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We consider a generalized nonlocal Ginzburg–Landau equation with periodic boundary

conditions. For the corresponding initial-boundary value problem we prove the existence

of a solution for all positive values of the evolution variable. We study the existence and

properties of invariant manifolds. We extract a class of invariant manifolds the union

of which forms a global attractor. We describe the structure of the attractor and find the

Euclidean dimension of its components. In the metric of the space of initial conditions,

we also study the Lyapunov stability and orbital stability of solutions that belong in the

global attractor. Bibliography: 11 titles.

1 Introduction

We consider the known partial differential equation

ut = u− (1 + ic)u|u|2 + (a+ ib)Δu, (1.1)

where u = u(t, x1, . . . , xn) is a complex-valued function, n ∈ N is a natural number, Δu is the

Laplace operator with respect to the variables x1, . . . , xn, c, a, b ∈ R, a � 0.

Equation (1.1) is known as the complex Ginzburg–Landau equation [1, 2]. This equation

appears in different fields of physics [1] and chemical kinetics [2].

Equation (1.1) is called a variational Ginzburg–Landau equation [1, 3] if c = b = 0 and

weakly dissipative or generalized nonlinear Schrödinger equation if a = 0 [1, 4, 5].

In connection with problems of elastic stability theory, the following version of the Ginzburg–
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Landau equation is considered:

ut = u− (1 + ic)u|u|2 + (a1 + ib1)uxx − (a2 + ib2)uxxxx,

where a1, b1, a2, b2, c ∈ R, a2 � 0, and a1 � 0 if a2 = 0.

In connection with mathematical modeling of the ferromagnetism phenomenon (see, for

example, [6, 7]), the following equation was derived:

ut = u− (1 + ic)uV (u) + (a+ ib)uxx, (1.2)

where

u = u(t, x), V (u) =
1

2l

2l∫

0

|u(t, x)|2dx,

if x ∈ [0, 2l] or the function u(t, x) has period 2l in x. The integro-differential equation (1.2) is

known as the Ginzburg–Landau equation. One of possible modifications of Equations (1.1), (1.2)

is obtained if the convection phenomenon is taken into account and, consequently, additional

terms appear in the corresponding equations.

In this paper, we consider a version of Equation (1.2) with periodic boundary conditions,

which, after normalization of the spatial variable x, can be written as

u(t, x+ 2π) = u(t, x).

2 Statement of the Problem

We consider the following version of the nonlocal Ginzburg–Landau equation (1.2):

ut = du− (1 + ic)uV (u) + g2uxV (ux) + g1ux + (a+ ic1)uxx − (a2 + ic2)uxxxx, (2.1)

where c, g2, g1, d, a, a2, c1, c2 ∈ R. As was already mentioned,

V (u) =
1

2π

2π∫

0

|u(t, x)|2dx, i.e.,V (ux) =
1

2π

2π∫

0

|ux(t, x)|2dx.

We note that the third and fourth terms on the right-hand side of Equation (2.1) are interpreted

in the physics as convective. Assume that a2 > 0. Normalizing the variable t and function

u(t, x), we can assume that a2 = 1 in (2.1), whereas coefficients at nonlinear terms remain

unchanged. Then the remaining coefficients d, g1, c1, c2, a are proportional to the original ones.

The periodic boundary conditions remain unchanged, with period 2π.

We consider Equation (2.1) with boundary conditions

u(t, x+ 2π) = u(t, x). (2.2)

The boundary value problem (2.1), (2.2) is completed with the initial condition

u(0, x) = f(x), (2.3)
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where u(t, x) and f(x) are complex-valued functions of variable t > 0 (t � 0), x ∈ R. Assume

that f(x) ∈ Hp
2 , p = 1, 2, . . ., where Hp

2 is the Hilbert space of functions possessing the following

properties:

1) f(x) ∈ Hp
2 if f(x) ∈ W p

2 [0, 2π] for x ∈ [0, 2π],

2) f(x) has period 2π.

For p = 0 we have f(x) ∈ L2(0, 2π). We denote by W p
2 the Sobolev space equipped with the

traditional norm and inner product.

In this paper, we establish the existence of solutions to the initial-boundary value problem

(2.1)–(2.3) for all t > 0 and the existence and structure of the global attractor of the boundary

value problem (2.1), (2.2). Throughout the paper, we use the definition of a global attractor

given in [8] (cf. also [9] and the references therein).

3 Solvability of Initial-Boundary Value Problem

Theorem 3.1. Let f(x) ∈ H1
2 . Then the initial-boundary value problem (2.1)–(2.3) has

a unique solution for all t > 0. The corresponding solution u(t, x) possesses the following

properties:

(1) for all x ∈ R, t > 0 the complex-valued function u(t, x) belongs to the class C∞,

(2) the limit equality holds

lim
t→0+

||u(t, x)− f(x)||H1
2
= 0,

where

||u(t, x)− f(x)||2H1
2
= ||u(t, x)− f(x)||2L2(0,2π)

+ ||ux(t, x)− f ′(x)||2L2(0,2π)
,

||v(t, x)− g(x)||2L2(0,2π)
=

2π∫

0

|v(t, x)− g(x)|2dx.

The proof of Theorem 3.1 is based on the fact that all solutions to the initial-boundary value

problem (2.1)–(2.3) can be found in the form of the functional series

u(t, x) =
∞∑

n=−∞
un(t) exp(inx), (3.1)

where un(t) admits an explicit representation.

Let u(t, x) be a jointly continuous function for all x and t > 0. Then u(t, x) can be written

as the functional series (3.1) with

un(t) =
1

2π

π∫

−π

u(t, x) exp(−inx)dx, n = 0,±1,±2, . . . .

We choose un(t) such that u(t, x) is a solution to the corresponding initial-boundary value

problem (2.1)–(2.3). Moreover, un(t) satisfies the countable system of ordinary differential

equations

u′n = (an + ibn)un − (1 + ic)unV + ig2nV1, (3.2)
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where n ∈ Z, an = d− an2 − n4, bn = −c1n
2 − c2n

4 + g1n and, in view of the Parseval identity,

V = V (u) =
∞∑

k=−∞
|uk|2, V1 = V (ux) =

∞∑
k=−∞

k2|uk|2.

We complete the system (3.2) by the initial condition

un(0) = fn, (3.3)

where fn denotes the Fourier coefficient of f(x):

fn =
1

2π

∞∫

−∞
f(x) exp(−inx)dx.

Remark 3.1. From the condition fm = 0 for some m ∈ Z it follows that um(t) = 0 (the

linear subspace fm = 0 is invariant with respect to solutions to the system (3.2)). We can regard

the case fn �= 0 for all n ∈ Z as the main one. If fm = 0 for some m ∈ Z∗ ⊂ Z, then we can

restrict ourselves to equations with k ∈ Z\Z∗.

