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We consider a population such that, in absence of exploitation, its dynamics is described

by a system of differential equations. It is assumed that, at certain times τk = kd,

d > 0, resource shares u(k), k = 0, 1, 2, . . ., are extracted from the population. Regard-

ing u = (u(0), u(1), . . . , u(k), . . . ) as a control for reaching a desired harvesting result,

we construct u at which the resource harvesting characteristics (the time-average har-

vesting profit and the harvesting efficiency) attain given values, in particular, the case

where the harvesting efficiency becomes infinite is included. We consider the problems

of constructing stationary controls delivering the maximum value for one of the charac-

teristics provided that the other is fixed and demonstrate the solution of these problems

by considering examples of homogeneous and two-species populations. Bibliography: 9

titles. Illustrations: 2 figures.

In this paper, we consider models of homogeneous populations consisting of one species or one

age class and models of structured populations as well. We assume that it is possible to extract

some resource shares and control the process to achieve given values of the time-average profit or

the harvesting efficiency. We obtain conditions under which to reach the best resource harvesting

result it is necessary to extract all or some species of the structured population.

We note that controls providing the maximal time-average profit were constructed in [1].

In this paper, we propose a new approach owing to which we obtain such results for not only

the time-average profit, but also for the harvesting efficiency. In particular, we show how to

construct control actions to achieve the infinite value of the harvesting efficiency.

In addition, we consider two new problems. One problem is to find stationary controls guar-

anteeing the maximal harvesting efficiency providing that the time-average profit is fixed. The
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second one is to reach the maximal time-average profit provided that the harvesting efficiency

is fixed. The results obtained are illustrated by examples of a homogeneous population and a

two-species population.

1 Characteristics of Resource Harvesting in
Models of Exploited Populations

Let R
n
+

.
= {x ∈ R

n : x1 � 0, . . . , xn � 0}. We consider the model of a population whose

dynamics is described, in the absence of exploitation, by the system of differential equations

ẋ = f(x), x ∈ R
n
+. (1.1)

In the case n = 1, the population consists of one species and is called homogeneous. If n � 2,

the population is structured, i.e., consists of different species x1, . . . , xn or n age groups.

We assume that biological resource shares u(k) = (u1(k), . . . , un(k)) ∈ [0, 1]n, k = 0, 1, 2, . . .,

are extracted from the population at times τk = kd, d > 0, k = 0, 1, 2, . . .. We set U
.
= {u : u =

(u(0), u(1), . . . , u(k), . . . )} and interpret u ∈ U as a control which can be changed to achieve a

certain harvesting result. Thus, we consider the exploited population with dynamics described

by the control system with impulse action

ẋi = fi(x), t �= kd, k = 0, 1, 2, . . . ,

xi(kd) = (1− ui(k)) · xi(kd− 0), k = 0, 1, 2, . . . ,
(1.2)

where xi(kd − 0) and xi(kd) denote the resource amounts of the ith species before and after

harvesting at time kd, k = 1, 2, . . . respectively. Furthermore, for the ith species, i = 1, . . . , n, we

denote by xi(0−0) the initial resource amount and by xi(0) the resource amount after harvesting

at the initial time. It is assumed that the solutions to the system (1.2) are continuous from the

right and the functions f1(x), . . . , fn(x) are defined and continuously differentiable for all x ∈ R
n
+.

Since the systems (1.1) and (1.2) describe the biological population dynamics, the solutions

must be nonnegative for any nonnegative initial data. The system (1.1) possesses this condition

if and only if the functions f1(x), . . . , fn(x) satisfies the quasipositivity condition [4]

fi(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) � 0, i = 1, . . . , n.

From the equalities xi(kd) = (1− ui(k)) · xi(kd− 0) in (1.2) it follows that the solutions to the

system (1.2) are nonnegative for any nonnegative initial data if the quasipositivity condition

holds.

For the ith species we denote by Xi(k) = xi(kd − 0) the resource amount before har-

vesting at time kd, k = 1, 2, . . . , and by Xi(0) the initial resource amount¿ We set X(0) =

(X1(0), . . . , Xn(0)). We denote by Ci � 0 the resource cost of the ith species (assuming that

C1, . . . , Cn do not vanish simultaneously). Then the total cost of the harvested resource at time

τk = kd is equal to
n∑

i=1
CiXi(k)ui(k).

Definition 1.1 ([5]). The time-average profit from the resource extraction is defined by

H∗(u,X(0))
.
= lim

k→+∞
1

k

k−1∑

j=0

n∑

i=1

CiXi(j)ui(j).
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Replacing the lower limit with the upper one in (1.1), we defined the function H∗(u,X(0)).

If H∗(u,X(0)) = H∗(u,X(0)), we set

H(u,X(0))
.
= lim

k→+∞
1

k

k−1∑

j=0

n∑

i=1

CiXi(j)ui(j).

