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LIMIT BEHAVIOR OF SOLUTIONS TO THE
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We consider the boundary value problem for the radiative transfer equation with condi-
tions of internal diffusive reflection of radiation. Under the assumption that the absorp-
tion and scattering coefficients tend to infinity, we study the limit behavior of solutions.
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1 Introduction

When studying complex heat transfer from the mathematical point of view, it is of interest to
find out the limit connection between the solutions to the problem of radiative-conductive heat
transfer in semitransparent materials with large absorption and scattering coefficients and the
solutions to the corresponding problems in opaque materials. This topic is important because, in
practice, it is assumed that semitransparent materials with a large absorption coefficient can be
considered as opaque and the energy radiation and absorption occur only on the boundaries. This
assumption was confirmed by the mathematical results [1], [2] in the case where the radiation
scattering is negligible in comparison with absorption or it is absent at all.

The propagation of the monochromatic radiation in a semitransparent body G is described
by the radiative transfer integro-differential equations

w-VI+BI =s7(I)+ »k*F, (w,z)€ D. (1.1)

The sought function I(w,z) is defined on the set D = Q x G, where Q = {w € R? | |w| = 1},
and is the intensity at x € G of radiation propagating in the direction w € €.

3 0
In Equation (1.1), w- VI = wia—I is the derivative of I along a direction w. Here, ./
i=1 i
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denotes the isotropic scattering operator

1
L) (w,z) = yym /I(w’,w) dw',  (w,z) € D.
T
Q
Furthermore, § = s + s is the extinction coefficient, 0 < s is the scattering coefficient, 0 < s is
the absorption coefficient, F' = F'(x) is the density of isotropic volume sources of radiation, and

1 < k is the refractive index.

Equation (1.1) has a simple form, but is difficult to solve. Therefore, the radiative transfer
equation is often replaced by its rough approximate counterpart, the so-called diffusion approx-
imation (Pj-approximation), which is a diffusion type equation for the volume density of the
energy of radiation

u(z) = i /I(w’,:c) dw'.
Q
In the case where the medium occupying the body G is optically dense, such an approxima-
tion sufficiently well describe the behavior of radiation inside G. However, since there are no
information about the boundary value of the function v and the function I possesses a sharp
boundary layer, the diffusion approximation is not suitable to describe the behavior of radiation
near OG. Therefore, it is used in practice together with formulation of approximate boundary
conditions or construction of special approximations of u near the boundary.

The famous works [3]-[5] were the first ones devoted to justification of diffusion approxima-
tion in the case where one can neglect the radiation scattering and then the asymptotics of the
solution I near the boundary becomes simple; in this case, it is possible to justify the diffusion
approximation (cf., for example, [2]). To the knowledge of the author, in the general case, in the
presence of scattering, there are no mathematically correct justification of this approximation.

1
In this paper, we assume that 8 — oo, i.e., 8 = —, where ¢ — 0. We introduce the albedo
€

w = s//3 and assume that it is constant. In this case, the absorption and scattering coefficients

w

have the form s» = and s = — and tend to infinity as ¢ — 0, whereas Equation (1.1)
3

takes the form

1 1-
w VL + L =SS (L) + —

. E*F, (w,z) € D. (1.2)

We assume that the body G is a bounded domain in R? with smooth boundary G of class
C*A 0 < XA < 1. For x € G we denote by n(x) the outward normal to the boundary at the
point z. We put

QO (2)={weQ|w-n(x)<0}, Q(z)={weQ|w- nlx)>0}
and introduce the sets
r=0x0G, I' ={(w,z)el |w-n(x) <0}, T't={(wz)el|w- n(x)>0}.

Denote by I.|p- and I.|p+ the values (traces) of the solution to Equation (1.2) on I'” and I'".

Together with Equations (1.2), we consider the boundary internal diffusive reflection and
diffusive refraction of radiation coming from outside

Llp- = % (Llp+) + 27 (1), (w,z) €T~ (1.3)
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Here, %~ is the diffusive reflection operator and &~ is the diffusive refraction operator:

B~ (L|p+)(w,2) = 0.4 (I|p+ ) (2), (w,2) €T,
P (J)(w,x) = (1 — 9)k2,///_( Dw,x), (w,z)el,

where

M (It )(z) = % / Llp+ (W 2)w - n(z)do', =z € dG, (1.4)

O+ (x)

1
(T @) = / L 2) | (@) do', @ € DG
T
Q—(z)
Here, 0 < 6 < 1 is the internal reflection coefficient, J,(w, ) is the intensity of radiation incoming

from outside and falling at a point € 9G in a direction w € Q7 (z).

The goal of the paper is to study the limit behavior of solutions I. to the problem (1.2),
(1.3) and their traces I.|p+ and I;|p- as ¢ — 0.

