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ON THE CLASSIFICATION OF SYMMETRY REDUCTIONS FOR THE (1+3)-
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We propose a classification of the symmetry reductions for the Monge–Ampère equation in the space  
M (1, 3)× R(u) .  We present some results obtained by using the classification of three-dimensional non-
conjugate subalgebras of the Lie algebra of the Poincaré group  P(1, 4) . 

Keywords: classification of symmetry reductions, Monge–Ampère equation, classification of the Lie 
algebras, nonconjugate subalgebras of the Lie algebras, Poincaré group  P(1, 4) . 

From Newton’s time, differential equations serve as one of the main tools for the construction of mathemat-
ical models of the processes running in nature.  In numerous cases, the differential equations of these models 
have nontrivial symmetries.  For the investigation of these equations, we can use, in particular, the classical Lie–
Ovsyannikov method.  The application of this approach, in particular, enables one to perform symmetry reduc-
tion and construct the classes of invariant solutions of the analyzed equations (see [1, 21, 23] and the references 
therein).  

In the course of symmetry reduction of some differential equations important for the theoretical and mathe-
matical physics, it was discovered that, in some cases, the reduced equations obtained with the help of noncon-
jugate subalgebras of given ranks of the Lie algebras of symmetry groups for these equations are of different 
types (see, e.g., [3, 9, 12, 14, 22] and the references therein).  Note that the investigations of this type of reduc-
tion were originated as earlier as in 1984 in the work by A. M. Grundland, J. Harnad, and P. Winternitz [14].  

According to the classical group analysis (see, e.g., [1, 23]), the invariant solutions of differential equations 
should be classified according to their ranks (the ranks of the corresponding nonconjugate subalgebras).  How-
ever, in this approach, it is impossible to explain the appearance of different types of reduced equations (invari-
ant solutions) in the case of application of nonconjugate subalgebras of given ranks of the Lie algebras of sym-
metry groups for these equations.  

In [11], for the classification of symmetry reductions (invariant solutions) of the indicated differential equa-
tions, it was proposed to use the structural properties of low-dimensional nonconjugate subalgebras of the same 
rank for the Lie algebras of symmetry groups for the investigated equations.  

At present, we performed the classification of symmetry reductions and invariant solutions for the eikonal 
equation and the Euler–Lagrange–Born–Infeld equation in the space  M (1,3)× R(u)  with the use of the classifi-
cation of low-dimensional  (dim L ≤ 3)  nonconjugate subalgebras of the Lie algebra of the Poincaré group  
P(1,4)  (for details, see [10–13] and the references therein).  Here and in what follows,  M (1,3)  is the (1+3)-
dimensional Minkowski space and  R(u)   is the real axis of the dependent variable u .  

The solution of numerous problems of geometry, geometric analysis, string theory, cosmology, geometric 
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optics, optimal transfer, one-dimensional gas dynamics, meteorology, and oceanography is connected with the 
investigation of the Monge–Ampère equations in spaces of various dimensions and different types.  At present, 
in the available literature, there is a great number of works devoted to the investigation of equations of this kind 
(see, in particular, [2, 7, 8, 15–20, 24–29] and the references therein).  

The present paper is devoted to the classification of the symmetry reductions and invariant solutions for the 
Monge–Ampère equation in the space  M (1,3)× R(u).  Here, we present only some results obtained by using the 
classification of three-dimensional nonconjugate subalgebras of the Lie algebra of the group  P(1,4).  For this 
purpose, we first consider some results obtained for the Lie algebra of the group  P(1,4)  and its nonconjugate 
subalgebras.  

1.  Lie Algebra of the Group  P(1,4)   and its Nonconjugate Subalgebras 

The Poincaré group  P(1,4)  is a group of rotations and translations of the five-dimensional Minkowski 
space  M (1,4) .  Among the groups most important for the theoretical and mathematical physics, the group  
P(1,4)  occupies a special place.  This is the least group that contains both the symmetry groups of relativistic 
physics (Poincaré group  P(1,3))  and the symmetry groups of nonrelativistic physics (extended Galileo group  

 
!G(1,3)  as subgroups [5].  