Definition 1.2. The harvesting efficiency is the lower limit as k → +∞ of the ratio of the

resource amount after k harvestings to the sum of the corresponding controls (the harvesting

efforts):

E∗(u,X(0))
.
= lim

k→+∞

k−1∑

j=0

n∑

i=1

CiXi(j)ui(j)

k−1∑

j=0

n∑

i=1

ui(j)

, (1.3)

where
n∑

i=1
ui(0) > 0. The harvesting efficiency will be denoted by E(u,X(0)) if the limit in (1.3)

exists.

We note that a similar characteristic was studied in [6] in the case of a periodic harvesting

of a renewable resource distributed in a domain of the arithmetic space and obeying the logistic

growth law. As shown in [6], there exists a stationary control providing the maximal harvesting

efficiency at infinite horizon.

2 Construction of Controls to Achieve Given Values
of Time-Average Profit

We denote by ϕ(t, x) = (ϕ1(t, x), . . . , ϕn(t, x)) the solution to the system (1.1) satisfying the

initial condition ϕ(0, x) = x, where t ∈ R+, x ∈ R
n
+. Assume that for any x ∈ R

+
n solutions

ϕ(t, x) to the system exist for t ∈ [0, d], d > 0. By the stationary exploitation regime for

a population described by the system (1.2) we understand a mode where the harvesting is

provided by u(k) ≡ u = (u1, . . . , un) ∈ [0, 1]n for all k = 0, 1, 2, . . .. In this case, the dynamics

of an exploited population is described by the system of difference equations

X(k + 1) = ϕ(d, (1− u)X(k)), k = 0, 1, 2, . . . , (2.1)

where X(k) = (X1(k), . . . , Xn(k)) is the species composition of the population before harvesting

at time τk = kd and (1−u)X(k) = ((1−u1)X1(k), . . . , (1−un)Xn(k)). We denote by X(k, u,X0),

k = 0, 1, 2, . . . the solution to the system (2.1) satisfying the initial condition X(0) = X0 ∈ R
n
+.

If the system (2.1) has a fixed point (an equilibrium state) ξ(u) = (ξ1(u), . . . , ξn(u)) ∈ R
n
+, then

ξ(u) = ϕ(d, (1−u)ξ(u)). Let ‖x‖ =
√

x21 + . . .+ x2n. We recall (see [7]) that a fixed point ξ(u) of

the system (2.1) is asymptotically stable if for any initial data X(0) = X0 in some neighborhood

of the point ξ(u) we have

lim
k→∞

‖X(k, u,X0)− ξ(u)‖ = 0. (2.2)

The set of initial points X(0) satisfying (2.2) is called the attraction set of the point ξ(u) and

denoted by A(ξ(u)).
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Proposition 2.1. Let the stationary exploitation regime u(k) ≡ u, k = 0, 1, . . ., hold, and

let the system (2.1) have a fixed point ξ(u). Then for any initial point X(0) ∈ A(ξ(u))

H(u,X(0)) =

n∑

i=1

Ciξi(u)ui, (2.3)

E(u,X(0)) =

n∑

i=1

Ciξi(u)ui

( n∑

i=1

ui

)−1
. (2.4)

The proof of Proposition 2.1 is similar to the proof of Assertion 1 in [8].

We introduce the set D+
.
= {x ∈ R

n
+ : xi � ϕi(d, x) �= 0, i = 1, . . . , n} and the function

D(x)
.
=

n∑

i=1

Ci(ϕi(d, x)− xi). (2.5)

Theorem 2.1. Let D(x) take a value h ∈ (0,+∞) at a point x∗ ∈ D+. Then

H(u∗, X(0)) = h

for any X(0) ∈ A(ϕ(d, x∗)) and

u∗ = (u∗, u∗, . . .), u∗ =
(
1− x∗1

ϕ1(d, x∗)
, . . . , 1− x∗n

ϕn(d, x∗)

)
. (2.6)

Furthermore, if the maximum of D(x) on R
n
+ is attained at a point x∗ ∈ D+, then for any u ∈ U

and X(0) ∈ R
n
+

H(u,X(0)) � H(u∗, X∗(0)) = D(x∗),

where X∗(0) ∈ A(ϕ(d, x∗)) and the control u∗ ∈ U is given by (2.6).

Proof. If u∗ = (u∗, u∗, . . .), then the system (2.1) is of the form

X(k + 1) = ϕ
(
d,

x∗

ϕ(d, x∗)
X(k)

)
, k = 0, 1, 2, . . . (2.7)

and has a fixed point ξ(u∗) = ϕ(d, x∗). Therefore, (2.3) implies

H(u∗, X(0)) =
n∑

i=1

Ciϕi(d, x
∗)
(
1− x∗i

ϕi(d, x∗)

)
=

n∑

i=1

Ci(ϕi(d, x
∗)− x∗i ) = D(x∗) = h.