We consider the case fn �= 0 for all n ∈ Z. We set

un(t) = ρn(t) exp(iϕn(t)), fn = rn exp(iψn). (3.4)

Making the change (3.4) for ρn(t) and ϕn(t), we obtain the Cauchy problem

ρ′n = anρn − ρnV (ρ), (3.5)

ρn(0) = rn, (3.6)

ϕ′
n = bn − cV (ρ) + g2V1(ρ)n, (3.7)

ϕn(0) = ψn, (3.8)

where, in this case,

V (ρ) =

∞∑
k=−∞

ρ2k, V1(ρ) =

∞∑
k=−∞

k2ρ2k.

The Cauchy problem (3.5), (3.6) can be studied autonomously without addressing to the Cauchy

problem (3.7), (3.8).

Lemma 3.1. Let fn �= 0, an �= 0 for all integers n. Then

ρn(t) =
rn exp(ant)√

1 +Q(t)
, n ∈ Z.

Proof. In the case under consideration, we have rn �= 0 for all n. We first show that

ρn(t) =
rn
r0

ρ0(t) exp(−αnt), (3.9)

where αn = an2 + n4, n ∈ Z\{0}. To prove (3.9), we consider the equation of the system (3.5)

with some n �= 0 and the equation with n = 0

ρ′n = anρn − ρnV (ρ),

ρ′0 = a0ρ0 − ρ0V (ρ), a0 = d.
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We multiply the first equation by ρ0 and the second one by ρn and subtract term-by-term one

from the other. As a result, we find

ρ′nρ0 − ρ′0ρn = (an − a0)ρ0ρn = −αnρ0ρn(αn = a0 − an).

Consequently, (ρn
ρ0

)′
= −αn

ρn
ρ0

,
ρn(0)

ρ0(0)
=

rn
r0

.

Hence
ρn(t)

ρ0(t)
=

rn
r0

exp(−αnt).

Substituting (3.9) into the equation for ρ0 = ρ0(t), we obtain the Bernoulli equation for ρ0(t)

ρ′0 = a0ρ0 − ρ30
r20

S(t), (3.10)

where

S(t) =

∞∑
n=−∞

r2n exp(−2αnt);

moreover, the series uniformly converges for t � 0 since f(x) ∈ H1
2 by assumption. Consequently,

the series ∞∑
n=−∞

|fn|2,
∞∑

n=−∞
n2|fn|2, |fn| = rn,

converge. Therefore, S(t) ∈ C[0,∞). Furthermore, the function S(t), t ∈ (0,∞), has continuous

derivatives of any order k. Indeed, we differentiate the corresponding series term-by-term

S(k)(t) =
∞∑

n=−∞
r2n(−2αn)

k exp(−2αnt).

The last series uniformly converges for t ∈ [t0,∞), where t0 is an arbitrarily small positive

constant. Moreover, one should take into account that r2n � M, where M > 0, αn > 0 for

all n2 � n2
0. Thus, S

(k)(t) is continuous for any natural number k and t ∈ (0,∞), i.e., S(t) ∈
C∞(0,∞).

It remains to find ρ0(t). Then we find all ρk(t) with the help of formula (3.9). Replacing

1/ρ20(t) = y0(t), we reduce the Bernoulli equation (3.10) to the linear inhomogeneous equation

y′0 = −2a0y0 +
2

r20
S(t), (3.11)

where

y0(0) =
1

r20
. (3.12)

We consider Equation (3.11). The function y0 = C exp(−2a0t) is a solution to the homoge-

neous equation y′0 = −2a0y0. For a partial solution to the inhomogeneous equation (3.11) we

can take

yp =

∞∑
n=−∞

r2n
anr20

exp(−2αnt).
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We emphasize that the series S(t) contains no resonance terms since an �= 0. Thus, the general

solution to Equation (3.11) is the function

y0(t) = C exp(−2a0t) +
∞∑

n=−∞

r2n
anr20

exp(−2αnt).

The choice of a suitable C is provided by the initial condition (3.12). As a result, a solution

to the problem Cauchy (3.11), (3.12) has the form

y0(t) =
exp(−2a0t)

r20

(
1 +

∞∑
k=−∞

r2k
ak

(exp(2akt)− 1)
)
.

Finally, we have

ρ0(t) =
r0 exp(a0t)√

1 +Q(t)
,

where

Q(t) =

∞∑
k=−∞

r2k
ak

(exp(2akt)− 1).

We note that Q(t) > 0 for t > 0 and rm �= 0, at least for one number m. Finally, (3.9) implies

ρn(t) =
rn exp(ant)√

1 +Q(t)
, n ∈ Z. (3.13)

Lemma 3.1 is proved.

Remark 3.2. Formula (3.13) is obtained under the conditions rn �= 0 and an �= 0 for all

n ∈ Z. We show that formula (3.13) remains valid if the first condition is removed. If the second

condition is removed, then the formula should be corrected since, in this case, resonance terms

appear in the nonlinearity of Equation (3.11).

Let rm = 0 for some m ∈ Z∗. Then it is obvious that ρm(t) = 0 for the corresponding

number m. In this case,

Q(t) = Q1(t) =
∑

k �=Z\Z∗

r2k
ak

(exp(2akt)− 1),

where rk �= 0. The proof of the modified formula (3.13) with Q(t) replaced by Q1(t) is based on

a version of the identity (3.9). In this case,

ρn(t) =
rn
rs

ρs(t) exp(−αn,st),

where αn,s = a(n2 − s2) + (n4 − s4), i.e., αn,0 = αn and s is chosen in such a way that rs �= 0.

The proof of the last formula is word-by-word repeats the proof of formula (3.9).

Let ap = 0 for some integer p. Then a−p = 0. We consider the case am �= ap (am �= 0) for all

remaining m �= ±p. Then

ρ±p(t) =
r±p√

1 +Q2(t)
, ρm(t) =

rm exp(amt)√
1 +Q2(t)

,
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where

Q2(t) =
∑

m �=±p

r2m
am

(exp(2amt)− 1) + 2(r2p + r2−p)t.

Now, formula for Q2(t) takes into account resonance terms.

Assume that ap = a−p = 0, aq = a−q = 0, am �= 0 for the remaining m. Then

ρ±p(t) =
r±p√

1 +Q3(t)
, ρ±q(t) =

r±q√
1 +Q3(t)

, ρm(t) =
rm exp(amt)√

1 +Q3(t)
,

where

Q3(t) =
∑

m �=±p,±q

r2m
am

(exp(2amt)− 1) + 2(r2p + r2−p + r2q + r2−q)t.

Assume that ap = 0 and am �= 0 for m �= 0. Then

ρ0 =
r0√

1 +Q4(t)
,

ρm(t) =
rm exp(amt)√

1 +Q4(t)
, m �= 0,

Q4(t) =
∑
m �=0

r2m
am

(exp(2amt)− 1) + 2r20t.

We assume that a0 = 0 and a±q = 0 for some q,−q �= 0. Then

ρ0(t) =
r0√

1 +Q5(t)
,

ρ±q(t) =
r±q√

1 +Q5(t)
,

ρm(t) =
rm exp(amt)√

1 +Q5(t)
,

where

Q5(t) =
∑

m �=0,±q

r2m
am

(exp(2amt)− 1) + 2(r20 + r2q + r2−q)t.

