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DYNAMICS OF TWO BODIES WITH TRAJECTORIES ON A FIXED STRAIGHT
LINE WITH REGARD FOR THE FINITE SPEED OF GRAVITY

V. Yu. Slyusarchuk UDC 517.929+517.958

We study the dynamics of two bodies moving along an immobile straight line with regard for a finite
speed of gravity. It is shown that the escape velocity is higher than the corresponding velocity in the
classical celestial mechanics. We present estimates for this velocity.

1. Introduction

In the present paper, we establish the fact that the escape velocities in the Newton celestial mechanics and in the
mechanics with a finite speed of gravity do not coincide. This property of cosmic velocities is obtained for the case
of two celestial bodies by using a system of differential equations with delayed argument and functional equations,
which, together with certain additional conditions imposed on the solutions of equations, form a mathematical
model of motion of the analyzed bodies. These equations better describe the dynamics of bodies than the ordinary
differential equations of Newton mechanics. The necessity of application of these equations is caused by the fact
that the speed of gravity is finite. This property of gravity agrees both with the Einstein general theory of relativity
in which, for the speed of gravity cg ; it is assumed that cg D c; where c is the speed of light [1, 2] and with the
experimental data of evaluation of the rate of influence of the gravitational fields on the results of measurement [3]
and with the data of measurements of the speed of gravity performed by detecting gravitational waves from remote
star sources simultaneously with their light signals [4].

In [5], the author studied the motion of two bodies with regard for a finite speed of gravity and revealed the
non-Keplerian character and instability of motion of the bodies.

In the present paper, we investigate the motion of two bodies located on a fixed straight line in the case where
cg D c: It is shown that, in this case, the escape velocity is higher than in the classical celestial mechanics. We
obtain estimates for their difference. The difference between the indicated escape velocities is caused by the delay
of the gravitational field.

By using the law of gravitation with a finite speed of gravity and the second Newton’s law, we derive the
equations of motion of the bodies with regard for the delay of gravitational fields and analyze the dynamics of the
bodies.

2. Law of Gravitation for a Finite Speed of Gravity

Consider two points M1 and M2 with masses m1 and m2; respectively. These points move in the space
according to the law of gravitation and Newton’s second law. We consider the process of motion of these points in
an inertial Cartesian coordinate system x; y; z with origin at the point O: Assume that each point is subjected to
the action of the gravitational field generated by the other point. The locations of the pointsM1 andM2 at time t
are specified by their radius vectors Er1.t/ and Er2.t/:
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To study the motion of the pointsM1 andM2; it is necessary to know the forces of their mutual attraction.
In the case where the speed of gravity is infinite, as in the classical celestial mechanics, according to the law

of gravitation, the pointM2 attracts the pointM1 at time t by a force

EF2;1;1.t/ D
Gm1m2ˇ̌

Er2.t/ � Er1.t/
ˇ̌3

�
Er2.t/ � Er1.t/

�
;

where G is the gravitational constant and
ˇ̌
Er2.t/ � Er1.t/

ˇ̌
is the Euclidean length of the vector Er2.t/ � Er1.t/: The

direction of this force coincides with the direction of the vector Er2.t/ � Er1.t/:
Similarly, at time t; the pointM1 attracts the pointM2 by the force

EF1;2;1.t/ D
Gm1m2ˇ̌

Er1.t/ � Er2.t/
ˇ̌3

�
Er1.t/ � Er2.t/

�
:

Since, according to Sec. 1, the speed of gravity is finite, the action of one point upon the other occurs with a
certain delay of the gravitational field. Therefore, a somewhat different force