The paper is organized as follows. In Section 2, we introduce the notation and some function
spaces. In Section 3, we consider an auxiliary problem that is a spatially one-dimension coun-
terpart of the problem under consideration. The main result of the paper, the theorem on the
limit behavior of the solutions to the problem (1.2), (1.3) as ¢ — 0, is formulated and proved in
Section 4.

2 Notation and Function Spaces

We denote Rt = (0, +00) and R* = [0, +00). Let C(R*) be the Banach space of continuous
bounded functions on Rt equipped with the norm

Ifllc@s) = sup [f(T)]-

reR"

We denote by B,(zq) the ball in R? with center zo and radius . Let Z be a set equipped with
a given measure du, and let Z; be its subset, measurable with respect to the measure du. We
denote by L'(Zy;du) the Lebesgue space of functions f that are defined on Z1, measurable with
respect to the measure dyu, and possessing the finite norm

12y = / ()] dp(2).
Z

We denote by do(x) and dw the measures on G and 2 induced by the Lebesgue measure
in R3. We set L'(0G) = L'(0G;do) and L'(D) = LY(D;dwdz). On I'~ and I'", we introduce
the measures

Al (w, z) = |w - n(z)| dwdo(z), (w,z) €T,
Al (w, z) = w - n(z) dwdo(z), (w,z) €T

We set L}(I'f) = L}(I'%;dl'%) and note that the operator .# % given by formula (1.4)
possesses the following properties:
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AT LN = LYOG); moreover, .4+ (1) =1 and
1 1 ~
" Dloey < 3 [[ [ el ne) dodot@) = Lelpur, Ve e IHTT),
8G 0+ (z)
As a consequence, Z~ = 0.4 : L*(I't) — L*(I'"); moreover,
H'@_HZI(F-&-)_)EI(F—) < 0. (2.1)
Indeed,

12~ )z, = / / A (9)(@)| o+ )] o o)

—or / () @) do @) = 0x 4 (D)l 3 0y < Ol s

By a weak derivative along a direction w of a function f € L!(D) we understand a function
w € LY(D), denoted by w = w - Vf, that satisfies the identity

/[f(w, r)w - Vo(x) + w(w, x)go(x)]w(w) dwdr =0 VYo e C°(G), Vi e L™(N).
D

We denote by #'1(D) the Banach space of functions f € L'(D) possessing the weak derivative
w-Vf e LY(D) and equipped with the norm

1f oy = 1f ooy + 1w - VLo

We denote by f|p— and f|p+ the traces of a function f € #'(D) on I'" and I'* respectively.

In #'1(D), we introduce #1(D) = {f € # (D) | flr+ € L}(I'")}. We remark the following
properties of functions f € %(D):

1) If f € #1(D), then |f| € #}(D); moreover, (w- Vf)-sgn f = w- V|f].

2) If f € #1(D), then f|p- € L}(T'~) and
/w -VIfldwdz = || flo+ I za oy = 101z ooy (2.2)
D

For a more detailed information about properties of functions f € %(D) and their traces
flr+ we refer, for example, to [10, 11].

3 Spatially One-Dimensional Problem

We consider the following spatially one-dimensional counterpart of the problem (1.2), (1.3):
1

d ’ !/ / ™
D s ) = 2 [utd i, welL0)UO, TERL @)
21
1
e/w O dy' +1-6, pel-1,0), (3.2)
0
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W(p,+00) =0, p e (0,1]. (3.3)

Equation (3.1) is widely used in astrophysics to describe the propagation of light radiation
in the atmospheres of stars and planets in the case of plane symmetry [6]-[9]. The problem
coincides, up to a boundary condition of the form (3.2), with the inhomogeneous Milne problem
Here, 1 (u, 7) is interpreted as the intensity of radiation propagating in the half-space 7 > 0, p
is the cosine of the angle of radiation propagation, and 7 is the optical depth.

The condition (3.2) describes the internal diffusive reflection of radiation. We note that, in
view of this condition, the intensity of the reflected radiation 1y = 1 (u,0) is independent of
w € [—1,0). In the degenerate case § = 0, where reflection is absent, we have 1y = 1.

