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We consider the inverse problem for a quasilinear second order elliptic equation with

the unknown coefficient at the lower-order term and the first kind boundary condition

and the integral overedetermination condition on the boundary. We prove a theorem

on the local existence and uniqueness of a strong solution to the problem. The result is

illustrated by an example of a nonlinear equation satisfying all the assumptions of the

theorem. Bibliography: 6 titles.

1 Introduction

We study the following inverse problem. For given functions f(x), β(x), h(x) and a constant μ

it is required to find a function u and a constant k such that

− div(M (x)∇u) +m(x)u+ kr(u) = f, (1.1)

u|∂Ω = β(x), (1.2)
∫

∂Ω

∂u

∂N
h(x)ds = μ, (1.3)

where Ω∩Rn is a bounded domain with boundary ∂Ω ∈ C2, M (x) = mij(x) is a matrix-valued

function, mij , i, j = 1, 2, . . . , n, and m(x) is a scalar function. We set

∂

∂N
= (M (x)∇,n),
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where n is the unit outward normal to ∂Ω.

The main goal of the paper is to establish the existence, uniqueness, and stability (in the

sense of the continuous dependence on the data) of a strong solution to the problem (1.1)–(1.3).

We use the method developed in [1]–[3] and based on reducing the inverse problem to an operator

equation of the second kind for the unknown coefficient [4]. We note that the inverse problem

for the linear equation Mu+ ku = f with unknown constant coefficient k was studied in [5] and

[6] in the case of boundary conditions of the first and third kind respectively.

2 Preliminaries

For the norm and inner product we use the notation ‖·‖R and (·, ·)R in R
n and ‖·‖ and (·, ·) in

L2(Ω). We write ‖ · ‖j and 〈·, ·〉1 for the W j
2 (Ω)-norm, j = 1, 2, and the duality relation between

◦
W 1

2 (Ω) and W−1
2 (Ω) respectively. We introduce the linear operator M : W 1

2 (Ω) → W 1
2 (Ω) by

M = − div(M (x)∇) +m(x)I,

where I is the identity operator. We set

〈Mv1, v2〉M =

∫

Ω

((M (x)∇v1,∇v2)R +m(x)v1v2)dx ∀ v1, v2 ∈ W 1
2 (Ω).

In what follows, we assume that the following assumptions hold.

(I) mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n, m(x) are bounded in Ω. The operator M is elliptic,

i.e., there exist positive constants m0 and m1 such that for any v ∈ W 1
2 (Ω)

m0‖v‖21 � 〈Mv, v〉M � m1‖v‖21. (2.1)

(II) M is a selfadjoint operator, i.e., mij(x) = mji(x), i, j = 1, . . . , n.

(III) r(ρ) is continuous and strictly monotone on (−∞,+∞), i.e., (r(ρ1) − r(ρ2))(ρ1 − ρ2) > 0

for any ρ1, ρ2 ∈ (−∞,+∞), ρ1 �= ρ2, and r(0) = 0.

The existence and uniqueness of a solution to the direct problem (1.1), (1.2) is guaranteed

by the following assertion.

Lemma 2.1 ([3, Lemma 1]). Let Assumptions (I)–(III) hold, and let ∂Ω ∈ C2. Assume that

k � 0 is a given number, f ∈ L2(Ω), β ∈ W
3/2
2 (∂Ω),

|r(ρ)| � Cr|ρ|p−1 (2.2)

for any ρ ∈ (−∞,+∞), where Cr > 0, p are constants, p > 0 for n � 2 and 0 < p � n/(n− 2)

for n > 2. Then there exists a unique solution u to the problem (1.1), (1.2) in W 2
2 (Ω).

The proof of the existence and uniqueness of a solution to the inverse problem (1.1)–(1.3) is

based on the following two lemmas for the direct problem (1.1), (1.2).