EF2;1;c.t/ D
Gm1m2ˇ̌

Er2.t � ⌧2;1.t// � Er1.t/
ˇ̌2

�
Er2.t � ⌧2;1.t// � Er1.t/

�
(1)

acts upon the pointM1: Here, the delay of gravity ⌧2;1.t/ in (1) satisfies the following relation:

c⌧2;1.t/ D
ˇ̌
Er2.t � ⌧2;1.t// � Er1.t/

ˇ̌
; (2)

and c is the speed of gravity (see [5, 6]).
The attracting point for the pointM1 at time t is not the pointM2 but the point that coincides with the end of

the vector Er2.t � ⌧2;1.t//.
Similarly, the force

EF1;2;c.t/ D
Gm1m2ˇ̌

Er1.t � ⌧1;2.t// � Er2.t/
ˇ̌3

�
Er1.t � ⌧1;2.t// � Er2.t/

�
(3)

acts upon the point M2: The attractor for the point M2 at time t is not the point M1 but the point that coincides
with the end of the vector Er1.t � ⌧1;2.t//, and the delay of gravity ⌧1;2.t/ in relation (3) satisfies the relation

c⌧1;2.t/ D
ˇ̌
Er1.t � ⌧1;2.t// � Er2.t/

ˇ̌
: (4)

The forces EF2;1;c.t/ and EF1;2;c.t/ may be different and not collinear. According to (2) and (4), for any time t;

lim
c!C1

EFi;j;c.t/ D EFi;j;1.t/ and lim
c!C1

⌧i;j .t/ D 0; i 6D j: (5)
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3. Mathematical Model of Motion of the PointsM1 andM2

In view of the second Newton’s law, the law of gravitation with finite speed of gravity, and relations (1)–(4),
the process of motion of the pointsM1 andM2 is described by the following system of differential equations with
deviating argument and functional equations:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

m1
REr1.t/ D

Gm1m2ˇ̌
Er2.t � ⌧2;1.t// � Er1.t/

ˇ̌3
�
Er2.t � ⌧2;1.t// � Er1.t/

�
;

m2
REr2.t/ D

Gm1m2ˇ̌
Er1.t � ⌧1;2.t// � Er2.t/

ˇ̌3
�
Er1.t � ⌧1;2.t// � Er2.t/

�
;

c⌧2;1.t/ D
ˇ̌
Er2.t � ⌧2;1.t// � Er1.t/

ˇ̌
;

c⌧1;2.t/ D
ˇ̌
Er1.t � ⌧1;2.t// � Er2.t/

ˇ̌
:

(6)

The detailed description of system (6) and the results of its investigation can be found in [5–7].
It is clear that the following relation must be true in addition to system (6):

ˇ̌
Er2.t � ⌧2;1.t// � Er1.t/

ˇ̌
�
ˇ̌
Er1.t � ⌧1;2.t// � Er2.t/

ˇ̌
6D 0: (7)

According to (5), system (6) is a generalization of the classical model of motion of the pointsM1 andM2:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

m1
REr1.t/ D

Gm1m2ˇ̌
Er2.t/ � Er1.t/

ˇ̌3
�
Er2.t/ � Er1.t/

�
;

m2
REr2.t/ D

Gm1m2ˇ̌
Er1.t/ � Er2.t/

ˇ̌3
�
Er1.t/ � Er2.t/

�
;

(8)

which follows from (6) as c ! C1:

In view of (7), the inequality Er2.t/ 6D Er1.t/ must hold for system (8).
For the determination of the trajectories of motion of the points M1 and M2; in addition to the system of

equations (6), it is necessary to use initial or boundary conditions (see [5–7]). System (6), together with these
conditions, forms a mathematical model of motion of the points M1 and M2 with regard for the finite speed of
gravity.

4. Investigation of Rectilinear Motion of the PointsM1 andM2

We study the motion of the pointsM1 andM2 located on a fixed straight line.
Without loss of generality, we can assume that the pointsM1 andM2 lie on the Ox-axis with directional unit

vector Ei ; as shown in Fig. 1, and the velocity of the origin of coordinates (the point O) is equal to zero.
We assume that this coordinate system is inertial.

It is clear that the location of the points O; M1; and M2 on the Ox-axis depends on time t: An important
requirement is that the location of the pointsM1 andM2 must be such that the vector

����!
M1M2 be nonzero .