It is obvious that there are no other variants of the choice of n provided that an = 0 because

the corresponding numbers for which an = 0 are found as roots (if exist) of the biquadratic

equation d− an2 − n4 = 0.

We proceed by integrating the Cauchy problem (3.7), (3.8). It is obvious that

ϕn(t) = ϕn(t, ψn) = ψn + bnt− cχ1(t) + g2χ2(t)n,

χ1(t) =

t∫

0

V (ρ)ds, χ2(t) =

t∫

0

V1(ρ)ds,

V (ρ) =
1

1 +Q(s)

∞∑
k=−∞

ρ2k(s), V1(ρ) =
1

1 +Q(s)

∞∑
m=−∞

m2ρ2m(s).
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Moreover,

χ1(t) =
1

2
ln(1 +Q(s))

∣∣t
0
=

1

2
ln(1 +Q(t)), Q(0) = 0.

The second integral with variable upper limit has the form

χ2(t) =

t∫

0

V1(s)ds =

t∫

0

1

1 +Q(s)

∞∑
k=−∞

r2kk
2 exp(2aks)ds.

Unlike the first integral, we cannot compute this integral in an explicit form. Nevertheless, the

function χ2(t) possesses the following properties:

(1) χ2(t) is defined for all t � 0,

(2) χ2(0) = 0,

(3) χ2(t) > 0 if t > 0,

(4) χ2(t) has derivatives of any order if t > 0.

Property (4) of χ2(t) follows from properties of Q(t) (Q(t) > 0 for t > 0 and Q(t) ∈
C∞(0,∞)) and the inclusion

F (t) =
∞∑

k=−∞
r2kk

2 exp(2akt) ∈ C∞(0,∞).

We can verify the last inclusion in the same way as S(t) ∈ C∞(0,∞). In particular, we use the

convergence of the series
∞∑

k=−∞
r2kk

2.

The above constructions lead to the following assertion.

Lemma 3.2. The solution to the Cauchy problem (3.2), (3.3) satisfies the equality

un(t) =
fn√

1 +Q(t)
exp(ant+ iχ(t, n)), n ∈ Z, (3.14)

where χ(t, n) = bnt− c ln(1 +Q(t))/2 + g2χ2(t)n and fn = rn exp(iψn). Furthermore,

u(t, x) =
1√

1 +Q(t)

∞∑
n=−∞

fn exp(ant+ iχ(t, n) + inx). (3.15)

The function defined by (3.15) for t > 0 has continuous partial derivatives of any order.

We note that the series (3.15) is obtained by substituting the right-hand side of (3.14) into

the functional series (3.1) with (3.4) is taken into account. The proof of the convergence of the

series (3.15), together with all its derivatives for t > 0, repeats the constructions used to justify

the Fourier method applied to the analysis of the first boundary value problem for the heat

equation.
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4 Invariant Manifolds of Boundary Value Problem

The analysis of invariant manifolds is based on the study of the systems of differential

equations (3.2) and (3.5). Both systems contain a coefficient an such that a−n = an. Therefore,

we assume that n � 0. We denote Z+ = {0} ∪ N, where N is the set of natural numbers. We

divide the set Z+ into three subsets

Z+,1 = {m ∈ Z+ | am > 0}, Z+,0 = {p ∈ Z+ | ap = 0, Z+,−1 = {k ∈ Z+ | ak < 0}.
It is obvious that Z+,−1 �= ∅ and Z+,0, Z+,1 contain at most finitely many elements and can

be empty. The corresponding p are found as roots of the biquadratic equation p4 + ap2 − d = 0,

which belong to Z+ (Z).

Let ρk(t) be a component of the system of differential equations (3.5) with number k ∈ Z+,−1.

Then lim
t→∞ ρk(t) = 0. Indeed, in this case, ak < 0. Hence

lim
t→0

rk exp(akt)√
1 +Q(t)

= 0
(
ρk =

rk exp(akt)√
1 +Q(t)

)
.

A similar limit equality holds if p ∈ Z+,0. In this case, ρ′p = −ρpV (ρ) < 0. Consequently, the

function ρp(t) monotonically decreases and lim
t→∞ ρp(t) = 0.

For η = (. . . , η−1, η0, η1, . . .) we denote by S(η) the equilibrium state of the system (3.5).

By the above, the equilibrium state can have nonzero coordinates ηm, η−m, m ∈ Z+,1. The

remaining coordinates ηk, k /∈ Z+,1, vanish.

The set Z+,1 can be divided into two subsets Λ1 = {m ∈ Z+,1 | am �= ak for the remaining

k ∈ Z+,1} and Λ2 = {m1,m2 ∈ Z+,1 | am1 = am2 ,m1 �= m2}. In this case, there are either four

elements am1 , a−m1 , am2 , a−m2 such that am1 = a−m1 = am2 = a−m2 or three elements a0, am,

a−m. We emphasize that we do not exclude the case where Λ1 or Λ2 is empty. Finally, Λ2, if

not empty, contains two elements (m1,m2) or (0,m). Owing to this fact, we can formulate the

following assertion.

Lemma 4.1. 1. If Λ1 �= ∅ and m ∈ Λ1, then the system (3.5) has the family S(m) of

equilibrium states ρm = ηm, ρ−m = η−m, ρn = 0 if n �= ±m. Moreover, η2m + η2−m = am, m �= 0.

If m = 0, then ρ20 = a0, and we obtain the equilibrium state S(0).

2. Let Λ2 �= ∅. The following variants can occur:

(a) if m1,m2 �= 0 (a−m1 = am1 , a−m2 = am2), then we have the following family of equilibrium

states S(m1,m2) : ρm1(t) = ηm1 , ρ−m1(t) = η−m1, ρm2(t) = ηm2 , ρ−m2(t) = η−m2, ρn = 0

for n �= ±m1, ±m2; moreover, η2m1
+ η2−m1

+ η2m2
+ η2−m2

= am1 (= am2);

(b) if m1 = 0, then we have the family of equilibrium states S(0,m) : ρm = ηm, ρ−m = η−m,

ρ0(t) = η0, m2 = m, for k �= 0, ±m; moreover, η2m + η2−m + η20 = a0 (= am).

To prove Lemma 4.1, we need to analyze the system of algebraic equations

ρk(ak − V (ρ)) = 0, k ∈ Z+,1,

V (ρ) =
∑

k∈Z+,1

ρ2k.

Consequently, for some k ∈ Z+,1 two cases are possible: ρk = 0 and ak = V (ρ).

Let ρk �= 0. Then the following variants are possible.
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(i) k = m, where m ∈ Λ1. Then ρm = ηm and ρ−m = η−m, where η2m + η2−m = am.

(ii) k = m1 or k = m2 (m1 �= m2), wherem1,m2 ∈ Λ2; moreover, m1,m2 �= 0. Then ρm1 = ηm1 ,

ρ−m1 = η−m1 , ρm2 = ηm2 , ρ−m2 = η−m2 , where η
2
m1

+η2−m1
+η2m2

+η2−m2
= am1 (am1 = am2).