Lemma 2.2. Let the assumptions of Lemma 2.1 hold, and let u ∈ W 2
2 (Ω) be a solution to

the problem (1.1), (1.2). If f � 0, β � 0, k > 0, then u � 0 almost everywhere in Ω.
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Proof. We take the inner product of (1.1) and u = min{u, 0} in L2(Ω) and integrate by

parts the first term:

〈Mu, u〉M + k

∫

Ω

r(u)udx−
∫

Ω

fudx = 0.

By (2.1), we have m1‖u‖21 � 0. Thus, u = 0 almost everywhere in Ω.

Lemma 2.3. Let the assumptions of Lemma 2.1 hold, and let u1, u2 ∈ W 2
2 (Ω) be solutions

to the problems

Mui + kir(ui) = fi,

ui|∂Ω = βi,

where i = 1, 2. If 0 � k1 � k2, 0 � β2 � β1, 0 � f2 � f1, then 0 � u2 � u1 for almost all x ∈ Ω.

Proof. By Lemma 2.2, ui � 0, i = 1, 2, for almost all x ∈ Ω, which, in view of Assumption

(III), implies the nonnegativity of r(ui), i = 1, 2. The difference u1 − u2 satisfies the equation

M(u1 − u2) + k1(r(u1)− r(u2)) = r(u2)(k2 − k1) + f1 − f2

and the boundary condition u2 − u1|∂Ω = β1 − β2. We take the inner product of the equation

for u1 − u2 and ũ = min{u1 − u2, 0} in L2(Ω) and integrate by parts the first term:

〈Mũ, ũ〉M + k1

∫

Ω

(r(u1)− r(u2))ũdx+ (k1 − k2)

∫

Ω

r(u2)ũdx−
∫

Ω

fũdx = 0,

which, in view of the definition of ũ, implies that u1 − u2 � 0 for almost all x ∈ Ω.

We note that 0 � r(u2) � r(u1) under the assumptions of Lemma 2.3.

3 Existence and Uniqueness Theorem

By a solution to the problem (1.1)–(1.3) we mean a pair {u, k} of a function u ∈ W 2
2 (Ω) and

a constant k ∈ R+ satisfying Equation (1.1) and the conditions (1.2), (1.3), where R+ denotes

the set of nonnegative real numbers.

We introduce the following additional condition on the function r.

(IV) For any number R > 0 and functions v1, v2 ∈ W 1
2 (Ω) such that ‖vi‖L2(p−1)(Ω) � R, i = 1, 2,

‖r(v1)− r(v2)‖ � c(R)‖u− v‖1,
where the constant c(R) > 0 depends on R.

We introduce auxiliary functions a, aσ, b as solutions to the problem

Ma = f(x), a|∂Ω = β(x), (3.1)

Maσ + σr(aσ) = f(x), aσ|∂Ω = β(x), (3.2)

Mb = 0, b|∂Ω = h(x), (3.3)

where σ > 0 is a real number.
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Theorem 3.1. Let the assumptions of Lemma 2.1 and Assumption (IV) hold. Assume

that

(i) f(x) ∈ L2(Ω), β(x), h(x) ∈ W
3/2
2 (∂Ω),

(ii) f(x) � 0 almost everywhere in Ω, β(x) � 0, h(x) � 0 for almost all x ∈ ∂Ω and there

exists a part Γ of the boundary ∂Ω and a constant δ > 0 such that β � δ and h(x) � δ

almost everywhere on Γ.

We also assume that

0 � Φ ≡ (f, b)− 〈Ma, b〉1 + μ � m1 (r(a), b)
2

4cp0 C
p/(p−1)
r Ψ

,

where Ψ = c(‖a‖L2p−2(Ω))‖a‖p−1
1 ‖b‖1, c0 is the constant of the embedding of W 1

2 (Ω) to Lp(Ω).

Then the problem (1.1)–(1.3) has a solution {u, k}. Furthermore, if

0 � Φ ≡ (f, b)− 〈Ma, b〉1 + μ <
m1 (r(a), b)

2

4cp0 C
p/(p−1)
r Ψ

, (3.4)

then the solution is unique and for some σ > 0 the following estimates hold:

0 � k � σ, aσ � u � a, ‖u‖2 � CM (σ Cr ‖a‖p−1
1 + ‖a‖) + ‖a‖2, (3.5)

where the constant CM depends on m0, σ, and mes Ω.