We indicate some properties of the problem (3.1)—(3.3) which will be used below. Let

1

w(r) =5 [ ) du

el
If ¥ € C(R"), then a solution to Equation (3.1) has the form
el o [ L o= il g (1 o
Y_(u, ) = Poe +WIW€ U(r")ydr', wel-1,0),

Y(p, ) = oy O (3.4)
¢+(:U'7 T) =w f ;67(7’ 77-)/“\1/(7_/) dT/a IS (Oa 1]

Hence
¢ 0 T 0 1
— 0 =7/l w ==/l
U(r) 5 /e dp + 2//|,u| du ¥ (r')dr’
21 0 —1
w// D (s dr’ = Y By(r) w/&T—T () dr.
Here,
1 . 1
El(T):/;e_T/“du, EQ(T):/e_T/”“du
0 0

are integro-exponential functions of order 1 and 2. Thus, ¥ = y®, where ® is a solution to the
integral equation

3(r) = wA[E)(r) + 3 Fo(r) (3.5)

1 o0
-2 /E1(|T — o) d
0

[oe)
1 1 _
§/E1(’T—T/Dd7':1—§E2(T/) <1, 7 eRT.

with the operator A defined by

We note that
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Consequently, A : L'(R*) — L'(R'); moreover, [|All1(r+)—r1r+) < 1. Since Ey € L'(RY),
and [|wAl| 1 g+) 1 r+) < @ < 1, Equation (3.5) has a unique solution ® € L'(R™), expressed
by the Neumann series converging in L!(R*):

1 [ee]
=3 > @t A By (3.6)
Since || Ez2| 11 @+) = 1/2, from the inequalities

1
12l 1) < wHAR L2 @) + Sl E2ll sy < @Rl + 5
we obtain the estimate

12| L1@m+) < (3.7)

41 — @)
Lemma 3.1. The operator A acts from C(RT) to C(R"); moreover, HAHC(K‘F)%C(RP) < 1.

Proof. Let ® € C(R*). Then

sup [A[@)(r)] < sup / Bulfr = 7 d |y < 18], (38)
TERT TER+

Furthermore, for all 7 > 0 and A7 > 0 we have

‘A[(I)](T—I—AT)—A[(I)]( 2’/E1 T+ A1 — 7' )®(7') d7’ —/E1 T —7'|)®(r") dr’

1 1
<§/E1(T + AT —7') dT’HCI’HC(@+)+ 3 /E1(\7’ — N |®(r' + A7) — ®(7)|dr" — 0, AT —0

in view of the Lebesgue majorized convergence theorem. If 7 > 0 and 0 < A7 < 7, then, setting
O(7") = ®(—7') for 7’ < 0, we have
[A[®](T — A7) — A[®](7)]
AT

17 1
< §/E1(‘T—T”>‘(I)(T/ — A7) — ®(7)| dr’ + 3 /El(T—T/) dr'(|®]lc@+y = 0
0 0

as AT — 0. Thus, A[®] € C(R*). The estimate HAHC By S 1 follows from the inequality
(3.8). The lemma is proved. O

Corollary 3.1. The solution ® to Equation (3.5) belongs to the space C(R™) and is expressed
as the Neumann series (3.6) converging in C(RT).

Lemma 3.2. The solution to Equation (3.5) satisfies the estimates

W 1l—w 1
By(r) <
2—w+2—w 2(7)

1
0< -Es(1) <P(1) <

<1.
2

2—w
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Proof. Since the kernel of the operator A is positive, from (3.6) it follows that ®(7) >
1
§E2 (7). Taking into account that

A(r) = 5 [ Eallr = 7D =1 3Ea(r),

1
we note that the function ®(7) = o ®(71) satisfies the equation
—w

O (1) = wA[D](7) + ;:—Z (1 — Bo(r)).

As a consequence,
1 l—-w

— —P(n) = > 1-F .
D7) = (1) > 5 (1 By(r))
Thus,
w l—-w 1
d(7) < E < —.
(7) 27w+27w 2(7) 2—w
The lemma, is proved. ]

Corollary 3.2. For the solution to Equation (3.5) the following estimate holds:
1

1®llo@e) < 5= <1 (3.9)
Lemma 3.3. The solution to Equation (3.5) for all AT > 0 satisfies the estimate
1
O+ A7) — D) 4zt < 1 — E3(AT)). 1
[9(+AT) = 2() [l ozt i-=)2- w)( 2(AT)) (3.10)

Proof. We note that
1
(1 4+ AT) — (1) = §(E2(7' + A7) — Eo(7))
w / / ;) , W / / / /
+ E/El(T—FAT—T)(I)(T)dT +§/E1(|T—T N[@(r" + A1) — @(7)] dr'.
0
Taking into account that

1
Es(1) — Ex(T + AT) = /6_7—/“[1 — e B7/M g [1— e 27/Mdy =1 — Ey(A7),

O\H

AT AT AT
/E1 (1+ A1 —7)dr' = /E1 (r+7")dr" < /E1 (7")dr" =1 — Ey(AT)
0 0 0

and using the estimate (3.9), we get

g

[+ A7) = 20)loge) < 5 (1= Ba(Ar) + 2 (1~ By(Ar))5——

+ @[ (- + A7) = ()@,

which implies the estimate (3.10). The lemma is proved. O
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We return to the study of the problem (3.1)—(3.3). In the degenerate case § = 0, when the

internal reflection is absent, we have iy = 1.