(iii) k = m (m = m2) or k = 0, where m, 0 ∈ Λ2. Then ρm = ηm, ρ−m = η−m, ρ0 = η0, where

η2m + η2−m + η20 = am1 (a0 = am1) and ηj are positive constants.

From Lemma 4.1 we obtain the following assertion.

Theorem 4.1. Let the system of differential equations (3.5) have the equilibrium state S(0)

(ρ0 = η0 =
√
a0 > 0, ρj = 0, j �= 0). Then S(0) corresponds to the limit cycle

M1(0) : u0(t) = w0(t, ϕ0) = η0 exp(iω0t+ iϕ0), un(t) = 0, n �= 0

of the system (3.2) and also the cycle

W1(0) : u0(t, x) = w0(t, ϕ0)

of the boundary value problem (2.1), (2.2). Here, ϕ0 ∈ R and ω0 = −ca0. The one-parameter

family of solutions W1(0) contains functions independent of x.

Theorem 4.2. Let the system (3.5) have the family of equilibrium states S(m). Then this

family is associated with the 3-dimensional invariant manifolds M3(m), W3(m), m ∈ Z+,1, of

the system of differential equations (3.2) and the boundary value problem (2.1), (2.2)

M3(m) : um(t) = wm(t, ϕm) = ηm exp(iωmt+ iϕm),

u−m(t) = w−m(t, ϕ−m) = η−m exp(iω−mt+ iϕ−m), un(t) = 0, n �= ±m,

W3(m) : um(t) = wm(t, ϕm) exp(imx) + w−m(t, ϕ−m) exp(−imx).

Here, ϕm, ϕ−m ∈ R are arbitrary real constants, ωm = bm−cam+g2m
3am, ω−m = b−m−ca−m−

g2m
3a−m, bm = −c1m

2− c2m
4+ g1m, b−m = −c1m

2− c2m
4− g1m, am = a−m = d−am2−m4,

η2m + η2−m = am.

Theorem 4.3. Let the system of differential equations (3.5) have the family of equilibrium

states S(m1,m2). Then this family is associated with the 7-dimensional invariant manifolds

M7(m1,m2) and W7(m1,m2) of the system of differential equations (3.2) and the boundary

value problem (2.1), (2.2)

M7(m1,m2) : um1(t) = wm1(t, ϕm1) = ηm1 exp(iωm1t+ iϕm1),

u−m1(t) = w−m1(t, ϕ−m1) = η−m1 exp(iω−m1t+ iϕ−m1),

um2(t) = wm2(t, ϕm2) = ηm2 exp(iωm2t+ iϕm2),

u−m2(t) = w−m2(t, ϕ−m2) = η−m2 exp(iω−m2t+ iϕ−m2),

W7(m1,m2) : u(t, x) = wm1(t, ϕm1) exp(im1x) + w−m1(t, ϕ−m1) exp(−m1x)

+ wm2(t, ϕm2) exp(im2x) + w−m2(t, ϕ−m2) exp(−im2x).

Here, ϕm1, ϕ−m1, ϕm2, ϕ−m2 are arbitrary real constants, ωm1 = bm1 − cam1 + g2m1Ω, ω−m1 =

b−m1−ca−m1−g2m1Ω, ωm2 = bm2−cam2+g2m2Ω, ω−m2 = b−m2−ca−m2−g2m2Ω, Ω = m2
1(η

2
m1

+

η2−m1
) +m2

2(η
2
m2

+ η2−m2
), am1 = a−m1 = am2 = a−m2 , η

2
m1

+ η2−m1
+ η2m2

+ η2−m2
= am1 = am2 .
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Theorem 4.4. Let the system (3.5) have the family of equilibrium states S(0,m). Then this

family is associated with the 5-dimensional invariant manifolds M5(0,m) and W5(0,m) of the

system of differential equations (3.2) and the boundary value problem (2.1), (2.2)

M5(0,m) : u0(t) = w0(t, ϕ0) = η0 exp(iω0t+ iϕ0), um(t) = wm(t, ϕm) = ηm exp(iωmt+ iϕm),

u−m(t)=w−m(t, ϕ−m)=η−m exp(iω−mt+iϕ−m),

W5(0,m) : u(t, x) = w0(t, ϕ0) + wm(t, ϕm) exp(imx) + w−m(t, ϕ−m) exp(−imx).

Here, ϕ0, ϕm, ϕ−m are arbitrary real constants, ω0 = −ca0, ωm = bm − cam + g2mΩ0, ω−m =

b−m − ca−m − g2mΩ0, Ω0 = m2(η2m + η2−m), η20 + η2m + η2−m = a0 = am.

Now, we consider invariant manifolds of some other form. We set

Z1 = {n ∈ Z | an > 0}, Z0 = {n ∈ Z | an = 0}, Z−1 = {n ∈ Z | an < 0}

and denote by H1
2,+ the subspace of H1

2 consisting of functions f(x) such that

fn =
1

2π

2π∫

0

f(x) exp(−inx)dx = 0, n ∈ Z0 ∪ Z−1, (4.1)

and by H1
2,0 the subspace of H1

2 consisting of functions f(x) ∈ H1
2 such that the equality (4.1)

holds for n ∈ Z1 ∪ Z−1. Finally, f(x) ∈ H1
2,− if f satisfies (4.1) for n ∈ Z1 ∪ Z0.

We emphasize that the subspace H1
2,0 can be empty or not. Thus, H1

2,0 �= ∅, if d = −m2k2,

a = −(m2 + k2), i.e., the equation d− aξ2 − ξ4 = 0 has the roots ξ = ±m, ξ = ±k. It is natural

that H1
2,+ can be empty if am � 0 for all m.

Let Win = H1
2,+ ∪ H1

2,0. This is a linear subspace of H1
2 . The linear subspaces H1

2,+, H
1
2,0,

H1
2,−, Win possess the following properties:

(1) H1
2,+, H1

2,0, H1
2,−, Win are invariant with respect to solutions to the boundary value

problem (2.1), (2.2),

(2) H1
2,+, H

1
2,0, H

1
2,− are orthogonal and Win is orthogonal to H1

2,− in the sense of the inner

product in the complex Hilbert space L2(0, 2π):

(f, g) =

2π∫

0

f(x)g(x)dx, f(x), g(x) ∈ L2(0, 2π),

(3) H1
2,+, H

1
2,0, Win are finite-dimensional, and H1

2,− is infinite-dimensional.

Theorem 4.5. The linear subspace Win is an inertial manifold of the boundary value problem

(2.1), (2.2).

Proof. Indeed, Win is invariant with respect to solutions to the boundary value problem

(2.1), (2.2). Let f(x) ∈ Win ∩H1
2 . Then

f(x) =
∑

n∈Z1∪Z0

fn exp(inx)
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and the corresponding solution is represented as (cf. (3.1))

u(t, x) =
∑

n∈Z1∪Z0

un(t) exp(inx).

It is obvious that Win is finite-dimensional since the set Z1 ∪ Z0 can contain only finitely many

elements with an � 0.

