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BOUNDARY-VALUE PROBLEMS FOR THE SYSTEM OF OPERATOR-DIFFERENTIAL
EQUATIONS IN BANACH AND HILBERT SPACES

O. Z. Iskra1 and O. O. Pokutnyi2;3 UDC 517.9

We establish necessary and sufficient conditions for the existence of solutions of linear and nonlinear
boundary-value problems in Hilbert and Banach spaces and present a convergent iterative procedure for
finding the solutions in the nonlinear case.

Introduction

In the present paper, we develop constructive methods for the analysis of linear and nonlinear boundary-value
problems for operator-differential equations in Banach and Hilbert spaces. These problems occupy a central place
in the qualitative theory of differential equations [1–18]. A specific feature of these problems is that the operator
of the linear part of the equation does not have the inverse operator. This does not allow one to use the traditional
methods based on the principles of contracting mappings and fixed point. For the analysis of a nonlinear system
of differential equations, we develop the ideas of the Lyapunov–Schmidt method and efficient methods of the
perturbation theory by using the theory of generalized inverse [19] and strongly generalized inverse operators [20].

Statement of the Problem

Consider the following boundary-value problem:

8
<̂

:̂

'0.t; "/ D '.t; "/C  .t; "/C "f1.t; '.t; "/;  .t; "/; "/C g1.t/;

 0.t; "/ D '.t; "/C "f2.t; '.t; "/;  .t; "/; "/C g2.t/; t 2 J;
(1)

with a boundary condition

l.'.�; "/;  .�; "// D ˛; (2)

where '; 2 C 1.J;H/; C 1.J;H/ is a Banach space of continuously differentiable vector functions on the interval
J ⇢ R with values in the Hilbert space H; f1 and f2 are strongly differentiable vector functions; l is a linear and
bounded operator, which translates the solutions of Eq. (1) into the Hilbert space H1, and g1.t/; g2.t/ 2 C.J;H/
are vector functions. We find necessary and sufficient conditions for the existence of solutions '.t; "/;  .t; "/

1 Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, Kyiv, 01024, Ukraine; e-mail:
oleg.iskra@gmail.com.
2 Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, Kyiv, 01024, Ukraine; e-mail:
lenasas@gmail.com.
3 Corresponding author.

Published in Neliniini Kolyvannya, Vol. 24, No. 3, pp. 329–341, July–September, 2021. Original article submitted October 23, 2021.

228 1072-3374/23/2722–0228 c� 2023 Springer Nature Switzerland AG

DOI 10.1007/s10958-023-06412-2



BOUNDARY-VALUE PROBLEMS FOR THE SYSTEM OF OPERATOR-DIFFERENTIAL EQUATIONS 229

of the boundary-value problem (1), (2), which turn, for " D 0; into one of solutions of the generating linear
boundary-value problem of the following form:

8
<

:
'00.t/ D '0.t/C  0.t/C g1.t/;

 0
0.t/ D '0.t/C g2.t/; t 2 J;

l.'0.�/;  0.�// D ˛:

First, we investigate a generating linear case.

Linear Case

Consider a linear boundary-value problem

8
<

:
'00.t/ D '0.t/C  0.t/C g1.t/;

 0
0.t/ D '0.t/C g2.t/; t 2 J;

(3)

l.'0.�/;  0.�// D ˛: (4)

Denote by U.t/ the evolution operator of the homogeneous system

8
<

:
'00.t/ D '0.t/C  0.t/;

 0
0.t/ D '0.t/; t 2 J;

U 0.t/ D AU.t/; U.0/ D I;

where the matrix operator-valued function has the form

A D
 
1 1

1 0

!
;

and the evolution operator U.t/ has the form

U.t/ D etA D
1X

nD0

1

nä

 
tnFnC1 tnFn

tnFn tnFn�1

!
;

where Fn is a Fibonacci sequence:

F0 D 0; F1 D 1; FnC2 D FnC1 C Fn; n � 0;
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In this case, the set of solutions of Eqs. (3) has the form

 
'0.t; c/

 0.t; c/

!
D etAc C

tZ

0

e.t�⌧/Ag.⌧/d⌧ D
C1X

nD0
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tnFnc1 C tnFn�1c2
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@
.t � ⌧/nFnC1g1.⌧/C .t � ⌧/nFng2.⌧/

.t � ⌧/nFng1.⌧/C .t � ⌧/nFn�1g2.⌧/

1

A d⌧;

where c D .c1; c2/
T ; c1; c2 2 H; and g.t/ D .g1.t/; g2.t//

T [or by using representation (5)]. Substituting in the
boundary condition (4) we obtain the following operator equation:

