), satisfy the relations

(

0, y(xy)i
)

= p i
1w1 for 1 ≤ i ≤ k − 1,

(

1, 0
)

= u30,
(

y, 0
)

= u0v2,
(

x(yx)k−1, 0
)

= p2u
3
0,

(

(xy)k, 0
)

= p4u
3
0,

(

0, xy + yx
)

= u0v4,
(

0, x(yx)k−1
)

= p2w0,
(

0, (xy)k
)

= p4w0,

whence HH3(R) ⊂ H.
Now the inclusion HHn(R) ⊂ H is verified by induction on n similarly to the proof of

Proposition 3.21. �

Let A4 = K[X4]/I4 be the graded K-algebra defined in Sec. 1 with X4 as in (1.32) and
I4 the corresponding ideal of relations. Propositions 3.24 and 3.28 imply that there exists a
surjective homomorphism ϕ : A4 → HH∗(R) of graded K-algebras that takes the generators in
X4 to the corresponding generators in Y4. Let A4 =

⊕

m≥0
Am

4 be the direct decomposition of A4

into homogeneous direct summands. Now, statement (4) of Theorem 1.1 is a consequence of
the following statement.

Proposition 3.29. For any m ≥ 0,

dimK Am
4 = dimK HHm(R).

First, we need the following auxiliary assertion.

Lemma 3.30. The following relations are satisfied in the algebra A4:

p21u0 = p1u
2
0 = u20v3 = u20v4 = p3u

2
0 = (u′2)

3 = p1u0v4 = 0.

All relations in lemma 3.30 follow directly from the defining relations of the algebra A4.

Proof of Proposition 3.29. We introduce a lexicographic order on the polynomial ring K[X4],
such that

w0 > w1 > u′1 > u′2 > v2 > v3 > v4 > u0 > z > p2 > p3 > p4 > p1.

Any nonzero monomial in A4 is represented in the form

f = p i
1p

α2
2 pα3

3 pα4
4 u �

0(u
′
1)

β1(u′2)
β2vγ22 vγ33 vγ44 w ε0

0 w ε1
1 zs; (3.51)

here, by the defining relations of the algebra A4 (see also Lemma 3.30), we have

α2, α3, α4, β4, γ2, γ3, γ4, ε0, ε1 ∈ {0, 1}, i, �, β1, s ∈ N ∪ {0}, i ≤ k − 1, β1 ≤ 2, β2 ≤ 2.
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We introduce the following list of elementary steps of reduction and study the normal forms
of monomials (with respect to these steps of reductions):

p2u
′
1 �→ pk−1

1 u′2 �→ p3u0, p1u
′
1 �→ cp1u

′
2,

p3u
′
1 �→ p1u0, p2u

′
2 �→ p4u0,

p4(u
′
1)

2 �→ p1v2 �→ p3v3 �→ p2v4, p2v4 �→ c−1pk−1
1 v4,

u′1u
′
2 �→ c2θk−1p3v3 (ifff cθk−1 �= 0), (u′2)

2 �→ cθk−1p3v3 (ifff cθk−1 �= 0),
p2v2 �→ p4u

2
0, p1w1 �→ u′1v4 �→ u′2v3,

p3w0 �→ u′1v2 �→ pk−2
1 u′2v3 �→ u0v3, p2w0 �→ u20u

′
2 + u0v2,

p4w0 �→ p2w1 �→ u′2v2, p1w0 �→ u0v4,
u′2w0 �→ u0w1, v24 �→ p21z,

v4w1 �→ p1u
′
2z, v3w0 �→ pk−1

1 u′2z,
v2w0 �→ u20w1 + p2u0z, v4w0 �→ (cpk−1

1 u′2 + p1u0)z,
v2w1 �→ p4u0z, w2

1 �→ cθk−1p3v3z (ifff cθk−1 �= 0),
w2
0 �→ (1 + c3p4)u

2
0z, w0w1 �→ u0u

′
2z.