Lemma 3.4. For0< 60 <1

Yo < 1.

Proof. Using the condition (3.2) and taking into account that (cf. (3.4))
o
Py (p,0) = w/eTl/”‘ll(T/) dr’,
0

we have

oo 1 00
oy = 29w//e_T,/“ dp ¥ (r'ydr' +1—-0= 2c9w¢10/E2(7") O(r)dr +1-6.
0 0 0

Hence
1-6

o = = .
1 — 20w [ Eq(r)®(7") dr’
0

By the estimate (3.9), we obtain the inequality

1 1 1

E ,(D / /g E / / -
/ 2(7-) (T)dT 2_ / Q(T)dT 2_ 2
0 0

which implies

The lemma is proved.
We write the solution (3.4) to the problem (3.1)—(3.3) in the form
/|ul
() =0 | WMt [ e ®(r —|uls)ds|, pe[-1,0),
Y(p, ) = o 0
¢+(H7 T) = thow f e_SQ)(T + :U‘S) ds, IS (07 1]
0

From this formula and the inequality (3.9) we obviously derive the estimates

doe M <y () <o, 0 < () < go—v.

Lemma 3.5. For all 0 < pu < 1, 7 > 0 the following estimate holds:

@
(1-w)(2-w)

[th4 (1, 0) — by (1, 7)| < (1= Ex(7)).

(3.11)

(3.12)

(3.13)

(3.14)
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Proof. Using formula (3.12) and the estimate (3.10), we find

10.0) = 0 7)] < o [ € [B(ps) = B + o) s € (1= Bu(r).
0

The lemma, is proved. ]
Lemma 3.6. For all 0 < p1 < po < 1 the following estimate holds:

2000 po — H1 (3.15)

(%4 (11, 0) = ¥4 (2, 0) < 5—— fi2

Proof. Using formula (3.4) and the estimate (3.10), we find

[e.e]
1 1
[5:0.0) = b (2,0 = i [ (e = o) @)
M1 w2
0
< @Yo / (i _ i) e T gt 4 / 1 (e—‘f’/M _ e—T'/M) dr’
2—w Bl 2 j25)
0 0 |
2w 1 1 1 2w —
< 2= K_ _ _> i+ - (o _m)] _ 2mopa =
2—w [\p1  H2 H2 2—w
The lemma, is proved. ]
Lemma 3.7. The following estimate holds:
Yo
91 L1 ((—1,1)xr+) < - (3.16)

Proof. It suffices to note that
1l =1,y xrt) = 20 ¥ L1ty = 2001 @| L1 (m+)

and apply the estimate (3.7). The lemma is proved. O

4 The Limit Behavior of Solution

We proceed by studying the limit behavior of the solutions I, to the problem (1.2), (1.3) as
e — 0. We write the solution in the form

1 1—
w- VI + I = %y(ls) + kaQF, (w,z) € D, (4.1)
Lir- =% (I|lr+)+ (1 —=0)g, (w,x) el (4.2)

where g, = k.4~ (J,). Assume that g, € L'(0G) and F € Wh(G).
By a solution to the problem (4.1), (4.2) we mean a function I, € e (D) satisfying Equation
(4.1) almost everywhere in D and the boundary condition (4.2) almost everywhere on I'".
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We note that, in view of the boundary condition (4.2), the value I.|p- (w, z) is independent
of we Q (x).

According to [10, 11] it follows that a solution to the problem (4.1), (4.2) exists and is unique.

Let 1) be a solution to the problem (3.1)— (3.3). We define ¥, on I't by

1Z+(w,x) = 1/1+(w ) n(x), 0)7 (wvx) ert (4'3)

and denote by F|gg the trace of F' on 0G.
The goal of this section is to prove the following theorem.

Theorem 4.1. The solutions I to the problem (4.1), (4.2) have the following limit property
ase —0:

I. - K*F in LYD), (4.4)
Llpr = $4ge + (1 = 9K Floe  in LY(T), (4.5)
I |- = g« + (1 — o)k*Floe  in L}(9G). (4.6)

4.1. Proof of (4.4).
Lemma 4.1. Let the functions fg € %(D) satisfy the equation
- 1 o~
w- VI + EIE = ;y(IE) +f (w,z) €D, (4.7)
almost everywhere in D and the boundary condition
Lip- =% (Llp+) + ¢, (w,2) €T, (4.8)

almost everywhere on T'~, where f € L'(D), ¢ € El(F_). Then the following estimate holds:

~ 1w ~
(1 - Q)HIE|F+HE1(F+) + THIEHLl(D) < HfHLl(D) + ||C||Zl(1"7)' (4-9)

Proof. Multiplying (4.7) by sgn IAa, we get
- 1l o~
w0 VILI+ 21T < ZA(LD) + 1fl (4.10)

Integrating (4.10) over D and taking into account that
[ ) dwdz = T3,
D

we arrive at the inequality

1—

~ T, ~ ~
||I€|F+Hfl(r+) + THIEHD(D) < ||I€|F—||21(r—) + ||f||L1(D)' (4'11)

Taking into account (2.1), from (4.8) we get
||IE‘F*”E1(1L) < ||=@7(18|F+)Hfl(rf) + HCHEl(Ff) = 9HI€|F+HE1(F+) =+ HCHEl(rf)' (4-12)

Substituting (4.12) into (4.11), we obtain the estimate (4.10). The lemma is proved. O
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Lemma 4.2. For the functions TE = I, — k?F the following estimate holds:

€

[47Tk2||VFHL1(G) + (1= 0)7llgllLr00)] » (4.13)

Hellrpy < 7=
where g = g« — k*F|ag.

Proof. We note that TE € %(D), and this function is a solution to the problem

- 1~ -
w-VI+ I = ?5/(18) — k2w VF, (w,z)€D, (4.14)

Llp- = % (Ilp+) + (1 = 0)g. (4.15)
Therefore, in view of Lemma 4.1, the following estimate holds:
R AT P TA e
<K |lw- VF||ppy+ (1 - Nlgliz1 -y < ATK?||V F| 11y + (1 = 0)7llgll 21 0c)-
Roughening the obtained estimate, we arrive at the inequality (4.13). The lemma is proved. [

Corollary 4.1. The property (4.4) holds.

Proof. From the estimate (4.13) it follows that I. — k*F — 0 in L'(D), i.e., I. — k*F in
LY(D). O

4.2. Proof of (4.5) and (4.6). We consider the disc V; = {y/ = (y1,2) € R? | |y/| < r}.
in R? with center at zero and radius r. By the assumption that 0G € C'**, 0 < A < 1, for each
point zg € OG there exists A Cartesian coordinate system with origin at the point xy and basis
e1, ez, ez = n(xg), as well as the cylinder

@ (x0) = {x = xo + y1e1 + yaea + yan(xo) | [¥'| < 7o, [ys] <ro}
(where 79 > 0 is independent of 2() and a function v € C'**(V},) depending on g is such that
GNE(x0) ={x =m0+ y1e1 + y2ea + ysn(zo) | v € Viy, —10 < y3 <)},
OGN E(x0) = {x = 20 + y1e1 + y2e2 + ysn(zo) | Y € Vi, y3 =v(¥)}-
Furthermore, v(0,0) = 0, V,/7(0,0) = (0,0) and the following estimates hold:
W) < Culy' " VY eV, (4.16)
In(x) — n(zo)| < Colz — z0| Vo € G N E (x0) (4.17)

with constants C7 and C5 independent of xg.
We set 7. = e!=2 and h, = 015*1(27"5)1“‘. Further, we assume that 2r. < rg. We note
that

S50, he—0, =0 (4.18)

Te
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Furthermore,
V(W) <che Vy € Vo (4.19)
and, consequently,
0 < he —e(y) <2he VY € Var. (4.20)
Let zg € 0G. We set
Uar.(z0) = G N By (20), Dar.(w0) = Q x Uz, (20),
Er.(w0) = OGN By (w0),  Yar.(w0) = OGN By (w0),  S2r.(w0) = mes (Zor, (z0); do),
[ (20) = {(w,2) € T* | 2 € By (x0)}, Ty, (w0) = {(w,2) € TF | & € Sy, (20)}.
We use the spaces
L (Usay. (20)) = L' (Uar. (w0); d),  L'(Sar. (20)) = L' (Sar. (20); do),
LY(Day_(20)) = L*(Dayr_(20); dwdz),
LN (w0)) = LN(TE (), dT%), LN (w0)) = L' (T, (wo), dT'%).

Let 1 be a solution to the problem (3.1)—(3.3), and let I. be a solution to the problem (1.2),
(1.3) with g € C(9G).
We use the modulus of continuity ¢

w(g,e) = sup l9(z") — g(2")]
/2" €0G, |z'—a"|<2r:

and introduce the following functions on Da,_(z¢):
Ve(w,x) =d(p,7), p=w-n(wg), 7=he—c lys=he—e " (z—x0) n(xo),
ze(w, ) = g(z0)de(w, ) = L(w,2), L(w2) = L(w,) - KF(x).
We note that
Ye(w, ) = Y(w - n(wo),he —e YY), (w,2) € T3, (0),
Ye(w, z0) = th(w - n(z0), he)-

It is easy to see that

W VT/’a(w’x) = _871M%¢(M7T), (OJ,SU) S D2Ts (x0)7

1
FWa) = 4 [0l )’ = 5 [ ot )i, € U (w0
Q -1

Therefore, 1. satisfies the equation

@ Vit 2o = TS, (w,2) € Dy (a0),
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As a consequence, z. satisfies the equation

1
w-Vz + s = g&”(zg) + k?w-VF, (w,z) € Day_(x0).