The Lie algebra of the group  P(1,4)  is given by 15 basis elements  Mµν = −M νµ ,  µ, ν = 0,1,2,3,4 ,  and  
Pµ ,  µ = 0,1,2,3,4 ,  satisfying the commutation relations  

 [Pµ ,Pν ] = 0 , 

 [Mµν ,Pσ ] = gνσPµ − gµσPν , 

 [Mµν ,Mρσ ] = gµσM νρ + gνρMµσ − gµρM νσ − gνσMµρ, 

where gµν , µ, ν = 0,1,2,3,4 , is a metric tensor with the components  g00 = − g11 = − g22 = − g33 = − g44 = 1    
and  gµν = 0   for  µ ≠ ν .  

In the present work, we consider the following representation [6] for the Lie algebra of the group  P(1,4): 

 P0 = ∂
∂x0

, P1 = − ∂
∂x1

, P2 = − ∂
∂x2

, 

 P3 = − ∂
∂x3

, P4 = − ∂
∂u , Mµν = xµPν − xνPµ , x4 ≡ u . 

Further, we pass from  Mµν   and  Pµ   to the following linear combinations:  

 G = M 04 , L1 = M 23, L2 = −M13, L3 = M12 , 

 Pa = Ma4 −M 0a , Ca = Ma4 +M 0a , a = 1,2,3, 
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 X0 =
P0 − P4

2 , Xk = Pk , k = 1,2,3, X4 =
P0 + P4

2 . 

In [4], one can find the classification of all nonconjugate subalgebras of the Lie algebra of the group  P(1,4)  
(whose dimensions do not exceed 3) into the classes of isomorphic subalgebras. 

2.  On the Classification of Symmetry Reductions of the (1+3)-Dimensional Monge–Ampère Equation 

In the present paper, we consider a Monge–Ampère equation of the form 

  det(uµν) = 0 , (1) 

where 

 u = u(x), x = (x0 , x1, x2 , x3 )∈M (1,3), uµν =  ∂2u
∂xµ ∂xν

, µ,ν = 0,1,2,3 . 

In [6], the authors studied the symmetry and constructed multiparameter families of the exact solutions to 
the multidimensional Monge–Ampère equation.  In particular, it follows from the cited work that the Lie algebra 
of the symmetry group of the investigated equation (1) contains the Lie algebra of the Poincaré group  P(1,4)  
as a subalgebra.  

To perform the classification of symmetry reductions of the (1+3)-dimensional Monge–Ampère equation, 
we use the classification of three-dimensional nonconjugate subalgebras [4] of the Lie algebra of the group  
P(1,4).  As a result of the performed classification, it was established that there exist the following types of 
three-dimensional nonconjugate subalgebras of the Lie algebra of the group  P(1,4):    

 3A1,   A2 ⊕ A1,   A3,1,   A3,2 ,   A3,3,   A3,4 ,   A3,6 ,   A3,7
a ,   A3,8 ,  and  A3,9 . 

As a result of the symmetry reduction of the new  (1+3)-dimensional Monge–Ampère equation, we obtained 
the following reduced equations: 

 – identities, 

 – linear ordinary differential equations, 

 – nonlinear ordinary differential equations, 

 – partial differential equations. 

We now present a short survey of the accumulated results.  

2.1.  Reductions to Identities.  Reductions of this type were obtained for some nonconjugate subalgebras of 
the following types:   

 3A1,   A2 ⊕ A1,   A3,1,   A3,2 ,   A3,3,   and  A3,6 . 
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Examples 

Subalgebras of the Type  3A1 . 