Put qi = dimK Ai
4. Denote the number of monomials in Ai

4 represented in the normal form
by q̃i. It is clear that q̃i ≥ qi. Consequently, it suffices to show that

q̃i = dimK HHi(R). (3.52)

Now, successively analyzing several cases (cf. the proof of Proposition 3.8), we prove that
all (nonzero) monomials having the normal form are contained in the following list (where
a ≥ 0).

The monomials of degree 4a:

{w0u
4(a−m)−3
0 zm}a−1

m=0, {v2u4(a−m)−2
0 zm}a−1

m=0,

{w1u
4(a−m)−3
0 zm}a−1

m=0, {u′2v2u4(a−m)−3
0 zm}a−1

m=0,

{u′2u4(a−m)−1
0 zm}a−1

m=0, {u4(a−m)
0 zm}a−1

m=0,

{p2u4(a−m)
0 zm}a−1

m=0, {p4u4(a−m)
0 zm}a−1

m=0,

{pi1za}k−1
i=0 , p2z

a, p3z
a, p4z

a

(the number of them equals 8a+ k + 3).
The monomials of degree 4a+ 1:

{w0u
4(a−m)−2
0 zm}a−1

m=0, {v2u4(a−m)−1
0 zm}a−1

m=0,

{w1u
4(a−m)−2
0 zm}a−1

m=0, {u′2v2u4(a−m)−2
0 zm}a−1

m=0,

{u′2u4(a−m)
0 zm}am=0, {u4(a−m)+1

0 zm}am=0,

{p2u4(a−m)+1
0 zm}am=0, {p4u4(a−m)+1

0 zm}am=0,

{pi1u′2za}k−2
i=1 , u

′
1z

a, p4u
′
1z

a, p1u0z
a, p3u0z

a

(the number of them equals 8a+ k + 6).
The monomials of degree 4a+ 2:

{w0u
4(a−m)−1
0 zm}a−1

m=0, {v2u4(a−m)
0 zm}am=0,

{w1u
4(a−m)−1
0 zm}a−1

m=0, {u′2v2u4(a−m)−1
0 zm}a−1

m=0,

{u′2u4(a−m)+1
0 zm}am=0, {u4(a−m)+2

0 zm}am=0,
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{p2u4(a−m)+2
0 zm}am=0, {p4u4(a−m)+2

0 zm}am=0,

{pi1v4za}k−1
i=0 , (u

′
1)

2za, v3z
a

(the number of them equals 8a+ k + 7).
The monomials of degree 4a+ 3:

{w0u
4(a−m)
0 zm}am=0, {v2u4(a−m)+1

0 zm}am=0,

{w1u
4(a−m)
0 zm}am=0, {u′2v2u4(a−m)

0 zm}am=0,

{u′2u4(a−m)+2
0 zm}am=0, {u4(a−m)+3

0 zm}am=0,

{p2u4(a−m)+3
0 zm}am=0, {p4u4(a−m)+3

0 zm}am=0,

{pi1u′2v3za}k−3
i=0 , v3u0z

a, v4u0z
a

(the number of them equals 8a+ k + 8).
Using Corollary 2.11, we derive from this the equality (3.52). �

Case 5. Assume that k = 2 and d �= 0.
We consider the homogeneous elements

p1, p2, p3, p4, u
′
1, u

′
2, u3, v1, v2, v3, v4, w, z (3.53)

of HH∗(R), defined by the same formulas as in the Case 2 (for k = 2).

Proposition 3.31. Let Y5 be the set formed by the elements in (3.53). In the algebra HH∗(R),
these elements satisfy the following relations:

pipj = 0 for all i, j ∈ {1, 2, 3, 4};
p1u

′
1 = (dp2 + cp1)u

′
2, p2u

′
1 = p1u

′
2,

pju3 = 0 for 1 ≤ j ≤ 4, p3u
′
2 = p4u

′
2 = 0,

p1v4 = dp4v1 + cp3v3, u
2
3 = 0,

p3v1 = p1v2 = p3v3 = p2v4 = u′1u3 = p4(u
′
1)

2,

p2v2 = p4v1 = u′2u3, p3(u
′
1)