We also note that the function 1Z+ given by formula (4.3) is such that

1

A (@)wa) =2 [ i @0 () =20 [ 6O i, (orm) €T
Q+( ) 0
Therefore, in view of (3.2),
bo=R () +1—-0, (w,z)el. (4.21)
As a consequence, we have
Zelp- = B (zelpt) + 0., (w,2) € To (20), (4.22)

where the function

0c(w, ) = glao) e (w, @) — o + ™ (thy — ¢e) (@)] + (1 = 0)(g9(w0) - g(x))

plays the role of a residual in the boundary condition.

Now, we estimate the residual. Below, ug € (0,1), po is a parameter.

Lemma 4.3. For all x € Yo, (x0) and 0 < & < go(uo) the following estimates hold:

[ elo) =l o) do < 6o, + ), (4.23)
Q(z)
e, 2) = P (w,2)|w - () dw < w0 | Gale, o) + 1. (4:24)
Qt(z)
/ 6w, )| |w - n()| dw < mho[C(e, o) + 203 gl ooey + (1 — O)mw(ge),  (4.25)
Q= ()
where
C - A
Cile, o) = 1—e e/mo Go(e, o) = % ﬁ(l — E5(2he)) + % ;

C(e, 10) = Ci(e, po) + Ca(es o).
Proof. We set ¢/ = w - n(z), p =w - n(xp), and
QO (z) ={we Q () [ 4 < —po}, QTH(2x) = {w e Q¥ (2) | 4 > po}-

By (4.17), there exists eo(p0) > 0 such that [n(x) —n(xo)| < po/2 for all x € ¥o,_(z).
Let w € Q7#0(z). Then from the estimate

1= 1] < Ina0) = n(@)] < po/2 (4.26)
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it follows that p < —pup/2 and w € Q~#0/2(zg). By the first inequality in (3.13), we have
e (@, 2) = tho| = [ (. he = ™" (y)) = o] < (1 — e~ =TI it (e, o).
If we Q (x)\ Q#(z), then we have the rough estimate
|1he (W, @) — o] < Yo

Thus,
[ oo —nlwldo < [ vetlemlildor [ volu|do
Q- (x) Q= #0 () Q- (2)\ Q0 (z)
— [0 0
:QW/¢0C1(57M0)\M/’dul+2W Yoli'| dp' < mpo[Cie, po) + 1) -
-1 —Ho

The estimate (4.23) is proved. Let us prove the estimate (4.24).

Let w € QTH0(z). Then from (4.26) it follows that p > uo/2 and w € QH#0/2(x5). Using
the estimates (3.14), (3.15), and (4.17), we find

e (W, &) — o (w, )| = [ (1, he — e729(y')) — ¢4 (1, 0)]
< g (s he — 7" 9(Y) = g (1, 0)| + 4 (11,0) — Yy (', 0)]

< [ Bl — ) + 22D )

A
< Do [;(1 — E(2he)) + ACy2re)7 _ YoCa(e, to)-

T2 -—wll-w o
In the case w € QT (x) \ QT#0(x), we use the rough estimate
Ws(u’, iL') - w—i-(wv .Z’)’ < Yo.
Thus,

[ ) —deanipas s [ vapnaor [ v

F (2) Qo () O (2)\ Q40 (a)

) 110
= 277/ Yola(e, po)p' dp’ + 277/1/10// du’ < To[Cale, po) + 13-
n
0

0

From the estimates (4.23) and (4.24) it follows that

/ 162 (w,2) || - ()| oo

Q- (2)

< llgllewe L / e (@, 2) — ol - ()] dw + 6 / e (0, 2) — e, 2)|w - () deo
—(z) Qt(z)
(1= B)mw(g,e) < mholC(e. o) + 262 llooe + (1 — B)mw(g, ).