Qc D ˛ � l
�Z

0

U.�/U�1.⌧/g.⌧/d⌧; Q D lU.�/ : H ! H1:

By using the theory of strong generalized solutions [21], we get the following result:

Qc D ˛ � l
�Z

0

U.�/U�1.⌧/g.⌧/d⌧; Q D lU.�/ : H ⇥H ! H1:

Theorem 1. (i) (a) The boundary-value problem (3), (4) has strongly generalized solutions if and only if the
following condition holds:

P
N.Q

⇤
/

8
<

:˛ � l
�Z

0

U.�/U�1.⌧/g.⌧/d⌧

9
=

; D 0I (6)

if

˛ � l
�Z

0

U.�/U�1.⌧/f .⌧/d⌧ 2 R.Q/;

then the generalized solutions is classical;
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(b) under condition (6), the set of solutions has the form

 
'0.t; c/

 0.t; c/

!
D U.t/PN.Q/c C .GŒg; ˛ç/.t/ 8 c 2 H; (7)

where PN.Q/; PN.Q⇤
/
are the orthoprojectors onto the kernel and cokernel of the operator Q; respec-

tively (Q is the extension of the operatorQ [20]),

.GŒg; ˛ç/.t/ D
tZ

0

U.t/U�1.⌧/g.⌧/d⌧ CQ
C
8
<

:˛ � l
�Z

0

U.�/U�1.⌧/g.⌧/d⌧

9
=

;

is a generalized Green’s operator, andQ
C
is a strongly Moore–Penrose pseudoinvertible operator [20];

(ii) (a) the boundary-value problem (3), (4) has strong pseudosolutions if and only if the following condition
holds:

P
N.Q

⇤
/

8
<

:˛ � l
�Z

0

U.�/U�1.⌧/f .⌧/d⌧

9
=

; ¤ 0I (8)

(b) under condition (8) the set of strong pseudosolutions has the form

 
'0.t; c/

 0.t; c/

!
D U.t/PN.Q/c C .GŒg; ˛ç/.t/ 8 c 2 H:

Nonlinear Case

The following statement is true:

Theorem 2. Suppose that the boundary-value problem (1), (2) has a solution which turns into one of solutions
of the generating boundary-value problem (3), (4) in the form (7) ." D 0/with an element c D c0: Then the element
c0 satisfies the following operator equation for generating elements:

F.c/ D P
N.Q

⇤
/
l

�Z

0

U.�/U�1.⌧/f .⌧; '0.⌧; c/;  0.⌧; c/; 0/d⌧ D 0:

Here,

f .t; '.t; "/;  .t; "/; "/ D

0

@
f1.t; '.t; "/;  .t; "/; "/

f2.t; '.t; "/;  .t; "/; "/

1

A:
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Proof. If the boundary-value problem (1), (2) has a solution, then it follows from Theorem 1 that the following
condition is true:

P
N.Q

⇤
/

8
<

:˛ � l
�Z

0

U.�/U�1.⌧/ .g.⌧/C "f .⌧; '.⌧; "/;  .⌧; "/; "// d⌧

9
=

; D 0:

Since the boundary-value problem (1), (2) has the solution, by using condition (6), we finally obtain ("! 0)

P
N.Q

⇤
/

8
<

:l
�Z

0

U.�/U�1.⌧/f .⌧; '0.⌧; c/;  0.⌧; c/; 0/d⌧

9
=

; D 0:

In order to obtain the sufficient condition for the existence of solutions, we use the following change of variables:

'.t; "/ D '.t; "/C '0.t; c0/;

 .t; "/ D  .t; "/C  0.t; c0/;

where the element c0 satisfies the equation for generating elements. We arrive at the boundary-value problem

'0.t; "/ D '.t; "/C  .t; "/C "f1.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/;

 
0
.t; "/ D '.t; "/C "f2.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/;

(9)

l.'.�; "/;  .�; "// D 0: (10)

Suppose that the vector functions f1 and f2 are strongly differentiable in the neighborhood of the generating
solution

f1; f2 2 C 1.k' � '0k  q1; k �  0k  q2/;

where q1 and q2 are positive constants.
We use the following expansions:

f1.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/

D f1.t; '0.t; c0/;  0.t; c0/; 0/C f 0
1'.t; '0.t; c0/;  0.t; c0/; 0/'.t; "/

C f 0
1 .t; '0.t; c0/;  0.t; c0/; 0/ .t; "/CR1.t; '.t; "/;  .t; "/; "/;

f2.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/

D f2.t; '0.t; c0/;  0.t; c0/; 0/C f 0
2'.t; '0.t; c0/;  0.t; c0/; 0/'.t; "/

C f 0
2 .t; '0.t; c0/;  0.t; c0/; 0/ .t; "/CR2.t; '.t; "/;  .t; "/; "/;
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where