����!
M1M2 6D

E0I the absence of collisions of the points) and its direction coincide with the direction of the vector Ei ; as shown in
Fig. 1.
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Fig. 1. Location of the pointsM1 andM2 at time t:

In this case, the motion of the points M1 and M2 can be described by the vector functions Er1.t/ D x1.t/ Ei
and Er2.t/ D x2.t/ Ei ; where x1.t/ and x2.t/ are scalar functions with values in R whose properties should be
investigated.

According to (6) (i.e., for cg D c), the functions x1.t/ and x2.t/ are solutions of the system of equations

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Rx1.t/ D Gm2
x2.t � ⌧2;1.t// � x1.t/

jx2.t � ⌧2;1.t// � x1.t/j3
;

Rx2.t/ D Gm1
x1.t � ⌧1;2.t// � x2.t/

jx1.t � ⌧1;2.t// � x2.t/j3
;

c⌧2;1.t/ D jx2.t � ⌧2;1.t// � x1.t/j ;

c⌧1;2.t/ D jx1.t � ⌧1;2.t// � x2.t/j :

(9)

At the same time, according to (8) (cg D 1), these functions are solutions of the following system of equations:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

Rx1.t/ D Gm2
x2.t/ � x1.t/

jx2.t/ � x1.t/j3
;

Rx2.t/ D Gm1
x1.t/ � x2.t/

jx1.t/ � x2.t/j3
:

(10)

The properties of the solutions x1.t/ and x2.t/ of systems (9) and (10) depend on the initial time t0 2 R and
the initial conditions.

We investigate the motion of the pointM2 relative to the pointM1; i.e., the quantity x2.t/ � x1.t/:
Consider properties of the quantity x2.t/ � x1.t/ for each system (9) and (10) separately. First, we present

some properties of solutions of the well investigated system (10) (see, e.g., [8–11]) required for analysis of the
properties of solutions of the main system (9).

4.1. Case of System (10). We take into account the values x1.t0/ and x2.t0/ of the solutions x1.t/ and x2.t/
of system (10) and their derivatives v1.t0/ D Px1.t0/ and v2.t0/ D Px2.t0/ at the initial time t0: Here, v1.t0/ and
v2.t0/ are the velocities of the pointsM1 andM2 at the time t0; respectively. Assume that

x1.t0/ < x2.t0/; (11)

which agrees with the condition concerning the location of the pointsM1 andM2:
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Consider the quantity

v⇤2;1 D
s
2G.m1 Cm2/

x2.t0/ � x1.t0/
: (12)

The following statement is true:

Theorem 1. Suppose that relation (11) holds.
Then the following assertions are true for system (10):

(i) if

v2.t0/ � v1.t0/ 2 .�c; 0ç; (13)

then there exits a number T > t0 such that the function x2.t/�x1.t/ is strictly decreasing on the interval
Œt0; T / and lim

t!T�0
.x2.t/ � x1.t// D 0 (the pointsM1 andM2 collide at the time T );

(ii) if

v2.t0/ � v1.t0/ 2
�
0; v⇤2;1

�
; (14)

then, for some numbers T1 and T2 (t0 < T1 < T2), the function x2.t/ � x1.t/ is strictly increasing and
strictly decreasing on the intervals Œt0; T1/ and ŒT1; T2/, respectively, and lim

t!T2�0
.x2.t/ � x1.t// D 0

(the pointsM1 andM2 collide at the time T2);

(iii) if

v2.t0/ � v1.t0/ � v⇤2;1; (15)

then the function x2.t/ � x1.t/ strictly increases on Œt0;C1/ and lim
t!C1

.x2.t/ � x1.t// D C1:

Proof. We first present some relations necessary in what follows.
An important equality

Rx2.t/ � Rx1.t/ D �G.m1 Cm2/
x2.t/ � x1.t/

jx2.t/ � x1.t/j3
(16)

follows from (10). By using this equality, we get

d. Px2.t/ � Px1.t//2
dt

D �2G.m1 Cm2/
x2.t/ � x1.t/

jx2.t/ � x1.t/j3
. Px2.t/ � Px1.t//:

In view of (11) and the equality . Px2.t/ � Px1.t// dt D d.x2.t/ � x1.t//; we conclude that, for all t > t0;

. Px2.t/ � Px1.t//2 D .v2.t0/ � v1.t0//2 � 2G.m1 Cm2/

tZ

t0

x2.s/ � x1.s/
jx2.s/ � x1.s/j3

d.x2.s/ � x1.s//
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D .v2.t0/ � v1.t0//2 � 2G.m1 Cm2/

tZ

t0

d.x2.s/ � x1.s//
.x2.s/ � x1.s//2

D .v2.t0/ � v1.t0//2 �
2G.m1 Cm2/

x2.t0/ � x1.t0/
C 2G.m1 Cm2/

x2.t/ � x1.t/
(17)

if x2.s/ > x1.s/ for every s 2 Œt0; t /: The set of these t is nonempty by virtue of (11) and the continuity of the
functions x1.t/ and x2.t/ at the point t0:

Relation (16) also implies that, for all t > t0;

Px2.t/ � Px1.t/ D v2.t0/ � v1.t0/ �
tZ

t0

G.m1 Cm2/ ds

jx2.s/ � x1.s/j2
(18)

and

x2.t/ � x1.t/ D x2.t0/ � x1.t0/C .v2.t0/ � v1.t0//.t � t0/ �
tZ

t0

⌧Z

t0

G.m1 Cm2/ ds

jx2.s/ � x1.s/j2
d⌧ (19)

provided that x2.s/ > x1.s/ for any s 2 Œt0; t /:
We use these relations to prove the assertions of the theorem.
Assume that inclusion (13) is true.
In view of inequality (11) and Eqs. (16) and (18), the pointM2 moves relative to the pointM1 with a deceler-

ation equal to

� G.m1 Cm2/

.x2.t/ � x1.t//2
< 0:

Hence, in view of (18) and (19), for some T > t0; the functions Px2.t/ � Px1.t/ and x2.t/ � x1.t/ are strictly
decreasing on the interval Œt0; T / and lim

t!T�0
.x2.t/ � x1.t// D 0:

From the mechanical point of view, this corresponds to the collision of the pointsM1 andM2 at time T:
Thus, the first part of the assertion of the theorem is true.

Assume that inclusion (14) holds.
In this case, the function x2.t/ � x1.t/ cannot be both positive and unbounded on Œt0;C1/ because, in view

of (17), the function . Px2.t/� Px1.t//2 takes negative values for some sufficiently large t [here, we take into account
(12)], which is impossible.

The function x2.t/�x1.t/ cannot also be positive and bounded on the interval Œt0;C1/ because, in this case,
in view of (18), for some t1 > t0; the function Px2.t/ � Px1.t/ takes negatives values for t > t1 and Px2.t/ � Px1.t/
monotonically decreases. Hence, lim

t!t2�0
.x2.t/ � x1.t// D 0 for some t2 > t1 and x2.t2/ � x1.t2/ > 0; which is

impossible.
Thus, the continuous function x2.t/ � x1.t/ is positive and bounded on some interval Œt0; T2/ and

lim
t!T2�0

.x2.t/ � x1.t// D 0:

Indeed, in view of (14) and (18), the function x2.t/ � x1.t/ is strictly increasing on some interval Œt0; T1/;
where T1 is the time for which Px2.T1/ � Px1.T1/ D 0; and strictly decreasing on the interval ŒT1; T2/; where T2 is
the time for which lim

t!T2�0
.x2.t/ � x1.t// D 0.
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The equality lim
t!T2�0

.x2.t/ � x1.t// D 0 corresponds to the collision of pointsM1 andM2 at the time T2:

Thus, the second assertion of the theorem is also true.