1.  P1 − γX3, γ > 0 ⊕ P2 − X2 − δX3, δ ≠ 0 ⊕ X4 : 
Ansatz 

 x3(x0 + u)2 − (γx1 + δx2 − x3 )(x0 + u)− γx1 = ϕ(ω), ω = x0 + u . 

The solution of the (1+3)-dimensional Monge–Ampère equation 

 x3(x0 + u)2 − (γx1 + δx2 − x3 )(x0 + u)− γx1 = ϕ(x0 + u), 

where  ϕ   is an arbitrary smooth function. 

2.  P1 ⊕ P2 − X2 ⊕ X3 : 
Ansatz 

 
x0
2 − x1

2 − u2

x0 + u −
x2
2

x0 + u +1 = ϕ(ω), ω = x0 + u . 

The solution of the (1+3)-dimensional Monge–Ampère equation 

 
x0
2 − x1

2 − u2

x0 + u −
x2
2

x0 + u +1 = ϕ(x0 + u), 

where  ϕ   is an arbitrary smooth function. 

Subalgebra of the Type  A2 ⊕⊕ A1  

− (G +αX3 ), X4 , α > 0 ⊕ L3 +βX3, β > 0 : 
Ansatz  

  
 
x3 − α ln(x0 + u)+βarctan

x1
x2

= ϕ(ω), ω = (x1
2 + x2

2 )1/2 . 

The solution of the (1+3)-dimensional Monge–Ampère equation  

 
 
x3 − α ln(x0 + u)+βarctan

x1
x2

= ϕ(x1
2 + x2

2 ), 

where  ϕ   is an arbitrary smooth function. 

Subalgebra of the Type  A3,1  

−2βX4 , L3 +βX3, P3 − 2X0 , β > 0 : 
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Ansatz  

 
 
βarctan

x1
x2

+ 1
4 (x0 + u)2 + x3 = ϕ(ω), ω = (x1

2 + x2
2 )1/2. 

The solution of the (1+3)-dimensional Monge–Ampère equation  

 
 
βarctan

x1
x2

+ 1
4 (x0 + u)2 + x3 = ϕ(x1

2 + x2
2 ), 

where  ϕ   is an arbitrary smooth function. 

Subalgebra of the Type  A3,2   

2βX4 ,P3,G +αX1 +βX3, α > 0, β > 0 : 
Ansatz 

 x1 − α ln(x0 + u) = ϕ(ω), ω = x2 . 

The solution of the (1+3)-dimensional Monge–Ampère equation 

 x1 − α ln(x0 + u) = ϕ(x2 ) , 

where  ϕ   is an arbitrary smooth function. 

Subalgebra of the Type  A3,3  

P3, X4 ,
1
λ L3 +G, λ > 0 : 

Ansatz  

 
 
ln(x0 + u)+ λ arctan

x1
x2

= ϕ(ω), ω = (x1
2 + x2

2 )1/2 . 

The solution of the (1+3)-dimensional Monge–Ampère equation  

 
 
ln(x0 + u)+ λ arctan

x1
x2

= ϕ(x1
2 + x2

2 ), 

where  ϕ   is an arbitrary smooth function. 

Subalgebra of the Type  A3,6  

X1,−X2 , P3 − L3 − 2αX0 , α > 0 : 

Ansatz 
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 (x0 + u)3 + 6αx3(x0 + u)+ 6α2 (x0 − u) = ϕ(ω), ω = (x0 + u)2 + 4αx3.  

The solution of the (1+3)-dimensional Monge–Ampère equation 

  (x0 + u)3 + 6αx3(x0 + u)+ 6α2 (x0 − u) = ϕ((x0 + u)2 + 4αx3), 

where  ϕ   is an arbitrary smooth function. 

It is worth noting that, for this type of symmetry reductions, the nonsingular manifolds in the space  
M (1,3)× R(u)  invariant under the corresponding nonconjugate subalgebras of the Lie algebra of the group  
P(1,4)  are themselves the solutions of the (1+3)-dimensional Monge–Ampère equation.  