Let u(t, x) be a solution to the initial-boundary value problem (2.1)–(2.3) for arbitrary

f(x) ∈ H1
2 . Then u(t, x) is defined by (3.1). Since Win and H1

2,− are orthogonal, we note that

the squared distance from a point u(t, x) of the phase space H1
2 to Win is defined by

d2(t) =

∥∥∥∥∥
∑

k∈Z−1

uk(t) exp(ikx)
∥∥∥2
H1

2

= 2π
∑

k∈Z−1

|uk(t)|2(1 + k2)

= 2π
∑
k∈Z−

r2k exp(2akt)

1 +Q(t)
(1 + k2) � 2π exp(−2νt)

∑
k∈Z−1

r2k(1 + k2) � 2π||f ||2H1
2
exp(−2νt).

To prove the last inequality, we used the equality |uk(t)| = rk exp(akt)/
√

1 +Q(t), the inequality

Q(t) � 0, and the equality

||f(x)||2H1
2
=

∞∑
k=−∞

(1 + k2)|fk|2.

Thus,

d(t) � M exp(−νt),M =
√
2π||f ||H1

2
. (4.2)

Consequently, the distance from the solution u(t, x) to Win is decreasing at exponential rate.

This means that Win is an inertial manifold in the sense of the definition in [10].

We make the following remark. The linear subspace H1
2,+ is also invariant and finite-

dimensional. The solutions which does not belong to this subspace approach H1
2,+, but the

approximation rate is not necessarily exponential. Let us discuss this fact. Let u(t, x) be

a solution to the initial-boundary value problem (2.1)–(2.3). By the orthogonality of H1
2,+,

H1
2,0, H1

2,− the squared distance from points of the phase spaces u(t, x) to H1
2,+ is equal to

d2(t) = d21(t) + d22(t), where

d21(t) = 2π
∑
k∈Z−

|uk(t)|2(1 + k2),

d22(t) = 2π
∑
p∈Z0

|up(t)|2(1 + p2).

For d21(t) the estimate (4.2) holds. A different result holds for d2(t). For the sake of definite-

ness we assume that Z0 contains four elements p1, −p1, p2, −p2. Then

d22(t) = 2π

(
(1 + p21)

r2p1 + r2−p1

1 +Q3(t)
+ (1 + p22)

r2p2 + r2−p2

1 +Q3(t)

)

(recall that ap1 = a−p1 = ap2 = a−p2 = 0). Moreover,

Q3(t) � 2(r2p1 + r2−p1 + r2p2 + r2−p2)t.
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Therefore,

d22(t) � 2π
(1 + p21)(r

2
p1 + r2−p1) + (1 + p22)(r

2
p2 + r2−p2)

1 + 2(r2p1 + r2−p1 + r2p2 + r2−p2)t

� M2

r2p1 + r2−p1 + r2p2 + r2−p2

1 + 2(r2p1 + r2−p1 + r2p2 + r2−p2)t
,M2 = 2πmax(1 + p21, 1 + p22).

Consequently, lim
t→∞ d2(t) = 0, i.e., lim

t→∞ d(t) = 0, where d(t) =
√
d21(t) + d22(t). Thus, all solutions

to the boundary value problem (2.1), (2.2) approach H1
2,+ with time. At the same time,

d2(t) � M2 exp(−2νt) +M2
R

1 + 2Rt
,R = r2p1 + r2−p1 + r2p2 + r2−p2 .

We assume that t � 1 and R �= 0. Then

d(t) � M0√
t
, (4.3)

where M0 is a positive constant. To prove the inequality (4.3), we used the inequalities

R

1 + 2Rt
� 1

2t
, exp(−2νt) � M3

t
, M3 > 0.

The estimate (4.3) shows that, in the case of general position, the solutions to the boundary

value problem (2.1), (2.2) converge to H1
2,+, if this linear subspace exists, at the rate 1/

√
t, but

not exponentially, i.e., H1
2,+ is not inertial in the sense of the definition in [10].

5 Global Attractor

We consider the invariant manifold A = {0} ∪ A1 ∪ A2 ∪ A3 ∪ A4, where {0} is the zero

equilibrium state, A1 = W1(0), A2 =
⋃

m∈Z+,1

W3(m) is the union of all three-dimensional invari-

ant manifolds of the boundary value problem (2.1), (2.2) mentioned in Theorem 4.2. Finally,

A3 = W5(0,m), A4 = W5(m1,m2) (cf. Theorems 4.3 and 4.4). In the case of general position,

the invariant manifolds A3 and A4 are absent. In an arbitrary case, for the existence of these

manifolds it is necessary to choose the coefficients a and d; otherwise, the component A3 (A4

or A3 ∪ A4) is empty. The case of absence of nontrivial components is also included, and then

A = {0}. This case occurs if ak = d− ak2 − k4 � 0 for all k ∈ Z.

Theorem 5.1. Assume that u(t, x) is a solution to the initial-boundary value problem (2.1)–

(2.3) and u(0, x) = f(x) ∈ H1
2 . Then u(t, x) approaches A with time. Moreover, every solution

approaches one of the components of A. The choice of the component depends on the choice of

f(x) from the initial condition (2.3).

Before to prove Theorem 5.1, we make some remarks. Let Z+,1 �= ∅. We first consider the

case of general position, i.e., assume that there exists a set of nonnegative numbers m such that

m1, . . . ,ms ∈ Z+,1 (amj > 0) and amj �= amp for any mj , mp (mj �= mp). In this case, there

exists a family of invariant sets W3(mj) (dim W3(mj) = 3 if mj �= 0) and W1(0) (dimW1(0) = 1

if mj = 0).
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Let the sequence {am}, m ∈ Z+,1, be enumerated in such a way that am1 > am2 > . . . > ams ,

and let f(x) ∈ H1
2 be such that |fm1 |2 + |f−m1 |2 �= 0 (m1 = 0 implies f0 �= 0). Then the

solution to the boundary value problem (2.1), (2.2) satisfying the initial condition u(0, x) = f(x)

converges to W3(m1) (or W1(0) if m1 = 0) in the H1
2 -norm. If fm1 = f−m1 = 0 (f0 = 0), but

|fm2 |2 + |f−m2 |2 �= 0 (f0 �= 0,m2 = 0), then the solution u(t, x) approaches W3(m2) and so on.

Finally, assume that fp = 0 for all p = Z+,1 and f−p = 0. Then the solution approaches the zero

equilibrium state.

If am1 = am2 , then the above should be corrected as follows: u(t, x) approaches W7(m1,m2)

(W5(0,m), m = m2, if m1 = 0).

The proof of Theorem 5.1 is based on the study of the behavior of solutions to the system

of ordinary differential equations (3.5). In the case of general position (Λ2 = 0), we divide (3.5)

into two groups

ρ′mj
= amjρmj − ρmjV (ρ), j = 1, . . . , s, (5.1)

ρ′k = akρk − ρkV (ρ), (5.2)

where mj ∈ Z+,1, k ∈ Z+,0 ∪ Z+,−1. Moreover, we can enumerate in (5.1) in such a way that

am1 > am2 > . . . > ams . In this case, the following assertion holds.