2 = 0,

u′1u′2 = cdp4v1 + c2p3v1, (u
′
2)

2 = cp3v1,

u′1v4 = u′2(dv2 + cv4), u
′
2v4 = u′1v2 = p1w,

u′1v1 = u′1v3, p2w = u′2v2
(u′1)3 = du′2v1, p3w = p4w = 0,

v 2
2 = v 2

3 = v 2
4 = 0; vivj = 0 for i < j,

u′1w = u′2w = 0;

v2w = p2u
′
2z, v4w = p1u

′
2z, v3w = 0;

w2 = cp3v3z.

Proof. The proof of the above relations is similar to the proof of Proposition 3.1. Note that
the formulas for the translates of the elements in Y5, that have been calculated earlier are
valid in the case under consideration. �

Proposition 3.32. Assume that k = 2 and d �= 0. The set Y5 generates HH∗(R) as a
K-algebra.

We need the following auxiliary statement.
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Lemma 3.33. For any � ∈ N \ {1},
v�−2
1 (v1w + u3z) = (0, ỹ,O) ∈ HH2�+1(R),

v�−1
1 u3w =

(

0, (xy)2,O
) ∈ HH2�+2(R).

Proof. It is immediately verified that v1w + u3z = (0, ỹ,O2). Then the proof of the first
equality is carried out by induction on � similarly to the proof of Proposition 3.5. Note that
the translates Ti(f), i ∈ {1, 2}, of the element f = (0, ỹ,O) can be taken in the form obtained
in the proof of this proposition.

The second equality is proved similarly. �

Proof of Proposition 3.32. Let H denote a K-subalgebra of HH∗(R), generated by the set

Y5 ∪ {1}. First, we prove that
⋃3

i=0HH
i(R) ⊂ H.

It is clear that HH0(R) ⊂ H (see the proof of Proposition 3.7). The basis elements of
HH1(R), described in Corollary 2.6 (a), satisfy the relations

(

yxy, 0
)

= p i
1u

′
2,

(

(xy)2, 0
)

= p2u
′
2,

(

0, yxy
)

= (p3 + cp4)u
′
1,
(

0, (xy)2
)

= p4u
′
1.

Hence, HH1(R) ⊂ H.
Next, the basis elements of HH2(R), described in Corollary 2.6 (b), satisfy the relations

(

0, 1
)

= (u′1)
2 + c2dp4v1 + cdp3v3,

(

(xy)2, 0
)

= p4v1,
(

0, (xy)2
)

= p3v3.

Consequently, HH2(R) ⊂ H.
Then the basis elements of HH3(R), described in Corollary 2.6 (c), satisfy the relations

(

0, yxy
)

= p1w,
(

dyx, xy + yx
)

= u′1v3,
(

y, xyx
)

= u′2v1,
(

xyx, 0
)

= u3v1,
(

0, (xy)2
)

= u′2v2,

whence HH3(R) ⊂ H.
Now the inclusion HHn(R) ⊂ H is proved by induction on n similarly to the proof of

Proposition 3.7. Note that relations (3.32) are valid also for even k, and the equalities in
Lemma 3.33 should be used instead of relations (3.33). �

Let A5 = K[X5]/I5 be the graded K-algebra defined in Sec. 1, where X5 coincides with the
set X2 in (1.28), and I5 the corresponding ideal of relations. Since there exists a surjective
homomorphism ϕ : A5 → HH∗(R) of graded K-algebras that takes the generators in X5 to the
corresponding generators in Y5, statement (5) of Theorem 1.1 is a consequence of the following
statement.

Proposition 3.34. For any m ≥ 0,

dimK Am
5 = dimK HHm(R).

First, we need the following auxiliary assertion.

Lemma 3.35. The following relations are satisfied in the algebra A5:

p2u
′
2v2 = p1u

′
2v2 = p3u

′
1v1 = p4u

′
1v1 = (u′1)

4 = (u′2)
3 = p4v

2
1 = u′1v

2
1 = u′2v

2
1 = 0.