2.2.  Reductions to Ordinary Linear Differential Equations.  Reductions of this type were obtained for 
some nonconjugate subalgebras of the types  3A1  and  A3,6 . 

Examples 

Subalgebras of the Type  3A1 . 

1.  P1 ⊕ P2 ⊕ P3 : 
Ansatz 

 x0
2 − x1

2 − x2
2 − x3

2 − u2 = ϕ(ω), ω = x0 + u .  

Reduced equation  

 ω2 ′′ϕ − 2ω ′ϕ + 2ϕ = 0 . 

The solution of the reduced equation  

 ϕ(ω) = c1ω
2 + c2ω , 

where  c1  and  c2   are arbitrary constants. 
The solution of the (1+3)-dimensional Monge–Ampère equation  

 x0
2 − x1

2 − x2
2 − x3

2 − u2 = c1(x0 + u)2 + c2 (x0 + u). 

2.  P1 ⊕ P2 − αX2 , α > 0 ⊕ P3 − γX3, γ ≠ 0 : 
Ansatz 

 2u +
x1
2

x0 + u +
x2
2

x0 + u +α +
x3
2

x0 + u + γ = ϕ(ω), ω = x0 + u . 
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Reduced equation 

 ω(ω +α)(ω + γ ) ′′ϕ = 0 . 

The solutions of the reduced equation  

 ϕ(ω) = c1ω + c2 , ω = 0, ω +α = 0, ω + γ = 0 , 

where  c1  and  c2   are arbitrary constants. 
The solutions of the (1+3)-dimensional Monge–Ampère equation  

 
 
2u +

x1
2

x0 + u +
x2
2

x0 + u +α +
x3
2

x0 + u + γ = c1(x0 + u)+ c2 , 

 x0 + u = 0, x0 + u +α = 0, x0 + u + γ = 0. 

Subalgebras of the Type  A3,6 . 

1.  P1 − X1, P2 − X2 , − P3 + L3 : 
Ansatz  

 
x1
2 + x2

2

x0 + u +1 +
x3
2

x0 + u + 2u = ϕ(ω), ω = x0 + u .  

Reduced equation 

 ω(ω +1) ′′ϕ = 0 . 

The solutions of the reduced equation  

 ϕ(ω) = c1ω + c2 , ω = 0, ω +1 = 0 , 

where  c1  and  c2   are arbitrary constants. 
The solutions of the (1+3)-dimensional Monge–Ampère equation  

 
x1
2 + x2

2

x0 + u +1 +
x3
2

x0 + u + 2u = c1(x0 + u)+ c2 , u = − x0 −1, u = − x0 . 

2.  P1, P2 , L3 − P3 : 

Ansatz 

 x0
2 − x1

2 − x2
2 − x3

2 − u2 = ϕ(ω), ω = x0 + u .  



8 V. М. FEDORCHUK  AND  V. I. FEDORCHUK 

Reduced equation 

 ω2 ′′ϕ − 2ω ′ϕ + 2ϕ = 0 . 

The solution of the reduced equation  

 ϕ(ω) = c2ω
2 + c1ω , 

where  c1  and  c2   are arbitrary constants. 
The solution of the (1+3)-dimensional Monge–Ampère equation 

 x0
2 − x1

2 − x2
2 − x3

2 − u2 = c2 (x0 + u)2 + c1(x0 + u). 

2.3.  Reductions to Nonlinear Ordinary Differential Equations.  We obtain reductions of this kind for 
some nonconjugate subalgebras of the types  A2 ⊕ A1,  A3,3,  A3,7

a ,  and  A3,9 . 

Examples 

Subalgebra of the Type  A2 ⊕⊕ A1  

−G, P3 ⊕ L3 : 

Ansatz 

  (x0
2 − x3

2 − u2 )1/2 = ϕ(ω), ω = (x1
2 + x2

2 )1/2 . 