Assume that inclusion (15) is true. Thus, by virtue of (12) and (17), we get

. Px2.t/ � Px1.t//2 � 2G.m1 Cm2/

x2.t/ � x1.t/
> 0 for all t � t0;

whence, by using relation (18), we conclude that

Px2.t/ � Px1.t/ > 0 for all t � t0: (20)

Hence, the function x2.t/ � x1.t/ is strictly increasing on the interval Œt0;C1/:

The function x2.t/ � x1.t/ cannot be bounded on the interval Œt0;C1/ because, in this case, in view of (18),
the function Px2.t/ � Px1.t/ takes negative values for sufficiently large t , which contradicts (20) and, hence,

lim
t!C1

.x2.t/ � x1.t// D C1: (21)

Thus, the third part of assertion of the theorem is also true.
Theorem 1 is proved.

Remark 1. In Theorem 1, the quantity v⇤2;1 given by equality (12) is the escape velocity in the case of
classical celestial mechanics. This is the minimal relative velocity v2.t0/ � v1.t0/ of motion of the point M2

relative to the pointM1 (with coordinates x2.t0/ and x1.t0/; respectively) at the time t0 for which relation (21) can
be true.

4.2. The Case of System (9). We now show that the assertion similar to Theorem 1 is true for system (9)
and the corresponding escape velocity is higher than v⇤2;1.

The trajectory of motion of the pointM2 relative to the pointM2 depends on the values of functions x1.t/ and
x2.t/ and their derivatives on the segments Œt0� ⌧2;1.t0/; t0ç and Œt0� ⌧1;2.t0/; t0ç; respectively (we do not indicate
the values of the derivatives v1.t/ D dx1.t/=dt and v2.t/ D dx2.t/=dt on the corresponding segments because
they are determined by the functions x1.t/ and x2.t/).

In view of (9), we find

Rx2.t/ � Rx1.t/ D �Gm1
x2.t/ � x1.t � ⌧1;2.t//

jx1.t � ⌧1;2.t// � x2.t/j3
�Gm2

x2.t � ⌧2;1.t// � x1.t/
jx2.t � ⌧2;1.t// � x1.t/j3

: (22)

Note that the numerators of the terms on the right-hand side of (22) are positive.
Indeed, assume that

x2.t/ � x1.t � ⌧1;2.t// < 0: (23)

Then, in view of the fourth equation in system (9), we get

c⌧1;2.t/ D jx2.t/ � x1.t � ⌧1;2.t//j D �.x2.t/ � x1.t � ⌧1;2.t///
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D �.x2.t/ � x1.t// � .x1.t/ � x1.t � ⌧1;2.t/// D �.x2.t/ � x1.t// � v1⌧1;2.t/;

where

v1 D x1.t/ � x1.t � ⌧1;2.t//

⌧1;2.t/
;

and, hence, .�c � v1/⌧1;2.t/ D x2.t/� x1.t/: By using this result and the positivity of ⌧1;2.t/ and x2.t/� x1.t/;
we obtain �c�v1 > 0: This inequality is true only for �v1 > c; which is impossible according to [1] (the velocity
of the pointM1 cannot be greater than c).

Thus, the assumption that relation (23) holds is not true. Therefore, by using (7), we get

x2.t/ � x1.t � ⌧1;2.t// > 0: (24)

Similarly, we find

x2.t � ⌧2;1.t// � x1.t/ > 0: (25)

In view of (24) and (25), relation (22) can be rewritten in the form

Rx2.t/ � Rx1.t/ D � Gm1

.x2.t/ � x1.t � ⌧1;2.t///2
� Gm2

.x2.t � ⌧2;1.t// � x1.t//2
: (26)

In what follows, we need the closed and open initial intervals

It0 D Œt0 �maxf⌧1;2.t0/; ⌧2;1.t0/g; t0ç and int It0 D .t0 �maxf⌧1;2.t0/; ⌧2;1.t0/g; t0/:

To study the motion of the point M2 relative to the point M1; we specify the initial values  1.s/ and  2.s/

for x1.t/ and x2.t/ on the interval It0 by assuming that:

(1)  1.s/ and  2.s/ are continuously differentiable on int It0 and continuous on It0 I

(2)  2.s/ �  1.s/ > 0 for all s 2 It0 (the pointM2 cannot coincide with the pointM1);

(3) the derivatives P 1.s/ and P 2.s/ are bounded and integrable on int It0 and the limits lim
s!t0�0

P i .s/; i D
1; 2; exist.