The lemma, is proved. ]
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Corollary 4.2. The following estimates hold:

Hl/Ja - wOHEI(F;T (z0)) < ™o [Cl(87 :U’O) + M%)] S27"s (x0)7 (427)
e = i llzaqes. (uoyy < 700G (e 10) + 13| S, (0), (4.28)
de”fl(p;ﬁ(xo)) < 7T{¢0 [C(& /1'0) + 2/1'%] HgHC’(BG) + (1 - Q)UJ(g, 5)}521”5 (xO) (429)

Lemma 4.4. Let g € C(0G). Then the following estimate holds:

Helr+ = 49l 7101 (20)) S 19 [EHIEHLl(DgrE(Io))) + 4rk HVFHLl(UgrE(zo))]
{20 e o) + 203+ = lgllowey + 71+ Yowla.e) § Suro(w).  (4:30)
1_9 » MO Ho rel—w gllca) 0)W\g, 2r: (L0 ) :
Proof. We recall that the function z. = g(zo)¥: — I~€ is such that
1 w 9
w-Vz + Sk = ;5”(25) + k‘w-VF, (w,z)€ Dy (x0), (4.31)
Zelp- = B (2|r+) + 0, (w,2) €15, (20). (4.32)

We multiply z. by the cut-off function

17 |.13—.'130| gra‘a
775(1:) =42-— ’x — xO‘/Taa Te < ’x - xO‘ < 2r¢,
0, 2re<|z— o

and extend z.nm. by zero on D \ Ds,_(z9). We note that the function z.7. is a solution to the
problem

w- V(zene) + %(zgng) = =S (2eme) — (W-Vn)ze + k*(w- V)., (w,x)€D, (4.33)

o] g

~—

(25778)‘1"* = '@_((25775)|F+ + 65”5; (W, I) el (434)

Using Lemma 4.1, we arrive at the estimate
l-w
(1= Ol el s ey + el oy
< H(Vne)zellr(py + K2 (V) nell 1oy + 18=me N 2 oy (4.35)
which, together with the inequality (4.20), implies

1
(1- 9)||Z€|F+Hfl(pjg(xo)) < T_EHzEHLl(DzTE(xo)) + 47Tk2HVF||L1(U2rs(wo)) + ”55HIA}(F2}£ (z0))

1
<=
Te

+ ﬂ{dfo [¢(&, 10) + 268] 9l ooy + (1 — Ow(g, 6)}5% (z0)-

(1900022 (s (w) + Il 21 (s (a0 | + AFR2 NV 23 0, )

766



Taking into account the equality

1
/wa(wﬂ') dw = 2ﬂ/¢(u,7) dp = Amipe® (1)
Q —1

and the estimate (3.7), we find

YY)
[l L1 (Dar, (20)) = /[/ 47T¢0‘5(he—5_1y3)dy3] dy’

Vare ==T0

T
< 4moSar, (20) [ |11 ()< T S, (wo)e.

Thus,

1 1, ~
lzelrllz ot oy < 75 [F‘IEHL%Dzrs(m))) +4W’f2\VF”L1<U2TE<xo>>]

o e 1
+ {1 y [C(a#o) +2u5 + Eg} l9llcoa) + ﬂw(g,e)} Sor.(x0). (4.36)

Noting that
1Teles = 919021 0 (mo)
el = 9(@o)vell g s oy + 1 (9(0) = 9)Velzaqry gany) + 10 = P09 a0t oy

< Nzellza (s (o)) + {m0w(g, ) + Teh0[Ca(e, o) + 1ol lgllcoe) t Sar. (o),
we pass from (4.36) to the estimate (4.30). The lemma is proved. O
Theorem 4.2. The properties (4.5) and (4.6) hold.

Proof. We cover R? by the system of cubes

e — (i —1/2)rc (i—|—1/2)7“5] 9 [(‘]'—1/2)7“E (j+1/2)7‘1 9 [(143—1/2)71E (k+1/2)r.

Lik 2 2 2 ’ 2 2 ’ 2
with edges of length r./2, where i,j, k are integers. We choose a finite subsystem of cubes
intersecting 0G. Let {Zg}é\f: 1 be the set of centers of the cubes in this subsystem. With a cube
with center z, we associate a point xz, in the intersection of this cube and 9G. It is clear that
the system of open balls {B,_(x,)}), with centers x, and radii 7. covers dG.

We note that for every ¢ the ball By,_(z/) can intersect at most M other balls B,_(xy), where
M 1is a constant independent of ¢ and 7.