All relations in Lemma 3.35 follow directly from the defining relations of the algebra A5.
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Proof of Proposition 3.34. We introduce a lexicographic order on the polynomial ring K[X5],
such that

w > u′1 > u′2 > u3 > v4 > v3 > v2 > v1 > z > p2 > p3 > p4 > p1.

Then we introduce the following list of elementary steps of reduction, and study the normal
forms of monomials (with respect to these steps):

p1u
′
1 �→ (dp2 + cp1)u

′
2, p2u

′
1 �→ p1u

′
2,

u′2u3 �→ p2v2 �→ p4v1, p4(u
′
1)

2 �→ p2v4 �→ p3v3 �→ p1v2 �→ p3v1,
u′1u3 �→ p3v1, p1v4 �→ dp4v1 + cp3v3,
u′1u′2 �→ c(dp4 + cp3)v1, (u′2)2 �→ cp3v1,
(u′1)3 �→ du′2v1, u′1v3 �→ u′1v1,
u′1v4 �→ u′2(dv2 + cv4), p1w �→ u′2v4 �→ u′1v2,
p2w �→ u′2v2, v2w �→ p2u

′
2z,

v4w �→ p1u
′
2z, w2 �→ cp3v3z.

And then, as in the proof of Proposition 3.14, we obtain the list of monomials having the
normal form, which almost coincides with such list in the Case 2: the monomial p1v2z

a is
replaced by p3v1z

a, and the monomial u′1v3za is replaced by u′1v1za. This completes the proof
of Proposition 3.34. �

Case 6. Now, we assume that k = 2 and d = 0.
We consider the homogeneous elements

p1, p2, p3, p4, u0, u
′
1, u

′
2, v2, v3, v4, w0, w1, z (3.54)

of HH∗(R), defined by the same formulas as in the Case 4 (for k = 2).

Proposition 3.36. Let Y6 be the set formed by the elements in (3.54). In the algebra HH∗(R),
these elements satisfy the following relations:

pipj = 0 for all i, j ∈ {1, 2, 3, 4};
p1u

′
1 = cp3u0, p2u

′
1 = p3u0 = p1u

′
2,

p3u
′
1 = p1u0, p2u

′
2 = p4u0, p3u

′
2 = p4u

′
2 = 0;

p1v2 = p3v3 = p2v4 = c−1p1v4 = c−1(u′2)2 = c−1u′1u′2 = p4(u
′
1)

2,

p2v2 = p4u
2
0 , p3v2 = p4v2 = 0,

p1v3 = p2v3 = p4v3 = p3v4 = p4v4 = 0, u0u
′
1 = 0;

u0v3 = u′1v2 = c−1u′1v4 = u′2v4 = p3w0 = p1w1,

u0v4 = u′1v3 = p1w0, (u
′
1)

3 = u′2v3 = 0,

p2w0 = u0v2 + u 2
0 u

′
2,

p2w1 = p4w0 = u′2v2, p3w1 = p4w1 = 0;

vivj = 0 for all i, j ∈ {2, 3, 4},
u′2w0 = u0w1, u

′
1w0 = u′1w1 = u′2w1 = 0,

v2w0 = u20w1 + p2u0z, v3w0 = v4w1 = p1u
′
2z,

v2w1 = p4u0z, v4w0 = p1u0z, v3w1 = 0,

w 2
0 = (1 + c3p4)u

2
0 z, w0w1 = u0u

′
2z, w

2
1 = cp3v3z.

The proof of the above relations is similar to the proof of Proposition 3.1 (cf. Proposi-
tion 3.24). But we need to know the translates Ti(w0) for i = 2, 3, whose description differs
from that in the Case 3 (and, respectively, in Case 4) (see Lemma 3.17).
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Lemma 3.37. The translates T0(w0), T
1(w0) can be defined by the formulas in Lemma 3.17.