Reduced equation 

 ϕ ′ϕ ′′ϕ = 0. 

The solutions of the reduced equation  

 ϕ(ω) = c1ω + c2 , ϕ(ω) = c , 

where  c1,  c2 ,  and  c   are arbitrary constants. 
The solutions of the (1+3)-dimensional Monge–Ampère equation  

  (x0
2 − x3

2 − u2 )1/2 = c1(x1
2 + x2

2 )1/2 + c2 , (x0
2 − x3

2 − u2 )1/2 = c . 

Subalgebra of the Type  A3,3  

P1, P2 ,G +αX3, α > 0 : 
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Ansatz 

 x3 − α ln(x0 + u) = ϕ(ω), ω = x0
2 − x1

2 − x2
2 − u2 . 

Reduced equation 

  (2ω ′ϕ ′′ϕ +α ′′ϕ + ( ′ϕ )2 )( ′ϕ )2 = 0 . 

Subalgebra of the Type  A3,7
a   

P1, P2 , L3 + λG, λ > 0 : 
Ansatz 

  (x0
2 − x1

2 − x2
2 − u2 )1/2 = ϕ(ω), ω = x3 . 

Reduced equation 

 ϕ ′′ϕ = 0 . 

The solution of the reduced equation  

 ϕ(ω) = c1ω + c2 , 

where  c1  and  c2   are arbitrary constants. 
The solution of the (1+3)-dimensional Monge–Ampère equation  

  (x0
2 − x1

2 − x2
2 − u2 )1/2 = c1x3 + c2 . 

Subalgebra of the Type  A3,9   

− 1
2 (L3 + 1

2 (P3 +C3 )), 12 (L2 + 1
2 (P2 +C2 )), 12 (L1 + 1

2 (P1 +C1)) : 

Ansatz 

  (x1
2 + x2

2 + x3
2 + u2 )1/2 = ϕ(ω), ω = x0 . 

Reduced equation 

 ϕ ′′ϕ = 0 . 

The solution of the reduced equation  

 ϕ(ω) = c1ω + c2 , 
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where  c1  and  c2   are arbitrary constants.  
The solution of the (1+3)-dimensional Monge–Ampère equation  

  (x1
2 + x2

2 + x3
2 + u2 )1/2 = c1x0 + c2 . 

2.4.  Reductions to Partial Differential Equations.  We obtain reductions of this kind for some nonconju-
gate subalgebras of the types  A3,6 ,  A3,8 ,  and  A3,9 . 

Examples 

Subalgebra of the Type  A3,6  

P1, P2 , L3 : 
Ansatz 

 x3 = ϕ(ω1,ω2 ), ω1 = x0 + u, ω2 = x0
2 − x1

2 − x2
2 − u2 . 

Reduced equation  

  (ω1
2ϕ11ϕ22 − 2ω1ϕ2ϕ12 − ω1

2ϕ12
2 − 2ω2ϕ2ϕ22 − ϕ2

2 )ϕ2 = 0 . 

The solution of the reduced equation 

 ϕ(ω1,ω2 ) = f (ω1) , 

where  f   is an arbitrary smooth function. 
The solution of the (1+3)-dimensional Monge–Ampère equation  

 x3 = f (x0 + u) . 

Subalgebra of the Type  A3,8  

P3,G, −C3 : 
Ansatz 

  (x0
2 − x3

2 − u2 )1/2 = ϕ(ω1,ω2 ), ω1 = x1, ω2 = x2 . 

Reduced equation 

  (ϕ11ϕ22 − ϕ12
2 )ϕ = 0 . 

The solution of the reduced equation 
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  ϕ(ω1,ω2 ) = f (c1ω1 + c2ω2 + c3),  

where  f   is an arbitrary smooth function and  c1,  c2 ,  and  c3   are arbitrary constants. 
The solution of the (1+3)-dimensional Monge–Ampère equation  

  (x0
2 − x3

2 − u2 )1/2 = f (c1x1 + c2x2 + c3 ). 