We show that if the maximum of the function D(x) on R
n
+ is attained at a point x∗ ∈ D+,

then H(u∗, x∗(0)) = D(x∗) = h is the maximal value of the time-average profit on the set of all

controls U. Let xi(k) = (1−ui(k))Xi(k), i = 1, . . . , n, be the resource size of the ith species after

harvesting at time τk, and let x(k) = (x1(k), . . . , xn(k)), k = 0, 1, 2, . . . . For each i = 1, . . . , n

we find Xi(k)ui(k) = Xi(k)− (1− ui(k))Xi(k) = ϕi(d, x(k− 1))− xi(k), k = 1, 2, . . .. Hence for
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any u ∈ U and X(0) ∈ R
n
+

H∗(u,X(0))
.
= lim

k→+∞
1

k

k−1∑

j=0

n∑

i=1

CiXi(j)ui(j)

= lim
k→+∞

1

k

( n∑

i=1

CiXi(0)ui(0) +
k−1∑

j=1

n∑

i=1

Ci(ϕi(d, x(j − 1))− xi(j))
)

= lim
k→+∞

1

k

n∑

i=1

Ci(Xi(0)ui(0)− xi(k − 1)) + lim
k→+∞

1

k

k−2∑

j=1

n∑

i=1

Ci(ϕi(d, x(j))− xi(j)). (2.8)

Since
n∑

i=1

Ci(ϕi(d, x(j))− xi(j)) � D(x∗) ∀ x(j) ∈ R
n
+, j = 1, 2, . . . ,

we conclude that

H∗(u,X(0)) � lim
k→+∞

−1

k

n∑

i=1

Cixi(k − 1) + lim
k→+∞

k − 2

k
D(x∗)

� − lim
k→+∞

1

k

n∑

i=1

Cixi(k − 1) +D(x∗). (2.9)

Since

lim
k→+∞

1

k

n∑

i=1

Cixi(k − 1) � 0,

the right-hand side of (2.9) does not exceed D(x∗), and, consequently, H∗(u,X(0)) � D(x∗) for
any u ∈ U and X(0) ∈ R

n
+.

Remark 2.1. For a structured population the function D(x) can attain the maximum at a

point x∗ ∈ R
n
+ such that one of its coordinates satisfies the condition x∗i = ϕi(d, x

∗) = 0, i.e.,

in this case, x∗ does not belong to D+ (see the corresponding example in [1]). In this case, it is

reasonable to harvest only some of n species. The following assertion yields a control providing

the maximal value of the time-average profit.

Theorem 2.2. Assume that n � 2, the function D(x) takes the value h ∈ (0,+∞) at a point

x∗ ∈ R
n
+, and there exists a nonempty set I ⊂ {1, . . . , n} such that x∗i = ϕi(d, x

∗) = 0 for i ∈ I

and x∗i � ϕi(d, x
∗) �= 0 for i ∈ {1, . . . , n} \ I. Then H(u∗, X(0)) = h for any X(0) ∈ A(ϕ(d, x∗))

with the stationary control u∗ = (u∗, u∗, . . .), where

u∗i = 0, i ∈ I,

u∗i = 1− x∗i
ϕi(d, x∗)

, i ∈ {1, . . . , n} \ I.
(2.10)

Moreover, if h is the maximum of D(x) on R
n
+, then for any u ∈ U, X(0) ∈ R

n
+

H(u,X(0)) � H(u∗, X∗(0)) = D(x∗) = h,

where X∗(0) ∈ A(ϕ(d, x∗)) and the control u∗ ∈ U is given by (2.10).
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Proof. Without loss of generality we can assume that I = {1, . . . ,m}, 1 � m � n − 1,

n � 2. If u∗ is given by (2.10), then the system (2.1) can be written as

X(k + 1) = ϕ
(
d,X1(k), . . . , Xm(k),

x∗m+1

ϕm+1(d, x∗)
Xm+1(k), . . . ,

x∗n
ϕn(d, x∗)

Xn(k)
)

(2.11)

for k = 0, 1, 2, . . .. The system (2.11) has the fixed point ξ(u∗) = ϕ(d, x∗), where ϕi(d, x
∗) = 0

for i = 1, . . . ,m and x∗i � ϕi(d, x
∗) �= 0 for i = m+ 1, . . . , n. Consequently, from (2.3) we find

H(u∗, X(0)) =

n∑

i=m+1

Ci(ϕi(d, x
∗)− x∗i ) = D(x∗) = h.

Then we argue in the same way as in the proof of Theorem 2.1.

Remark 2.2. If D(x) is not bounded, then we can construct (nonstationary) controls such

that the time-average profit takes the value +∞ (see [3]).