Lemma 5.1. Let r2m1
+r2−m1

�= 0. Then the solutions to the system (3.5) converge to S(m1).

If r2m1
+ r2−m1

= 0, but r2m2
+ r2−m2

�= 0, then the solutions approach S(m2) and so on.

In the case mj = 0, we replace S(mj) with S(0).

Proof of Lemma 5.1. From (3.13) it follows that lim
t→∞ ρk(t) = 0 for k ∈ Z+,0∪Z+,−1 since

ak � 0. Thus, all components of (5.2) converge to zero. It remains to study the behavior of

ρmj (t), where ρmj are components of (5.1). By (3.13),

ρmj (t) =
rmj exp(amj t)√

1 +Q+(t)
,

Q+(t) =
∑

mj∈Z+,1

r2mj
+ r2−mj

amj

(exp(2amj t)− 1) +
r20
a0

(exp(2a0t)− 1).

Here, the last term is absent if a0 � 0 (0 /∈ Z+,1).

Let m1 �= 0. Then it is easy to verify that lim
t→∞ ρn(t) = 0 if n �= ±m1. At the same time, for

n = ±m1

lim
t→∞ ρm1(t) =

rm1

√
am1√

r2m1
+ r2−m1

,

lim
t→∞ ρ−m1(t) =

r−m1

√
a−m1√

r2m1
+ r2−m1

.

Since am1 = a−m1 , it is easy to obtain the identities

( rm1

√
am1√

r2m1
+ r2−m1

)2
+
( r−m1

√
a−m1√

r2m1
+ r2−m1

)2
= am1 .
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Consequently, if r2m1
+ r2−m1

�= 0, then the solutions to the system (3.5) converge to S(m1). If it

turns out that m1 = 0, then

lim
t→∞

r0 exp(a0t)√
1 +Q+(t)

= a0,

i.e., the solutions converge to S(0).

Let r2m1
+ r2−m1

= 0 (or r0 = 0 if m1 = 0). In this case, we repeat the above procedure

starting with m2. Then the solutions to the system (3.5) approach S(m2) and so on.

A special case appears if am1 = am2 (m2 = 0 implies am1 = a0), Λ2 �= ∅.

Lemma 5.2. Let r2m1
+ r2−m1

+ r2m2
+ r2−m2

�= 0. Then the solutions to the system (3.5)

converge to S(m1,m2). If m1 = 0, then the solutions to the system (3.5) approach S(0,m),

m = m2.

Proof. The arguments partially repeat some fragments of the proof of Lemma 5.1:

lim
t→∞(ρ2m1

+ ρ2−m1
+ ρ2m2

+ ρ2−m2
) = am1(= am2)

or for m1 = 0 (r2m2
+ r2−m2

+ r20 �= 0)

lim
t→∞(ρ2m2

+ ρ2−m2
+ ρ20) = am1 (a0 = am2)

and lim
t→∞ ρn(t) = 0 for the remaining n (n �= ±m1,±m2).

Now, we can show that the solution u(t, x) to the boundary value problem (2.1), (2.2)

satisfying the initial condition u(0, x) = f(x), approaches one of the invariant manifolds W3(mj)

(W1(0), W7(mj ,mj+1), W5(0,mj)) corresponding to the family of equilibrium states of the

system (3.5) to which the solution to this system with the initial condition ρk(0) = rk = |fk|
approaches; here, {fk} are the Fourier coefficients of f(x):

fk =
1

2π

2π∫

0

f(x) exp(−ikx)dx.

The verification of this assertion is reduced to calculating the limits. Similar calculations were

made in [11], where a similar problem was considered for the more traditional version of the

nonlocal Ginzburg–Landau equation

ut = u− (1 + ic)uV (u) + (a+ ib)uxx, V (u) =
1

2π

2π∫

0

|u|2dx.

We proceed by analyzing the dynamics of solutions in the global attractor A. In the trivial

case, where A consists only of the zero equilibrium state, it is obvious that the solution is stable

and even asymptotically stable.

Assume that the attractor A has at least one nonzero component W1(0), W3(mj), W5(0,mj),

W7(mj ,mj+1). The remaining nontrivial components of A, if exist, are formed, in the case of

general position, by almost t-periodic solutions. Thus, W3(mj), mj �= 0, are formed by solutions
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possessing two basis frequencies ωmj and ω−mj . The solutions in W5(0,mj) have three basis

frequencies ω0, ωmj , ω−mj , whereas the solutions in W7(mj ,mj+1) have four basis frequencies

ωmj , ω−mj , ωmj+1 , ω−mj+1 . We emphasize that for W3(mj) we mean that mj does not have to

be equal to just m1 and the same is true for the manifolds W7(mj ,mj+1) and W5(0,mj).

We consider, for example, the solutions constituting W3(mj). Then ωmj and ω−mj can be

calculated by

ωmj = bmj − camj + g2m
3
jamj ,

ω−mj = b−mj − ca−mj − g2m
3
ja−mj .

in the case of general position, the numbers ωmj and ω−mj are rationally incommensurable and,

consequently, the solutions in W3(mj) are not necessarily periodic in t.

We consider a more meaningful question about invariant manifolds entering the global at-

tractor A as its components. We say that a component is dominating if it corresponds to the

number k or numbers k1, k2, k1 �= k2, such that ak > an, ak1 = ak2 > an, where n �= k,

n �= k1, k2. In the case of general position k = m1 and the above-introduced enumeration, we

have am1 > am2 > . . . > ams > . . . . If am1 = am2 , m1 �= m2, then k1 = m1 and k2 = m2.

In what follows, we will take into account singularity of the new enumeration. Finally, if the

attractor A has only one nontrivial component, then this component is regarded as dominating.

Theorem 5.2. All solutions in nondominating components are Lyapunov unstable. These

solutions cannot be orbitally stable.

Proof. Let W3(m2) be a nondominating component, where m2 �= m1, and let W3(m1) be a

dominating component. Consider the solution um2(t, x) ∈ W3(m2). Then

fm2(x) = um2(0, x) = ηm2 exp(im2x) + η−m2 exp(−im2x),

η2m2
+ η2−m2

= am2 .

Let fm2,δ(x) = fm2(x) + δ exp(im1x). If δ is small, then the functions fm2,δ(x) and fm2(x)

are close in the metric of the phase space H1
2 . At the same time, fm2,δ(x) has nonzero Fourier

coefficient fm1,δ, i.e., rm1 = δ �= 0 (r2m1
+ r2−m1

�= 0). Thus, the solution um2,δ(t, x) satisfying

the equality um2,δ(0, x) = f2(x, δ) leaves a neighborhood of W3(m2) and approaches W3(m1).

Moreover, the distance betweenW3(m1) andW3(m2) is positive. This means that any solution in

W3(m2) is unstable. The invariant manifold W3(m2) is unstable either. The remaining variants

of the choice of dominating and nondominating sets are handled in a similar way.

It remains to discuss the stability of solutions belonging to a dominating component.