Subalgebra of the type  A3,9  

−L3, − L2 , − L1 : 
Ansatz 

  u = ϕ(ω1,ω2 ), ω1 = x0 , ω2 = (x1
2 + x2

2 + x3
2 )1/2 . 

Reduced equation 

  (ϕ11ϕ22 − ϕ12
2 )ϕ2 = 0 . 

The solution of the reduced equation  

 ϕ(ω1,ω2 ) = f (c1ω1 + c2ω2 + c3 ),  

where  f   is an arbitrary smooth function and  c1,  c2 ,  and  c3   are arbitrary constants. 
The solution of the (1+3)-dimensional Monge–Ampère equation  

  u = f (c1x0 + c2(x1
2 + x2

2 + x3
2 )1/2 + c3). 

Reductions of this kind are caused by the fact that the rank of the corresponding subalgebras is equal to 2.  
The set of nonconjugate subalgebras of the types  3A1,  A2 ⊕ A1,  A3,1,  A3,2 ,  A3,3,  A3,4 ,  and  A3,6   con-

tains subalgebras such that the ansatzes reducing the (1+3)-dimensional Monge–Ampère equation cannot be 
constructed for their invariants.  It was discovered that it is impossible to construct ansatzes reducing the (1+3)-
dimensional Monge–Ampère equation from the invariants of all four nonconjugate subalgebras of the type  
A3,4 . 

We now present basis elements of one of these subalgebras and its invariants.  

Subalgebra of the Type  A3,4  

−X0 , X4 , −
L3
λ −G − α

λ X3, α > 0, λ > 0 : 

Invariants 

 
 
(x1

2 + x2
2 )1/2 , x3 +α arctan

x1
x2

. 
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Note that the subalgebras for the invariants of which it is impossible to construct ansatzes do not satisfy 
necessary conditions for the existence of invariant solutions (for details, see [1]). 

CONCLUSIONS 

We have established the relationship between the structural properties of three-dimensional nonconjugate 
subalgebras of the Lie algebra of the Poincaré group  P(1,4)  and the types of obtained reduced equations for the 
(1+3)-dimensional Monge–Ampère equation.  We now present some invariant solutions of the considered equa-
tion.   

There exist three-dimensional nonconjugate subalgebras of the Lie algebra of the group  P(1,4)   of the fol-
lowing types [4]:  3A1,  A2 ⊕ A1,  A3,1,  A3,2 ,  A3,3,  A3,4 ,  A3,6 ,  A3,7

a ,  A3,8 ,  and  A3,9 . 

 – Reductions to identities are obtained for some nonconjugate subalgebras of the following types:  3A1,  
A2 ⊕ A1,  A3,1,  A3,2 ,  A3,3,  A3,6 . 

 – Reductions to linear ordinary differential equations are obtained for some nonconjugate subalgebras of 
the following types:  3A1  and  A3,6 . 

 – Reductions to nonlinear ordinary differential equations are obtained for some nonconjugate subalge-
bras of the following types:  A2 ⊕ A1,  A3,3,  A3,7

a ,  and  A3,9 . 

 – Reductions to partial differential equations are obtained for some nonconjugate subalgebras of the fol-
lowing types:  A3,6 ,  A3,8 ,  and  A3,9 . 

 – Among nonconjugate subalgebras of the types  3A1,  A2 ⊕ A1,  A3,1,  A3,2 ,  A3,3,  and  A3,6 ,  there are 
subalgebras from the invariants of which it is impossible to construct ansatzes reducing the (1+3)-
dimensional Monge–Ampère equation. 

 – From the invariants of all four nonconjugate subalgebras of the type  A3,4 ,  it is impossible to con-
struct ansatzes, which reduce the (1+3)-dimensional Monge–Ampère equation. 

These subalgebras do not satisfy the necessary conditions for the existence of invariant solutions (for de-
tails, see [1]). 
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