3 Construction of Controls to Achieve Given Values
of Harvesting Efficiency

We recall that ϕ(t, x) denotes a solution to the system (1.1) satisfying the initial condition

ϕ(0, x) = x, where t ∈ R+, x ∈ R
n
+. We consider the set

E+
.
=

{
x ∈ R

n
+ :

n∑

i=1

xi
ϕi(d, x)

�= n;xi � ϕi(d, x) �= 0, i = 1, . . . , n
}

and for any x ∈ E+ introduce the function

E(x)
.
=

n∑

i=1

Ci(ϕi(d, x)− xi)
(
n−

n∑

i=1

xi
ϕi(d, x)

)−1
. (3.1)

Theorem 3.1. Let E(x∗) = � ∈ (0,+∞) for some x∗ ∈ E+. Then E(u∗, X(0)) = � for

any X(0) ∈ A(ϕ(d, x∗)) and u∗ given by (2.6). Furthermore, if the maximum of E(x) on R
n
+ is

attained at a point x∗ ∈ E+, then E(u,X(0)) � E(x∗) for any stationary control u ∈ U and any

X(0) ∈ R
n
+.

Proof. Let u∗ be defined by (2.6). Then Equation (2.1) has the fixed point ξ(u∗) = ϕ(d, x∗).
Taking into account (2.4), for any X(0) ∈ A(ϕ(d, x∗)) we find

E(u∗, X(0)) =
n∑

i=1

Ciξi(u
∗)u∗i

(
n∑

i=1

u∗i

)−1

=
n∑

i=1

Ciϕi(d, x
∗)
(
1− x∗i

ϕi(d, x∗)

)
(

n−
n∑

i=1

x∗i
ϕi(d, x∗)

)−1

=

n∑

i=1

Ci(ϕi(d, x
∗)− x∗i )

(

n−
n∑

i=1

x∗i
ϕi(d, x∗)

)−1

= E(x∗) = �.
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Assume that the maximum of E(x) on R
n
+ is attained at a point x∗ ∈ E+ and E(x∗) = �. By

Proposition 2.1, to find the maximum of E(u,X(0)) in the case of the stationary exploitation

regime u(k) ≡ u, k = 0, 1, . . ., we need to find the largest value of the function

W (u)
.
=

n∑

i=1

Ciξi(u)ui

(
n∑

i=1

ui

)−1

, (3.2)

where ξ(u) = ϕ(d, (1 − u)ξ(u)) is a fixed point of the system (2.1). We set v(u) = (1 − u)ξ(u).

Then ξ(u) = ϕ(d, v(u)) and the equality ξ(u) = ϕ(d, (1 − u)ξ(u)) can be written as v(u) =

(1− u)ϕ(d, v(u)). Further, from (3.2) we find

W (u) =

n∑

i=1

Ciϕi(d, v(u))ui

(
n∑

i=1

ui

)−1

=

n∑

i=1
Ciϕi(d, v(u))−

n∑

i=1
Ci(1− ui)ϕi(d, v(u))

n−
n∑

i=1
(1− ui)

=

n∑

i=1
Ci(ϕi(d, v(u))− vi(u))

n−
n∑

i=1

vi(u)

ϕi(d, v(u))

= E(v(u)).

Consequently, the maxima of W (u) and E(v(u)) coincide and are attained at v(u) = x∗. From
v(u) = (1− u)ϕ(d, v(u)) and v(u) = x∗ we get x∗i = (1− u∗i )ϕi(d, x

∗). Therefore,

u∗i = 1− x∗i
ϕi(d, x∗)

, i = 1, . . . , n,

i.e., the stationary control u∗ is given by (2.6).

Remark 3.1. Considering arbitrary (not necessarily stationary) controls, we can obtain the

value of the harvesting efficiency larger than E(x∗). For example, if

n∑

i=1

CiXi(0) > nE(x∗),

then for the controls u(0) = (1, 1, . . . , 1) and u(k) = (0, 0, . . . , 0), k = 1, 2, . . ., we have

E(u,X(0)) =
1

n

n∑

i=1

CiXi(0) > E(x∗).

We consider the problem of constructing a method of exploitation of a population u ∈ U

guaranteeing that E(u,X(0)) = +∞. One of such controls is given in the proof of the following

theorem. We set R̃n
+

.
= {x ∈ Rn : x1 > 0, . . . , xn > 0}.

Theorem 3.2. Assume that there exists x̂ ∈ R̃
n
+ satisfying the following conditions:

(1) the sequences {ϕi(kd, x̂)}+∞
k=0, i = 1, . . . , n, are nondecreasing,

(2) the following relation holds:

lim
k→+∞

1

k

n∑

i=1

Ciϕi(kd, x̂) = +∞.
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Then for any X(0) such that Xi(0) � x̂i, i = 1, . . . , n, there exists an exploitation regime u ∈ U

such that E(u,X(0)) = +∞.