Theorem 5.3. Let W3(m1) be a dominating component. Then all solutions in W3(m1) are

stable. Let W7(m1,m2) be a dominating component (or W5(0,m), m = m2, if m1 = 0), and

let g2 �= 0. Then all solutions to the boundary value problem (2.1), (2.2) lying in W7(m1,m2)

(W5(0,m)) are unstable (in the case g2 = 0, they are stable).

Proof. We first prove the assertion about the stability of solutions in W3(m1). In this

part, we write m instead of m1; for example, W3(m) instead of W3(m1). We choose a solution

w(t, x) ∈ W3(m) which, as was mentioned in Section 4, can be written as

w(t, x) = wm(t) exp(imx) + w−m(t) exp(−imx), (5.3)
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where w±m(t) = g±m exp(iω±mt), g±m is the Fourier coefficient of g(x) = w(0, x) and ω±m are

given in Section 4.

At the first step of the proof of the stability of w(t, x), we consider solutions to the boundary

value problem (2.1), (2.2) lying in the manifold W3(m),

v(t, x) = vm(t) exp(imx) + v−m exp(−imx), (5.4)

where v±m(t) = h±m exp(iω±mt) and h±m is the Fourier coefficient of h(x) = v(0, x).

We recall that g(x), h(x) ∈ H1
2 and the closeness of these functions means that ||h(x) −

g(x)||H1
2
< δ or |hm − gm|2 + |h−m − g−m|2 < δ2/(2π(1 +m2)). At the same time,

|v±m(t)− w±m(t)| = |(h±m − g±m) exp(iω±mt)| = |h±m − g±m|.
Consequently,

||v(t, x)− w(t, x)||2H1
2
= 2π(1 +m2)(|vm(t)− wm(t)|2 + |v−m(t)− w−m(t)|2)

= ||h(x)− g(x)||2H1
2
� δ2.

Let u(t, x) be a solution to the boundary value problem (2.1), (2.3) that does not belong to

W3(m). Then

u(t, x) = u+(t, x) + u−(t, x), u(0, x) = f(x) = f+(x) + f−(x),

u+(t, x) = um(t) exp(imx) + u−m(t) exp(−imx), f+(x) = fm exp(imx) + f−m exp(−imx),

u−(t, x) =
∑

k �=±m

uk(t) exp(ikx), f−(x) =
∑

k �=±m

fk exp(ikx).

We emphasize that for all t � 0 the solutions u+(t, x) and u−(t, x) belong to the subspaces H1
2,+

and H1
2,− of the space H1

2 , which are mutually orthogonal in the sense of the inner product in

the Hilbert space L2(0, 2π) and also W 1
2 (0, 2π). Therefore,

||f(x)− g(x)||2H1
2
= Δ2

+ +Δ2
−,

where

Δ2
+ = 2π(1 +m2)(|fm − gm|2 + |f−m − g−m|2),

Δ2
− =

∑
k �=±m

(1 + k2)|fk|2.

Let ||f(x)− g(x)||H1
2
< δ. Then Δ+,Δ− < δ.

From the formula for uk(t) in Section 3 we find

|uk(t)| � M− exp(−ν0t)|fk|, ν0 = max
k �=±m

(am − ak), M− � 2.

Consequently, ||u−(t, x)||H1
2
� 2 exp(−ν0t)δ, if t � 0. We note that ν0 > 0.

For an auxiliary solution v(t, x) we take the following solution to the boundary value problem

(2.1), (2.2):

v(t, x) = vm(t) exp(imx) + v−m(t) exp(−imx),
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where

v±m(t) = f̃±m exp(iω±mt), f̃±m =
f±m

√
a±m√|fm|2 + |f−m|2 .

By assumption, ||f(x)− g(x)||H1
2
< δ. Consequently, ||v(t, x)− w(t, x)||H1

2
< δ for all t � 0.

Using the explicit formulas for un(t) in Section 3, one can verify that ||u+(t, x)− v(t, x)|| �
M+||f+(x)−g(x)||H1

2
or ||u+(t, x)−v(t, x)||H1

2
� M+δ, where M+ is a positive constant indepen-

dent of δ. In this part of the proof, we use the inequality ||f(x)− g(x)||H1
2
< δ and the closeness

of f̃m to f±m (cf. Lemma 5.1).

Thus, we obtain the inequalities

||u(t, x)− w(t, x)||H1
2
� ||v(t, x)− w(t, x)||H1

2
+ ||u+(t, x)− v(t, x)||H1

2
+ ||u−(t, x)||H1

2

< (δ +M+δ + 2δ) � ε,

where δ � ε/(3 +M+), which is required.

We note that the stability is established in the H1
2 -norm. It is essential that, in the case

of general position, all solutions in W3(m)(W3(m1)) are almost periodic functions of t with the

same basis frequencies ωm and ω−m for all solutions in W3(m)(W3(m1)).

Now, we pass to the second part of Theorem 5.3 dealing with solutions in W7(m1,m2) or

W5(0,m). We begin with the case where W7(m1,m2) is a dominating invariant manifold.

Let g2 �= 0.We choose two solutions to the boundary value problem (2.1), (2.2) inW7(m1,m2)

(cf. Section 4)

u(t, x, p) = wm1,p(t, p) exp(im1x) + w−m1,p(t, p) exp(−im1x)

+ wm2,p(t, p) exp(im2x) + w−m2,p(t, p) exp(−im2x),

where p = 1, 2. Finally,

wm1(t, p) = fm1(p) exp(iωm1(p)t), fm1(p) = ηm1(p) exp(iψm1(p)),

w−m1(t, p) = f−m1(p) exp(iω−m1(p)t), f−m1(p) = η−m1(p) exp(iψ−m1(p)),

wm2(t, p) = fm2(p) exp(iωm2(p)t), fm2(p) = ηm2(p) exp(iψm2(p)),

w−m2(t, p) = f−m2(p) exp(iω−m2(p)t), f−m2(p) = η−m2(p) exp(iψ−m2(p)).

The closeness of the initial conditions for the solutions labeled by 1 and 2 means the smallness

of the sum

2π[(1 +m2
1)|fm1(1)− fm1(2)|2 + (1 +m2

1)|f−m1(1)− f−m1(2)|2

+ (1 +m2
2)|fm2(1)− fm2(2)|2 + (1 +m2

2)|f−m2(1)− f−m2(2)|2] < δ2,

where δ is an arbitrarily small positive constant.

Let us establish the existence of {tn} such that

1) lim
n→∞ tn = +∞,
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2) the following inequality holds:

2π((1 +m2
1)(|wm1(tn, 1)− wm1(tn, 2)|2 + |w−m1(tn, 1)− w−m1(tn, 2)|2)

+ (1 +m2
2)(|wm2(tn, 1)− wm2(tn, 2)|2 + |w−m2(tn, 1)− w−m2(tn, 2)|2)) � ε20, (5.5)

where ε0 is independent of the choice of δ.

Thereby we prove the Lyapunov unstability of the solutions under consideration.