According to the third and fourth equations in system (9), the deviations ⌧1;2.t0/ and ⌧2;1.t0/ satisfy the
relations

c⌧2;1.t0/ D  2.t0 � ⌧2;1.t0// �  1.t0/;

c⌧1;2.t0/ D  2.t0/ �  1.t0 � ⌧1;2.t0//;

x1.t � ⌧1;2.t// D  1.t � ⌧1;2.t//

for all t � t0 such that t � ⌧1;2.t/ 2 Œt0 � ⌧1;2.t0/; t0ç and
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x2.t � ⌧2;1.t// D  2.t � ⌧2;1.t//

for all t � t0 such that t � ⌧2;1.t/ 2 Œt0 � ⌧2;1.t0/; t0ç:

Here, t�⌧2;1.t/ > t0�⌧2;1.t0/ for all t > t0: Indeed, in view of the fact that c⌧2;1.t/ D x2.t�⌧2;1.t//�x1.t/;
for all t > t0 and a sufficiently small number Å > 0; we get

c
⌧2;1.t CÅ/ � ⌧2;1.t/

Å
D x2.t CÅ � ⌧2;1.t CÅ// � x2.t � ⌧2;1.t//

Å � .⌧2;1.t CÅ/ � ⌧2;1.t//

⇥ Å � .⌧2;1.t CÅ/ � ⌧2;1.t//

Å
� x1.t CÅ/ � x1.t/

Å

D v⇤2

✓
1 � ⌧2;1.t CÅ/ � ⌧2;1.t/

Å

◆
� v⇤1 ;

where

v⇤1 D x1.t CÅ/ � x1.t/
Å

and v⇤2 D x2.t CÅ � ⌧2;1.t CÅ// � x2.t � ⌧2;1.t//

Å � .⌧2;1.t CÅ/ � ⌧2;1.t//
:

According to [1], the velocities of the pointsM1 andM2 are lower than c; which means that, for every t > t0
and a sufficiently small number Å > 0; we have

1 � ⌧2;1.t CÅ/ � ⌧2;1.t/

Å
D c C v⇤1
c C v⇤2

> 0:

Therefore, the function t � ⌧2;1.t/ is strictly increasing and the corresponding relation is true.

Similarly, t � ⌧1;2.t/ > t0 � ⌧1;2.t0/ for all t > t0:

At the time t0; we also specify the velocities v1.t0/ and v2.t0/ of the pointsM1 andM2; respectively. We do
not impose the following requirements:

lim
s!t0�0

P 1.s/ D v1.t0/ and lim
s!t0�0

P 2.s/ D v2.t0/: (27)

The initial velocities v1.s/ and v2.s/ on int It0 are determined by the functions  1.s/ and  1.s/:

By analogy with [7], we can show that system (9) with the initial conditions introduced above is uniquely
solvable. The solution of the system is twice continuously differentiable at the points t > t0; where relation (7) is
true, and continuous at the point t0. The derivatives dx1.t/=dt and dx2.t/=dt have jumps at this point if equalities
(27) are not true.

According to the initial conditions given above and relation (26), v2.t/ � v1.t/ and x2.t/ � x1.t/ satisfy the
integral relations

v2.t/ � v1.t/ D v2.t0/ � v1.t0/

�
tZ

t0

✓
Gm1

.x2.s/ � x1.s � ⌧1;2.s///2
C Gm2

.x2.s � ⌧2;1.s// � x1.s//2
◆
ds (28)
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r -
Ei s s -