Proof. We propose a method for exploiting a population u ∈ U, owing to which an infinite

time-average profit can be achieved. We begin by choosing the control

u(0) = (u1(0), . . . , un(0)) =
(
1− x̂1

X1(0)
, . . . , 1− x̂n

Xn(0)

)
(3.3)

and note that u(0) ∈ [0, 1)n since Xi(0) � x̂i > 0, i = 1, . . . , n. The controls at the further times

are constructed as follows:

u(2k − 1) = (0, . . . , 0), k = 1, 2, . . . ,

u(2k) =
(
1− ϕ1(kd, x̂)

ϕ1((k + 1)d, x̂)
, . . . , 1− ϕn(kd, x̂)

ϕn((k + 1)d, x̂)

)
, k = 1, 2, . . . .

(3.4)

By the quasiperiodicity condition and the first assumption of theorem, we have u(2k) ∈ [0, 1)n.

By (3.3), the resource amount of the ith species harvested at time t = 0 is equal to

Xi(0)ui(0) = Xi(0) − x̂i, whereas the amount of the remaining resource is equal to xi(0) =

(1− ui(0))Xi(0) = x̂i, i = 1, . . . , n. Thus, x(0) = x̂. We find

X(1) = ϕ(d, x(0)) = ϕ(d, x̂), x(1) = X(1) = ϕ(d, x̂),

X(2) = ϕ(d, x(1)) = ϕ(2d, x̂), x(2) = (1− u(2))X(2) =
ϕ(d, x̂)

ϕ(2d, x̂)
X(2) = ϕ(d, x̂).

Similarly, we find

x(2k − 1) = x(2k) = ϕ(kd, x̂), X(2k − 1) = ϕ(kd, x̂), X(2k) = ϕ((k + 1)d, x̂)

for k = 1, 2, . . .. We emphasize that no resource is extracted at times t = d, 3d, 5d, . . . according

to the chosen exploitation regime. The resource amount extracted at time t = 0 is equal to

X(0)u(0) = X(0)− x̂,

and its cost is equal to
n∑

i=1

CiXi(0)ui(0) =
n∑

i=1

Ci(Xi(0)− x̂i).

The resource amount extracted at time t = 2jd, j = 1, 2, . . . , is equal to

X(2j)u(2j) = ϕ((j + 1)d, x̂)− ϕ(jd, x̂),

and its cost is equal to

n∑

i=1

CiXi(2j)ui(2j) =

n∑

i=1

Ci(ϕi((j + 1)d, x̂)− ϕi(jd, x̂)).

We find the total cost of the resource extracted at times t = 0, 2d, . . . , 2kd :

k∑

j=0

n∑

i=1

CiXi(2j)ui(2j) =

n∑

i=1

Ci(Xi(0)− x̂i) +

k∑

j=1

n∑

i=1

Ci(ϕi((j + 1)d, x̂)− ϕi(jd, x̂))

=

n∑

i=1

Ci(Xi(0)− x̂i) +

n∑

i=1

Ci(ϕi((k + 1)d, x̂)− ϕi(d, x̂)).
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Thus, taking into account the obvious inequality

2k∑

j=0

n∑

i=1

ui(j) � (2k + 1)n,

we see that for u given by (3.3), (3.4) we have

E∗(u,X(0))
.
= lim

k→+∞

2k∑

j=0

n∑

i=1
CiXi(j)ui(j)

2k∑

j=0

n∑

i=1
ui(j)

� lim
k→+∞

1

(2k + 1)n

k∑

j=0

n∑

i=1

CiXi(2j)ui(2j)

= lim
k→+∞

1

2kn

n∑

i=1

Ci(Xi(0)− x̂i) + lim
k→+∞

1

2kn

n∑

i=1

Ci(ϕi((k + 1)d, x̂)− ϕi(d, x̂))

= lim
k→+∞

1

2kn

n∑

i=1

Ciϕi((k + 1)d, x̂).

By the second assumption of the theorem, E∗(u,X(0)) = +∞. Hence E(u,X(0)) = +∞.

4 Resource Harvesting for Homogeneous Population

We consider a homogeneous population such that, in the absence of exploitation, its dynamics

is described by the differential equation

ẋ = f(x), x ∈ R+ = [0,+∞).