Proof. Following [4] and [1], we reduce the inverse problem to the operator equation for the

coefficient k. For this purpose we introduce the function w = a−u. By (1.1)–(1.3), the function

w and constant k satisfy the relations

Mw + k(r(a)− r(a− w)) = kr(a), (3.6)

w|∂Ω = 0, (3.7)
∫

∂Ω

∂w

∂N
h(x)ds =

∫

∂Ω

∂a

∂N
h(x)ds− μ = 〈Ma, b〉 − (f, b)− μ. (3.8)

We take the inner product of (3.6) and b in L2(Ω) and twice integrate by parts. Then, taking

into account (3.7) and (3.8), we get

k(r(u), b) = Φ.

We introduce the operator A : R+ → R sending each number y ∈ R to a number Ay by the rule

Ay =
Φ

(r(uy), b)
, (3.9)

where uy is a solution to the problem (1.1), (1.2) for k = y. We obtain the assertion of the

theorem if we establish the existence of σ > 0 such that the operator A defined for all k ∈ [0, σ]

is continuous on [0, σ] and maps [0, σ] into itself. From Lemma 2.3 it follows that for 0 � y � σ

aσ � uy � a. (3.10)
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By the assumptions of the theorem, 0 < (aσ, b) � (a, b) and, consequently, 0 < (r(aσ), b) �
(r(a), b), which implies

0 � Ay � Φ

(r(aσ), b)
.

On the other hand, the difference a− aσ satisfies the equation

M(a− aσ) + σ(r(a)− r(aσ)) = σr(a)

and vanishes on the boundary. Taking the inner product of this equality and a − aσ in L2(Ω)

and integrating by parts the first term, we find

〈M(a− aσ), a− aσ〉1 + σ(r(a)− r(aσ), a− aσ) = σ(r(a), a− aσ).

By the ellipticity of M , the inequality (2.2), and Assumptions (III), (IV), we have

〈M(a− aσ), a− aσ〉1 � m1‖a− aσ‖2

σ(r(aσ), a− aσ) � σ2

2m1
C2p/p−1
r ‖a‖2(p−1)

1 · c20 +
m1

2
‖a− aσ‖21.

Thus,

‖a− aσ‖1 � σ

m1
Cp/(p−1)
r cp0‖a‖p−1

1 .

Using the obtained estimate and the inequality (3.10), we estimate the denominator in (3.9):

(r(uy), b) � (r(a), b)+(r(aσ)−r(a), b) � (r(a), b)−σ
C

p/(p−1)
r cp0
m1

c(‖a‖L2p−2(Ω))‖a‖p−1
1 ‖b‖1. (3.11)

Hence it is clear that the right-hand side of (3.11) is strictly positive if

0 < σ � m1 (r(a), b)

C
p/(p−1)
r cp0 Ψ

.

The operator A transforms the segment [0, σ] into itself provided that

0 � Ay � Φ

(r(a), b)− C
p/(p−1)
r cp0

m1
·Ψσ

,

i.e., if σ satisfies the inequality

C
p/(p−1)
r cp0
m1

Ψ · σ2 − (r(a), b) · σ +Φ � 0. (3.12)

Since

D = (r(a), b)2 − 4Φ
C

p/(p−1)
r cp0
m1

Ψ � 0,

the inequality (3.12) is valid, i.e., the operator A maps [0, σ] into itself for

((r(a), b)−√
D)m1

2ΨC
p/(p−1)
r cp0

� σ � ((r(a), b) +
√
D)m1

2ΨC
p/(p−1)
r cp0

.
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Now, we estimate uy in W 1
2 (Ω) for 0 � y � σ. Let the function wy = a−uy satisfy (3.6)–(3.8)

with k = y. Taking the inner product of (3.6) and wy in L2(Ω) and integrating by parts the

first term, we get

〈Mw,w〉1 + k

∫

Ω

(r(a)− r(a− w))w dx = k

∫

Ω

r(a)w dx.