Let g € C(0G). Applying the estimate (4.30) with x, instead of xp and summarizing the
obtained inequalities, we find

N N
Z ”IE|F+ - ¢+g||z1(pf5(x£)) X 97’5 Z ||I ||L1 (Dar. () (Unre (20))
/=1 /=1 K
2mig 1 N
+{1_9[C(5 /‘0)+2M0+—1—}H9Ho oc) + (1 +o)w }Z (4.37)
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N
Since I'™ C 6911“;"5 (z¢) and each ball Ba,_(x,) intersects at most M other balls B, (xf), from
(4.37) we obtain the estimate

~ ~ M 1
[Melr+ = Y49l 71 ey < 0 11 21 (D) t1

M
947rk2\|VF|yL1(G )

2 e 1
<M { 1 _wg [C(E,Mo) +2u3 + 1o lgllcoa) + 71+ Lﬁo)w(gﬁ)} -mes (0G;do), (4.38)
I

where G. = {z € G | p(z,0G) < 2r.}. Passing to the limit as ¢ — 0 in this inequality and using
the fact that, in view of the inequality (4.13), the first term on the right-hand side of (4.38)
converges to zero, we find

I ~ 4mafy
Jim [ Lelpe = ¥4 gllzi ey S M gMoHQHC(aG) -mes (0G; do).

By the arbitrariness in the choice of 1o € (0, 1), we have
slirgo HIE‘F+ - ¢+9Hf1(p+) =0.

Let g € LY(0G). We construct a sequence {g,};2; C C(JG) such that g, — g in LY(0G) as
n — oo. We denote by InE a solution to the problem (4.14), (4.15) with g, instead of g. The
function AIn e=1Ine— I is a solution to the problem

w- VAL + %A’fn,g = %y(A’fm), (w,z) € D,
Alnelp- = Z (ALuclp+) + (1= 0)(9n — 9).
Hence, by Lemma 4.1, the following estimate holds:
ATl llza ey < 79 = gnll L1 00)-
Consequently,
IZelre = Dgllza oy < IATnelrrllzaery + 1 neles = Gagallzesy + 19400 = Dligaes

< ||fn,s|1“+ - ¢+gn‘|f1(p+) + (1 + %0)lgn — g‘|L1(6G)~

By the above, for fixed n the first term on the right-hand side of this inequality converges to
zero as € — 0. Therefore,

?E) HIe‘F+ - w—i—QHZl(rﬂ < W(l + wO)Hgn - gHLl(E)G)-
Passing to the limit as n — oo, we find
iig[l) I Lelp+ — 1/’+9||Zl(r+) =0.
Thus,

Llr+ = Llpr — K2 Flog = 19 = 049« — K2 Flog in LY,
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i.e., (4.5) holds.

To complete the proof, it remains to note that from (4.5) and (4.21) it follows that
Ie’l‘— =% (Lelp+) + (1= 0)gs — %~ (124_9* + (1 — 7Z+)k2F|8G) + (1 — 0)g«

= (% (1) + (1 = O)]gu + Z (1 — )k Flog = togs + (1 — Y0)k*Flog in  L'(0G).

The theorem is proved. U

10.

11.

Thus, Theorem 4.1 is completely proved.

Acknowledgments

The work is supported by the Russian Science Foundation (project No. 19-11-00033).

References

A. A. Amosov, “The limit connection between two problems of radiation heat transfer,”

Soviet. Phys. Dokl. 24, No. 6, 439441 (1979).

M. T. Laitinen, “Asymptotic analysis of conductive-radiative heat transfer,” Asympt. Anal.
29, 323-342 (2002).

A. Bensoussan, J.-L. Lions, G. C. Papanicolaou, “Boundary Layers and Homogeneization
of Transport Processes,” Publ. Res. Inst. Math. Sci., Kyoto Univ. 15, 53—-157 (1979).

C. Bardos, R. Santos, and R. Sentis, “Diffusion approximation and computation of the
critical size,” Trans. Am. Math. Soc. 284, No. 2, 617-649 (1984).

C. Bardos, F. Golse, B. Perthame, and R. Sentis, “The nonaccretive radiative transfer
equations: Existence of solutions and rosseland approximation,” J. Funct. Anal. 77, No. 2,
434-460 (1988).

S. Chandrasekhar, Radiative Transfer, Calderon Press, Oxford (1950).

I. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Univ. Press, Cam-
bridge (1960).

V. Kourganoff, Basic Methods in Transfer Problems, Dover, New York (1963).
V. V. Sobolev, A Treatise on Radiative Transfer, D. Van Nostrand, Princenton, NJ (1963).

A. A. Amosov, “Radiative transfer equation with Freshnel reflection and refraction condi-
tions in a system of bodies with piecewise smooth boundaries,” J. Math. Sci. 219, No. 6,
821-849 (2016).

A. A. Amosov, Boundary Value Problems for the Radiative Transfer Equation with Reflec-

tion and Refraction Conditions [in Russian|, Tamara Rozhkovskaya Publisher, Novosibirsk
(2017).

Submitted on February 3, 2023

769



	Abstract
	1 Introduction
	2 Notation and Function Spaces
	3 Spatially One-Dimensional Problem
	4 The Limit Behavior of Solution
	Acknowledgments
	References