It is assumed that some share u(k) ∈ [0, 1] of biological resources is extracted from the population

at time τk = kd, d > 0. Then we obtain an exploited homogeneous population with dynamics

described by the following equation with impulse action:

ẋ = f(x), t �= kd,

x(kd) = (1− u(k)) · x(kd− 0), k = 0, 1, 2, . . . ,
(4.1)

where x(kd − 0) and x(kd) denote the population size before and after harvesting at time kd,

k = 0, 1, 2, . . ., respectively. We assume that the solutions to Equation (4.1) are continuous

from the right and the function f(x) is continuously differentiable for all x � 0. In addition,

let f(0) � 0 that the quasipositivity condition for homogenious population is satisfied. For

such an exploitation regime the population size X(k) = x(kd− 0) before harvesting at time kd,

k = 0, 1, 2, . . ., is determined by the difference equation

X(k + 1) = ϕ(d, (1− u)X(k)), k = 0, 1, 2, . . . , (4.2)

where ϕ(t, x), t � 0, x � 0, is a solution to the equation ẋ = f(x) satisfying the initial condition

ϕ(0, x) = x.
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By definition, a homogeneous population consists of one species, i.e. n = 1. Without loss of

generality we can assume that C1 = 1, where C1 is the cost of the species. The formulas for the

time-average profit from the resource extraction and the harvesting efficiency take the form

H∗(u,X(0))
.
= lim

k→+∞
1

k

k−1∑

j=0

X(j)u(j),

E∗(u,X(0))
.
= lim

k→+∞

k∑

j=1

X(j)u(j)

k−1∑

j=0

u(j)

respectively. If the limits in these expressions exist, we use the notation H(u,X(0)) and

E(u,X(0)) for the time-average profit and the harvesting efficiency respectively.

For homogeneous populations the following consequence of Proposition 2.1 holds.

Corollary 4.1. Assume that the stationary exploitation regime u(k) ≡ u, k = 0, 1, . . ., holds

and Equation (4.2) has a fixed point ξ(u). Then for any initial point X(0) ∈ A(ξ(u))

H(u,X(0)) = ξ(u)u, E(u,X(0)) = ξ(u).

The following assertion provides conditions for the existence of a positive fixed point of

Equation (4.2) in the case of homogeneous populations.

Proposition 4.1. Assume that there exists K > 0 such that ϕ(t) ≡ K is a solution to the

equation ẋ = f(x). Let one of the following conditions hold:

(1) ϕ(d, 0) > 0 and u �= 1,

(2) ϕ(d, 0) = 0 and (1− u)ϕ′
x(d, 0) > 1.

Then Equation (4.2) has a fixed point ξ(u) such that 0 < ξ(u) � K.

Proof. We first show that for fixed d > 0 the function x 
→ ϕ(d, x) is increasing. Indeed, if

there exist x1 < x2 such that ϕ(d, x1) � ϕ(d, x2), then there exists a point t∗ ∈ (0, d] such that

ϕ(t∗, x1) = ϕ(t∗, x2), which contradicts the uniqueness condition for solutions to the differential

equation.

Let condition (1) be satisfied. Consider the increasing function h(x)
.
= ϕ(d, (1 − u)x). We

have h(0) = ϕ(d, 0) > 0 and h(K) = ϕ(d, (1− u)K) � ϕ(d,K) = K. Hence there exists a point

where the graphs of the functions y = h(x) and y = x intersect, i.e., there exists a fixed point

ξ(u) of Equation (4.2) such that 0 < ξ(u) � K.

Let condition (2) be satisfied. We note that the inequality (1 − u)ϕ′
x(d, 0) > 1 fails for

u = 1. Therefore, we consider u ∈ [0, 1). We have h(0) = ϕ(d, 0) = 0, h(K) � K, and

h′(0) = ϕ′
x(d, 0)(1 − u). Then (1− u)ϕ′

x(d, 0) > 1 implies h′(0) > 1. By the continuity of h′(x),
we have h′(x) > 1 for all x ∈ [0, δ) and some δ > 0. Therefore, the graph of the function

y = h(x) lies above the graph of the function y = x for x ∈ [0, δ). Hence there exists x∗ > 0

such that h(x∗) > x∗. Thus, there exists a point ξ(u) where the graphs of the functions y = h(x)

and y = x intersect. This point is a fixed point of Equation (2.1) such that 0 < ξ(u) � K.
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Remark 4.1. By (2.5) and (3.1), for a homogeneous population we have D(x) = ϕ(d, x)−x

and E(x) = ϕ(d, x), x � 0. Therefore, from the proof of Proposition 4.1 it follows that for

fixed d > 0 the function E(x) = ϕ(d, x) is increasing and can have a finite or infinite limit as

x → +∞. The behavior of the function D(x) is more complicated. In particular, D(x) can

attain its maximum at some point x∗ � 0.

Example 4.1. We find the time-average profit and the harvesting efficiency for a population

the dynamics of which is described, in the absence of exploitation, by the logistic equation

ẋ = (a− bx)x, x � 0, (4.3)

where x = x(t) is the population size at time t � 0, whereas a > 0 and b > 0 characterize

the population growth and the intraspecific competition respectively. Properties of solutions to

Equation (4.3) are described in [9].