By Assumptions (I)–(IV),

〈Mw,w〉1 + k

∫

Ω

(r(a)− r(a− w))w dx � m0‖w‖21,

k

∫

Ω

r(a)w dx � σ‖w‖Lp(Ω)‖r(a)‖Lp/p−1(Ω) � σ Cp/p−1
r c0 ‖a‖p−1

Lp(Ω)‖w‖1.

Thus,

‖w‖1 � σ

m0
Cp/(p−1)
r c0 ‖a‖p−1

Lp(Ω).

Consequently,

‖u‖1 � σ

m0
Cp/(p−1)
r c0 ‖a‖p−1

Lp(Ω) + ‖a‖1.

Now, we estimate the second order derivatives. We first write (3.6) in the form Mw =

kr(a− w). Then

‖Mw‖ � σ‖r(a− w)‖.
Using the definition of w, (2.2), (3.10), and the known inequality

‖v‖2 � CM (‖Mv‖+ ‖v‖),

we obtain the required estimate

‖w‖2 � CM (σ‖r(a− w)‖+ ‖w‖) � CM (σ Cr‖a‖p−1
1 + ‖a‖),

where the constant CM depends on m0, m1, and mes Ω. Thus,

Cr‖a‖p−1
1 + ‖a‖) + ‖a‖2.

We show that the operator A is continuous on [0, σ]. Let y1, y2 ∈ [0, σ]. Assume that uy1
and uy2 are solutions to the problem (3.6), (3.7) with k = y1 and k = y2 respectively. By the

definition of A,

Ay1 −Ay2 =
Φ

(r(uy1), b)
− Φ

(r(uy2), b)
=

Φ(r(uy2)− r(uy1), b)

(r(uy1), b)(r(uy2), b)
.

Let us estimate in modulus the right-hand side of the last relation. Taking into account the

inequality (3.11) and the definition of Ψ, we find

|Ay1 −Ay2| �
∣∣∣Φ(r(uy2)− r(uy1), b)

(r(aσ), b)2

∣∣∣ � |Φ(r(uy2)− r(uy1), b)|
((r(a), b)−Ψσ

C
p/(p−1)
r cp0

m1
)2
. (3.13)
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On the other hand, taking the inner product of Equation (3.6) with k = y1, k = y2 and uy1 −uy2
in L2(Ω) and integrating by parts the first term, we get

〈M(uy1 − uy2), uy1 − uy2〉1 + y1(r(uy1)− r(uy2), uy1 − uy2) = (y2 − y1)(r(uy1), uy1 − uy2).

By Assumptions (I)–(III) and the nonnegativity of y1,

〈M(uy1 − uy2), uy1 − uy2〉1 + y1(r(uy1)− r(uy2), uy1 − uy2) � m1‖uy1 − uy2‖21.

Using (2.2) for uy1 , the Cauchy inequality, and the Cauchy–Schwarz inequality, we get

(y2 − y1)(r(uy1), uy1 − uy2) �
c20
2m1

|y2 − y1|2C2p/(p−1)
r ‖a‖2p−2

Lp(Ω) +
m1

2
‖uy1 − uy2‖21

which implies

‖uy1 − uy2‖1 � Cp/(p−1)
r c0

‖a‖p−1
Lp(Ω)

m1
|y2 − y1|.