Furthermore, the translates Ti(w0), i = 2, 3, can be described by the following matrices:

T2(w0) =

(

0 1⊗ 1 ∗ ∗
0 0 ∗ ∗

)

with
(T2(w0))13 =c(xy)2 ⊗ 1 + c · 1⊗ (xy)2,

(T2(w0))14 =yx⊗ x+ x⊗ xy + xyx⊗ 1

+ cxyx⊗ x+ c2(xy)2 ⊗ xy,

(T2(w0))23 =x⊗ 1 + 1⊗ x+ y ⊗ y + cx⊗ x

+ cyxy ⊗ 1 + c2yxy ⊗ x,

(T2(w0)))24 =1⊗ yx+ xy ⊗ 1 + x⊗ y

+ yx⊗ 1 + cy ⊗ yxy;

T3(w0) =

(

0 1⊗ 1 ∗ ∗
0 0 ∗ ∗

)

with
(T3(w0))13 = c(xy)2 ⊗ 1 + c · 1⊗ (xy)2

+ c2yx⊗ xyx+ c3xyx⊗ xyx,

(T3(w0))14 = yx⊗ xy + (xy)2 ⊗ 1

+ cyx⊗ xyx+ cxyx⊗ xy,

(T3(w0))23 = 1⊗ 1 + c2yxy ⊗ 1 + c3(xy)2 ⊗ 1,

(T3(w0))24 = x⊗ 1 + c · 1⊗ yxy + cyxy ⊗ 1

+ c2yx⊗ xy + c2(yx)2 ⊗ 1.

Now the proof of Proposition 3.36 is completed with the help of direct calculation. We leave
to the reader the corresponding details.

Proposition 3.38. Assume that k = 2 and d = 0. The set Y6 generates HH∗(R) as a
K-algebra.

Proof. The proof is carried out similarly to the proof of Proposition 3.28. The formulas
in Proposition 3.27, that are used in the proof, are all valid with one exception: we have
u�0 =

(

1,O
) ∈ HH�(R) only for �≥4. �

Let A6 = K[X6]/I6 be the graded K-algebra defined in Sec. 1, where X6 coincides with the
set X4 in (1.32), and I6 is the corresponding ideal of relations. Since there exists a surjective
homomorphism ϕ : A6 → HH∗(R) of graded K-algebras that takes the generators in X6 to the
corresponding generators in Y6, statement (6) of Theorem 1.1 is a consequence of the following
statement.

Proposition 3.39. For any m ≥ 0,

dimK Am
6 = dimK HHm(R).

Proof. The proof of this statement is similar to the proof of Proposition 3.29. We introduce a
lexicographic order on the polynomial ring K[X6], such that

w0 > w1 > u′1 > u′2 > v2 > v3 > v4 > u0 > z > p2 > p3 > p4 > p1.
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Then we introduce the following list of elementary steps of reduction, and study the normal
forms of monomials (with respect to these steps):

p2u
′
1 �→ p1u

′
2 �→ p3u0, p1u

′
1 �→ cp3u0,

p3u
′
1 �→ p1u0, p2u

′
2 �→ p4u0,

p4(u
′
1)

2 �→ p1v2 �→ p3v3 �→ p2v4 �→ c−1p1v4,
u′1u

′
2 �→ (u′2)

2 �→ p1v4, p2v2 �→ p4u
2
0,

u′1v2 �→ u′2v4 �→ u0v3, p3w0 �→ p1w1 �→ u0v3,
u′1v4 �→ cu0v3, p2w0 �→ u20u

′
2 + u0v2,

p4w0 �→ p2w1 �→ u′2v2, p1w0 �→ u′1v3 �→ u0v4,
u′2w0 �→ u0w1, v3w0 �→ v4w1 �→ p1u

′
2z,

v2w0 �→ u20w1 + p2u0z, v4w0 �→ p1u0z,
v2w1 �→ p4u0z, w2

1 �→ cp3v3z,
w2
0 �→ (1 + c3p4)u

2
0z, w0w1 �→ u0u

′
2z.

Then, as in the proof of Proposition 3.29, we obtain the list of monomials having the normal
form that coincides with the list in Case 4. This completes the proof of Proposition 3.39. �

Translated by the author.
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