Making some transformations, we find

ωm1(p) = σm1 + g2m1(m
2
2 −m2

1)Θ1(p),

σm1 = −c1m
2
1 − c2m

4
1 − cam1 + g1m1 + g2m

3
1am1 ,

ω−m1(p) = σ−m1 − g2m1(m
2
2 −m2

1)Θ1(p),

σ−m1 = −c1m
2
1 − c2m

4
1 − ca−m1 − g1m1 − g2m

3
1am1 ,

ωm2(p) = σm2 + g2m2(m
2
1 −m2

2)Θ2(p),

σm2 = −c1m
2
2 − c2m

4
2 − cam2 + g1m2 + g2m

3
2am2 ,

ω−m2(p) = σ−m2 − g2m2(m
2
1 −m2

2)Θ2(p),

σ−m2 = −c1m
2
2 − c2m

4
2 − ca−m2 − g1m2 − g2m

3
2am2 ,

Θ1(p) = η2m2
+ η2−m2

, Θ2(p) = η2m1
+ η2−m1

,

Θ1(p) + Θ2(p) = am1 = am2 , p = 1, 2.

The quantities Θ1(p) and Θ2(p) depend on the choice of ηm1 = |fm1 |, η−m1 = |f−m1 |, ηm2 =

|fm2 |, η−m2 = |f−m2 | and, consequently, in the case of general position, the differences ωm1(1)−
ωm1(2) = Δm1 , ωm2(1) − ωm2(2) = Δm2 , ω−m1(1) − ω−m1(2) = Δ−m1 , ω−m2(1) − ω−m2(2) =

Δ−m2 do not vanish.

Let a positive constant δ be sufficiently small. Then at least for k = ±m1 or k = ±m2

max
k,p

|fk(p)| �
√
am1

2
, k = ±m1,±m2, p = 1, 2.

For the sake of definiteness we assume that |fm1(1)| � √
am1/2. Then there exists a sequence

tn → ∞ as n → ∞ such that

|fm1(1) exp(iωm1(1)tn)− fm1(2) exp(iωm1(2)tn)| �
√
am1

2
. (5.6)

The inequality (5.6) can be written as

|ηm1(1) exp(iψm1(1)) exp(iωm1(1)tn)− ηm1(2) exp(iψm1(2)) exp(iωm1(2)tn)| �
√
am1

2

or

|ηm1(1) exp(iΔψm1) exp(iΔm1tn)− ηm1(2)| �
√
am1

2
,

where Δψm1 = ψm1(1) − ψm1(2). Finally, owing to the choice of tn, we can conclude that the

inequality (5.6) holds if ηm1(1) + ηm1(2) � √
am1/2, ηm1(1) = |fm1(1)|, ηm1(2) = |fm1(2)|. If
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the inequality (5.6) holds, then the inequality (5.5) holds for the corresponding tn with ε0 =√
2π(1 +m2

1)am1/2, where ε0 is independent of δ. The possibility of the choice of tn justifying

the inequality (5.5) follows from the simple assertion.

Lemma 5.3. Let ξ1, ξ2 ∈ C and α1, α2 ∈ R be such that Δα = α2 − α1 �= 0, and let

ξ(t) = |ξ2 exp(iα2t)− ξ1 exp(iα1t)|. Then there exists a sequence tn such that lim
n→∞ tn = ∞ and

ξ(tn) = |ξ1|+ |ξ2|.

Proof. The following equality holds: ξ(t) = ||ξ2| exp(iα2t+iϕ2)−|ξ1| exp(iα1t+iϕ1)|, where
ϕj = arg ξj , j = 1, 2. Taking into account that | exp(iβ)| = 1 for β ∈ R, we find

ξ(t) = ||ξ2| exp(i(Δα)tn + iΔϕ)− |ξ1||.
Let tn be taken such that tn → ∞ and (Δα)tn + Δϕ = (2n − 1)π. If (Δα) > 0, then we can

assume that n = n0, n0 + 1, . . . , where n0 ∈ N and n = −n0,−(n0 + 1), . . . if (Δα) < 0.

In a similar way, we can verify that the solutions in W5(0,m) are unstable if the manifold

W5(0,m) turns out to be dominating.

A different situation occurs if g2 = 0, but the role of a dominating component is played

by the manifold W7(m1,m2) (W5(0,m)). Then, as in the case of W3(m1), the frequencies of

solutions in W7(m1,m2) (W5(0,m)) turn out to be the same and independent of the choice of

the solution.

Therefore, the solutions in W7(m1,m2) or W5(0,m), as in the main variant where W3(m1)

is dominating, are stable. The proof of the stability of solutions in W7(m1,m2) or W5(0,m)

mainly repeats the first part of the proof.

Remark 5.1. As was already mentioned, for g2 �= 0 the solutions to the boundary value

problem (2.1), (2.2) in W7(m1,m2) are Lyapunov unstable, but orbitally stable. The trajectories

of the solutions u(t, x, 1) and u(t, x, 2) are close if their initial conditions are close in the following

sense: the solution u(t, x, 2) is located as t → ∞ in a sufficiently small neighborhood of the

trajectory of the solution u(t, x, 1).

Let u(t, x, p) ∈ W7(m1,m2), p = 1, 2. As was noted in the proof of Theorem 5.3, we have

||u(t, x, 1)− u(t, x, 2)||2H1
2
= 2π(1 +m2

1)Q(m1) + 2π(1 +m2
2)Q(m2),

where

Q(t,m1) = |wm1(t, 1)− wm1(t, 2)|2 + |w−m1(t, 1)− w−m1(t, 2)|2

= |fm1(1) exp(iΔm1t)− fm1(2)|2 + |f−m1(1) exp(iΔ−m1t)− f−m1(2)|2,
Q(t,m2) = |wm2(t, 1)− wm2(t, 2)|2 + |w−m2(t, 1)− w−m2(t, 2)|2

= |fm2(1) exp(iΔm2t)− fm2(2)|2 + |f−m2(1) exp(iΔ−m2t)− f−m2(2)|2,
whereas Δm1 , Δ−m1 , Δm2 , Δ−m2 are not equal to zero in the case of general position. The

function Q(t) = 2π(1 + m2
1)Q(t,m1) + 2π(1 + m2

2)Q(t,m2) is almost periodic in the sense of

Bohr. Moreover, μ = Q(0) 
 1. By the almost periodicity, there exists a sequence τk such that

lim
k→∞

τk = ∞ for any sufficiently small ε, i.e., Q(τk) < 2ε if μ < ε. Consequently, the solution

u(t, x, 2) is located in a small neighborhood of the trajectory of the solution u(t, x, 1).
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If u(t, x, 1) ∈ W7(m1,m2) and u(t, x, 2) /∈ W7(m1,m2), then the verification of the orbital

stability of the trajectory of the solution u(t, x, 1) mainly repeats the constructions of the cor-

responding fragment of the proof of the stability of solutions in W3(m1) in the case where one

of the solutions belongs to W3(m1), unlike the other.

If W7(m1,m2) is changed with W5(0,m), then the orbital stability of solutions in W5(0,m)

is proved in a similar way.
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