Consequently,

‖r(uy1)− r(uy2)‖ � Cp/(p−1)
r c0

‖a‖p−1
Lp(Ω)

m1
c(‖a‖L2p−2(Ω))|y2 − y1|. (3.14)

Combining (3.13) with (3.14) and setting

σ =
((r(a), b)−√

D)m1

2ΨC
p/(p−1)
r cp0

= σ0,

we obtain the inequality

|Ay1 −Ay2| � 4

√
C

2p/(p−1)
r c20

Φ‖b‖‖a‖p−1
Lp(Ω)

m1((r(a), b) +
√
D)2

|y2 − y1|, (3.15)

which implies that the operator A is Lipschitz. By the Brower fixed-point theorem, the operator

A has a fixed point k∗ ∈ [0, σ] and the pair {u∗, k∗} is a solution to the problem (3.6), (3.7) with

k = k∗.
Let us prove that the fixed point is unique on [0, σ]. Indeed if (3.5) holds, then

q = 4Cp/(p−1)
r cp0 ·

Φ‖b‖‖a‖p−1
Lp(Ω)

m1((r(a), b) +
√
D)2

<
(r(a), b)2

((r(a), b) +
√
D)2

< 1,

i.e., the operator A is a contraction on [0, σ] with the coefficient of contraction q. Let (u′, k′)
and (u′′, k′′) be two solutions to the problem (3.6)–(3.8). Then k′ and k′′ are fixed points of the

operator A. By (3.15),

|k′ − k′′| = |Ak′ −Ak′′| = q|k′ − k′′|
which implies k′ = k′′. Repeating the proof of (3.14), we can obtain a similar relation for u′−u′′

which means that u′ = u′′ almost everywhere in Ω. Under the assumption (3.4), the solution

{u, k} continuously depends on the data of the problem.
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Remark 3.1. The set of data satisfying the assumptions of Theorem 3.1 is nonempty.

Indeed, let us consider the inverse problem (1.1)–(1.3) for the nonlinear stationary equation

governing the anisotropic dissipation in a semiconductor

−
(
α1Δ2u+ α2

∂2u

∂x23

)
+ k|u|p−2u = 0, (3.16)

where Δ2 is the Laplace operator with respect to the variables x1 and x2, the parameter k

depends on the electric susceptibility, and the constants α1 > 0 and α2 > 0 are determined by the

tensor of electric polarizability of the semiconductor. Without loss of generality we can assume

that the inverse problem is considered in the domain Ω ⊂ R3
+ = {x|x = (x1, x2, x3) ∈ R3, xi �

0, i = 1, 2, 3}. In this case, the operator M = −(α1Δ2+α2∂
2/∂x23) satisfies Assumptions (I) and

(II). The function r(u) = |u|p−2u with p = 3 satisfies Assumptions (III) and (IV) with c(R) =

2c0R and the inequality (2.2) with Cr = 1. In (1.2) and (1.3), we set β(x) = d1x1+d2x2+d3x3+d4
and h(x) = h1x1 + h2x2 + h3x3 + h4, where d4 > 0, h4 > 0, di � 0, hi � 0, i = 1, 2, 3. Then

the solutions to the problems (3.1) and (3.3) take the form a(x) = d1x1 + d2x2 + d3x3 + d4 and

b(x) = h1x1 + h2x2 + h3x3 + h4 in the whole domain Ω and satisfy (i) and the nonnegativity

condition in (ii). If μ > 0 and the domain Ω is sufficiently small, then (3.4) holds. Indeed,

〈Ma, b〉1 = [α1(d1h1 + d2h2) + α2d3h3]

∫

Ω

dx ≡ α mes Ω.

The constant c0 of the embedding of W 1
2 (Ω) to L3(Ω) can be estimated as follows:

c0 �
√
5

2
(1 + mes Ω)1/2 + (mes Ω)5/6.

We obtain (3.4) from the relations

0 � μ− α mes Ω � m1d
4
4h

2
4(mes Ω)−1/4

4K[
√
5(1 + mes Ω)1/2 + 2(mes Ω)5/6]4

if μ > 0 and mes Ω is sufficietnly small. Here,

K = [(max
x∈Ω

a)2 + d21 + d22 + d23]
3[(max

x∈Ω
b)2 + h21 + h22 + h23]max

x∈Ω
a.

According to Theorem 3.1, the inverse problem for Equation (3.16) with conditions (1.2), (1.3)

has a unique solution.
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