The function

ϕ(t, x) =
aeatx

a+ bx
(
eat − 1

) , t � 0,

is a solution to Equation (4.3) and satisfies the initial condition ϕ(0, x) = x. A simple compu-

tation shows that for u ∈ [0, 1− e−ad) Equation (4.2) has two fixed points

ξ1(u) = 0, ξ2(u) =
aead(1− u)− a

b(ead − 1)(1− u)
> 0

such that the first one is unstable, whereas the second one is stable and has the attraction

domain (0,+∞). For u ∈ [1− e−ad, 1] Equation (4.2) has only one fixed point ξ(u) = 0 with the

attraction domain [0,+∞).

By Corollary 4.1, in the case of the stationary exploitation regime u(k) ≡ u, k = 0, 1, . . . ,

u ∈ [0, 1− e−ad), for any initial point X(0) ∈ (0,+∞)

H(u,X(0)) =
aead(u− u2)− au

b(ead − 1)(1− u)
,

E(u,X(0)) =
aead(1− u)− a

b(ead − 1)(1− u)
.

(4.4)

If X(0) = 0, then

H(u, 0) = E(u, 0) = 0.

If u ∈ [1− e−ad, 1], then

H(u,X(0)) = E(u,X(0)) = 0 ∀ X(0) ∈ [0,+∞).

Thus, we can conclude that for the large stationary control u(k) ≡ u, where u ∈ [1 − e−ad, 1],

the time-average profit H(u,X(0)) and the harvesting efficiency E(u,X(0)) vanish.

Computing the maximum of D(x) = ϕ(d, x)− x on R+ and using Theorem 2.1, we find that

for any u ∈ U and X(0) ∈ R+

H(u,X(0)) � H(u∗, X∗(0)) = D(x∗) =
a(ead/2 − 1)

b(ead/2 + 1)
, x∗ =

a

b(ead/2 + 1)
,

where X∗(0) ∈ A(ϕ(d, x∗)) = (0,+∞) and the stationary control u∗ is given by u∗(k) ≡ u∗ =

1− e−ad/2, k = 0, 1, . . . . The harvesting efficiency E(u,X(0)) can take any value � ∈ [0, a/b].
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5 Other Problems of Optimal Resource Harvesting

In this section, we consider two problems. In the first problem, the time-average profit takes

the same value h for different stationary controls u(k) ≡ u = (u1, . . . , un), k = 0, 1, 2, . . ., and

we study how to choose a control to guarantee the best harvesting efficiency. In the second

problem, the harvesting efficiency is fixed and we look for a control for which the time-average

profit attains its maximum. We discuss these problems by considering examples of two-species

homogeneous populations.

Example 5.1. We consider a homogeneous population whose dynamics is described by

Equation (4.3). By (4.4), H(u,X(0)) = h ∈ (0, D(x∗) for the controls u(k) ≡ u, k = 0, 1, . . . ,

where

u = u1,2 =
(a+ bh)(ead − 1)±

√
(a+ bh)2(ead − 1)2 − 4abhead(ead − 1)

2aead
. (5.1)

Then the harvesting efficiency takes the values

E(up, X(0)) =
aead

b(ead − 1)
− a

b(ead − 1)(1− up)
, up = (up, up, . . .), p = 1, 2.

Thus, if H(u,X(0)) = h, then the maximum of the harvesting efficiency on the set of

stationary controls is attained at the control u = u1 = (u1, u1, . . .), where u1 < u2 are given by

(5.1).

Now, let E(u,X(0)) = � ∈ (0, a/b] for u(k) ≡ u, where u ∈ [0, 1 − e−ad), k = 0, 1, . . . . By

(4.4), we get

u =
(a− b�)(ead − 1)

(a− b�)ead + b�
, H(u,X(0)) =

�(a− b�)(ead − 1)

(a− b�)ead + b�
.

Thus, if the harvesting efficiency E(u,X(0)) takes a fixed value ell ∈ (0, a/b], then the

time-average profit H(u,X(0)) can be uniquely found.

Figure 1 presents the graphs of the dependence of H(u,X(0)) and E(u,X(0)) on the controls

u = (u, u, . . .) in the stationary exploitation regime. Assume that the population dynamics

is described by the logistic equation (4.3) with parameters a = 1, b = 1, d = ln 2. Then

the maximum of the function D(x) is equal to 3 − 2
√
2 ≈ 0.172, and attained at the point

x∗ =
√
2− 1 ≈ 0.414. Moreover,

u∗ = 1− x∗

ϕ(t, x∗)
= 1− 1√

2
≈ 0.293

and for this control the harvesting efficiency E(u,X(0)) takes the value 2−√
2 ≈ 0.586.

We find the maximum of the harvesting efficiency E(u,X(0)) in the stationary exploitation

regime under the assumption that the time-average profit H(u,X(0)) = h < D(x∗) is fixed.