R1.t; 0; 0; 0/ D R0
1'.t; 0; 0; 0/ D R0

1 .t; 0; 0; 0/ D 0;

R2.t; 0; 0; 0/ D R0
2'.t; 0; 0; 0/ D R0

2 .t; 0; 0; 0/ D 0:

Thus, we can rewrite the boundary-value problem (9)–(10) in the following form:

'0 D ' C  C "
¸
f1 C f 0

1'' C f 0
1  CR1

π
;

 
0 D ' C "

¸
f2 C f 0

2'' C f 0
2  CR2

π
;

(11)

l
�
'.�; "/;  .�; "/

�
D 0: (12)

Let

F.t; "/ D

0

@
f1 C f 0

1'' C f 0
1  CR1

f2 C f 0
2'' C f 0

2  CR2

1

A:

Under condition of solvability [19, 20]

P
N.Q

⇤
/

8
<

:l
�Z

0

U.�/U�1.⌧/F.⌧; "/d⌧

9
=

; D 0; (13)

the set of solutions of the boundary-value problem (11), (12) has the following form:

 
'.t; c/

 .t; c/

!
D U.t/PN.Q/c C ".GŒF; 0ç/.t/ 8 c 2 H:

Substituting the representation of solutions in condition (13), we obtain the operator equation

B0c D b; (14)

where the operator B0 has the form

B0 D P
N.Q

⇤
/
l

�Z

0

U.�/U�1.⌧/

 
f 0
1' f 0

1 

f 0
2' f 0

2 

!
U.⌧/PN.Q/d⌧;
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b D �P
N.Q

⇤
/
l

�Z

0

U.�/U�1.⌧/

 R1
R2

!
d⌧

� "P
N.Q

⇤
/
l

�Z

0

U.�/U�1.⌧/

 
f 0
1' f 0

1 

f 0
2' f 0

2 

!
GŒF; 0ç.⌧/d⌧:

Suppose that the following condition is satisfied:

P
N.B

⇤
0/
P
N.Q

⇤
/
D 0:

Then the equation (14) is solvable. One of its solutions has the form

c D B
C
0 b:

In this way, we obtain the following theorem:

Theorem 3. Suppose that the following condition is satisfied:

P
N.B

⇤
0/
P
N.Q

⇤
/
D 0:

Then, for any element c D c0 2 H satisfying the equation for generating elements, there exists a solution of
the boundary-value problem (1), (2). This solution can be found by using the iterative procedure:

 
'kC1.t; ck/

 kC1.t; ck/

!
D U.t/PN.Q/ck C hkC1.t; "/;

ck D �BC
0 PN.Q⇤

/
l

�Z

0

U.�/U�1.⌧/

 R1.⌧; 'k;  k; "/
R2.⌧; 'k;  k; "/

!
d⌧

� BC
0 PN.Q⇤

/
l

�Z

0

U.�/U�1.⌧/

 
f 0
1' f 0

1 

f 0
2' f 0

2 

!
hk.⌧; "/d⌧;

hkC1.t; "/ D "GŒf .�; 'k C '0;  k C  0; "/; 0ç.t/;

R1.t; '.t; "/;  .t; "/; "/ D f1.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/

� f1.t; '0.t; c0/;  0.t; c0/; 0/ � f 0
1'.t; '0.t; c0/;  0.t; c0/; 0/'.t; "/

� f 0
1 .t; '0.t; c0/;  0.t; c0/; 0/ .t; "/;
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R2.t; '.t; "/;  .t; "/; "/ D f2.t; '.t; "/C '0.t; c0/;  .t; "/C  0.t; c0/; "/

� f2.t; '0.t; c0/;  0.t; c0/; 0/ � f 0
2'.t; '0.t; c0/;  0.t; c0/; 0/'.t; "/

� f 0
2 .t; '0.t; c0/;  0.t; c0/; 0/ k.t; "/;

'.t; "/ D '0.t; c0/C lim
k!1

'k.t; "/;

 .t; "/ D  0.t; c0/C lim
k!1

 k.t; "/:
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No. 9, 1181–1188 (2015); English translation: Ukr. Math. J., 67, No. 9, 1327–1335 (2016).
21. D. A. Klyushin, S. I. Lyashko, D. A. Nomirovskii, Yu. I. Petunin, and V. V. Semenov, Generalized Solutions of Operator Equations

and Extreme Elements, Springer, New York (2012).


	Abstract
	Introduction
	Statement of the Problem
	Nonlinear Case
	REFERENCES