By (5.1), the time-average profit takes the value H(u,X(0)) = 0.15 at the controls u1 = 0.2,

u2 = 0.375. Calculating the harvesting efficiency at these controls, we find E(u1, X(0)) = 0.75

and E(u2, X(0)) = 0.4. Further, the time-average profit takes the value H(u,X(0)) = 0.1 at the

controls u1 ≈ 0.115 and u2 ≈ 0.435, and the harvesting efficiency calculated at these controls has

the values E(u1, X(0)) ≈ 0.870 and E(u2, X(0)) ≈ 0.23. Thus, the maximal harvesting efficiency

is equal to 0.75 if H(u,X(0)) = 0.15 and is approximately equal to 0.870. if H(u,X(0)) = 0.1.

Now, we consider the case where the harvesting efficiency E(u,X(0)) = � � 1 is fixed. We

find that, if E(u,X(0)) = 0.9, then H(u,X(0)) ≈ 0.082 at u ≈ 0.091; if E(u,X(0)) = 0.6, then
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H(u,X(0)) ≈ 0.171 at u ≈ 0.286; if E(u,X(0)) = 0.3, then H(u,X(0)) ≈ 0.124 at u ≈ 0.412.

We note that the harvesting efficiency attains the maximal value E(u,X(0)) = 1 at the control

u = 0 and, at this control, the time-average profit vanishes: H(u,X(0)) = 0 (see Figure 1).

Figure 1. The dependence of H(u,X(0)) and E(u,X(0)) on control u = (u, u, . . .) for

the parameters a = 1, b = 1, d = ln 2 in Equation (4.3) in the stationary exploitation

regime.

Example 5.2. Let the dynamics of a two-species population be described by the system

ẋ1 = (a1 − b1x1)x1,

ẋ2 = (a2 − b2x2)x2,
(5.2)

where xi = xi(t) � 0 is the population size at time t � 0 and the coefficients ai > 0 and bi > 0

are interpreted as the population growth and the intraspecific competition respectively for the

ith species. The system (5.2) is related to the situation where two species or two age classes

interact, but do not influence each other in any way [9].

For graphical illustration we take the following values of the coefficients in (5.2): a1 = 2,

a2 = 2, b1 = 5, b2 = 2.5. Let C1 = 1 and C2 = 2 be the resource costs of the first and second

species. The solution ϕ(t, x) to the system (5.2) satisfying the initial condition ϕ(0, x) = x =

(x1, x2) at time t = d = 0.5 ln 2 has the form

ϕ1(d, x) =
4x1

2 + 5x1
, ϕ2(d, x) =

4x2
2 + 2.5x2

.

By (2.5) and (3.1), the functions D(x) and E(x) for the system (5.2) can be written as

D(x) =
2x1 − 5x21
2 + 5x1

+
4x2 − 5x22
2 + 2.5x2

, E(x) =
4D(x)

4− 5x1 − 2.5x2
.

The maximum of D(x) is approximately equal to 0.343 and is attained at x∗ ≈ (0.166, 0.331);

moreover, E(x∗) ≈ 0.586 at this point x∗.
Let D(x) be fixed. We find the maximum of the harvesting efficiency E(x). If D(x) = 0.33,

then maxE(x) ≈ 0.721 is attained at (x1, x2) ≈ (0.249, 0.367) with controls u1 ≈ 0.188 and

u2 ≈ 0.270. If D(x) = 0.3, then maxE(x) ≈ 0.876 is attained at (x1, x2) ≈ (0.329, 0.392) with
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controls u1 ≈ 0.088 and u2 ≈ 0.255. Finally, if D(x) = 0.28, then maxE(x) ≈ 0.984 is attained

at x1 ≈ 0.371 and x2 ≈ 0.403 with controls u1 ≈ 0.036 and u2 ≈ 0.248.

Now, let the harvesting efficiency E(x) be fixed. We find the maximum of the function

D(x). If E(x) = 1, then maxD(x) ≈ 0.277 is attained at (x1, x2) ≈ (0.376, 0.404) with controls

u1 ≈ 0.029 and u2 ≈ 0.247. If E(x) = 0.65, then maxD(x) ≈ 0.339 is attained at (x1, x2) ≈
(0.207, 0.350) with controls u1 ≈ 0.242 and u2 ≈ 0.281. Finally, if E(x) = 0.4, then maxD(x) ≈
0.307 at (x1, x2) ≈ (0.055, 0.261) with controls taking the values 0.431 and 0.337 respectively.

The level curves of D(x) and E(x) are shown in Figure 2.

(a) (b)

Figure 2. (a) The level curves of the function D(x) for the system (5.2). The marked

points on the curve, mean the points where E(x) attains the maximum for a given value

D(x); x∗ is the maximum point of D(x). (b) The level curve of the function E(x) for

the system (5.2). The marked points on the curves mean the points where the function

D(x) takes the largest value.
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