QO M1 M2 Qx

Fig. 2. Location of the pointsM1 andM2 at time t:

and

x2.t/ � x1.t/ D x2.t0/ � x1.t0/C .t � t0/.v2.t0/ � v1.t0//

�
tZ

t0

0

@
⌧Z

t0

✓
Gm1

.x2.s/ � x1.s � ⌧1;2.s///2
C Gm2

.x2.s � ⌧2;1.s// � x1.s//2
◆
ds

1

Ad⌧; (29)

where t is an arbitrary time from an interval
⇥
t0; t

⇤� ⇢ Œt0;C1/ on which x2.t/ � x1.t/ > 0:
To study the dynamics of the pointM2 relative to the pointM1; we use relations (28) and (29).
Further, we fix the functions  1.s/ and  2.s/ and the velocity v1.t0/: The velocity v2.t0/ may take arbitrary

values. For the velocities v1.t0/ and v2.t0/; by V1 and V2 we denote the sets of all differences v2.t0/ � v1.t0/
for each of which the function x2.t/ � x1.t/ that describes the motion of the pointM2 relative to the pointM1 is
bounded or unbounded on Œt0;C1/; respectively.

Further, we use one more important property of system (9). Up to this point, we performed the required
preparatory work by using the inertial coordinate system corresponding to Fig. 1. In what follows, we consider an
inertial system QO Qx in which the point QO moves relative to the point O with a constant velocity Ev D Q⌫Ei ( Q⌫ can be
an arbitrary element of the set R). The directional vector of the QO Qx-axis coincides with the vector Ei and the points
M1 andM2 are located on the QO Qx-axis (Fig. 2).

We describe the motion of the pointsM1 andM2 by new vector functions EQr1.t/ D Qx1.t/Ei and EQr2.t/ D Qx2.t/Ei :
An obvious statement presented below is important for our subsequent presentation.

Lemma 1. For any Q⌫ 2 R; the following identities are true for the pointsM1 andM2 W

Qx2.t/ � Qx1.t/ ⌘ x2.t/ � x1.t/;

PQx2.t/ � PQx1.t/ ⌘ Px2.t/ � Px1.t/;

RQx2.t/ � RQx1.t/ ⌘ Rx2.t/ � Rx1.t/;

RQx1.t/ ⌘ Rx1.t/ and RQx2.t/ ⌘ Rx2.t/:

(30)

Rewriting relation (26) in the new inertial system (Fig. 2), we get

RQx2.t/ � RQx1.t/ D � Gm1

. Qx2.t/ � Qx1.t � ⌧1;2.t///2
� Gm2

. Qx2.t � ⌧2;1.t// � Qx1.t//2
: (31)

Note that the deviations ⌧1;2.t/ and ⌧2;1.t/ and the time variable t are independent of Q⌫:
By virtue of Lemma 1 and relations (26) and (31), the following statement is true:
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Corollary 1. For the pointsM1 andM2; the relation

Gm1

.x2.t/ � x1.t � ⌧1;2.t///2
C Gm2

.x2.t � ⌧2;1.t// � x1.t//2

D Gm1

. Qx2.t/ � Qx1.t � ⌧1;2.t///2
C Gm2

. Qx2.t � ⌧2;1.t// � Qx1.t//2

is true for all Q⌫ 2 R.

Further, we consider system (9) in the inertial coordinate system corresponding to Fig. 1.
The following auxiliary statements explaining the properties of motion of the point M2 relative to the point

M1 are true:

Lemma 2. V1 6D ¿ and v⇤2;1 2 V1:

Proof. Let v2.t0/� v1.t0/ 2 .�c; 0ç: According to (26), the velocity of the pointM2 relative to the pointM1

is negative and the value of this velocity strictly decreases because

Gm1

.x2.s/ � x1.s � ⌧1;2.s///2
C Gm2

.x2.s � ⌧2;1.s// � x1.s//2
> 0:

Hence, the function x2.t/ � x1.t/ that describes the motion of the point M2 relative to the point M1 is strictly
decreasing and lim

t!T�0
.x2.t/ � x1.t// D 0 for some T > t0:

From the mechanical point of view, this means that the pointsM1 andM2 collide at the time T: Thus, V1 6D ¿:
In what follows, we need the relations

d
�
v2.t/ � v1.t/

�2

dt

D 2
�
v2.t/ � v1.t/

�
. Pv2.t/ � Pv1.t//

D 2
�
v2.t/ � v1.t/

�✓
� Gm1

.x2.t/ � x1.t � ⌧1;2.t///2
� Gm2

.x2.t � ⌧2;1.t// � x1.t//2
◆

(32)

and

�
v2.t/ � v1.t/

�2 D .v2.t0/ � v1.t0//2

�
tZ

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

; (33)

which can be deduced by using (26) and the equality

�
v2.t/ � v1.t/

�
dt D d.x2.t/ � x1.t//:



364 V. YU. SLYUSARCHUK

We now show that the inclusion v⇤2;1 2 V1 is true. Assume that this inclusion does not hold, i.e., in the case
where v2.t0/ � v1.t0/ D v2;1; the following relations are true:

v2.t/ � v1.t/ > 0 for all t > t0 (34)

and

lim
t!C1

.x2.t/ � x1.t// D C1: (35)

Note that, for v2;1 62 V1; according to (28) and (29), equality (35) and the inequality

v2.t/ � v1.t/  0; t � t1;

are not true for some t1 > t0.
In view of the fact that the functions t � ⌧1;2.t/ and t � ⌧2;1.t/ are strictly increasing on the interval .t0;C1/;

relations (34) and (35), and Lemma 1, for any t > t2; where t2 is a number such that minft2 � ⌧1;2.t2/; t2 �
⌧2;1.t2/g > t0; there exists Q⌫ 2 R for which

v2.t/ � v1.t/ D Qv2.t/ � Qv1.t/ > 0;

where Qv1.t/ D PQx1.t/ and Qv2.t/ D PQx2.t/;

lim
t!C1

. Qx2.t/ � Qx1.t// D C1; (36)

Qv1.t/ < 0; Qv2.t/ > 0; (37)

Qx1.t/ < Qx1.t � ⌧1;2.t//; (38)

and

Qx2.t/ > Qx2.t � ⌧2;1.t//: (39)

Inequalities (37) follow from (34) for the proper choice of Q⌫ 2 R:
By using the Taylor formula [12], inequalities (24), (25), and (37), and identities (30), we derive inequalities

(38) and (39) from the relations

Qx1.t � ⌧1;2.t// � Qx1.t/ D �⌧1;2.t/ Qv1.t/C
1

2
⌧21;2.t/

Gm2

. Qx2.⇠1 � ⌧2;1.⇠1// � Qx1.⇠1//2
> 0

and

Qx2.t � ⌧2;1.t// � Qx2.t/ D �⌧2;1.t/ Qv2.t/C
1

2
⌧22;1.t/

Gm1

. Qx1.⇠2 � ⌧1;2.⇠2// � Qx2.⇠2//2
< 0;

where ⇠1 and ⇠2 are certain numbers from the intervals .t � ⌧1;2.t/; t/ and .t � ⌧2;1.t/; t/; respectively, where the
functions x1.t/ and x2.t/ are twice continuously differentiable.
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Further, for the solutions x1.t/ and x2.t/ of system (9), we use the equalities

tZ

t2

2G.m1 Cm2/

. Qx2.s/ � Qx1.s//2
d. Qx2.s/ � Qx1.s//

D
�
v⇤2;1

�2 �
t2Z

t0

2G.m1 Cm2/

. Qx2.s/ � Qx1.s//2
d. Qx2.s/ � Qx1.s//

� 2G.m1 Cm2/

Qx2.t/ � Qx1.t/
D 2G.m1 Cm2/

Qx2.t2/ � Qx1.t2/
� 2G.m1 Cm2/

Qx2.t/ � Qx1.t/
; t � t2;

which are true for every Q⌫ 2 R in view of (12), (34), (35), and Lemma 1.
By using these equalities in the case where v2.t0/ � v1.t0/ D v⇤2;1; we represent (33) in the form

�
v2.t/ � v1.t/

�2 D .v2.t0/ � v1.t0//2 �
t2Z

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
t2Z

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

�
tZ

t2

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t2

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

D 2G.m1 Cm2/

x2.t2/ � x1.t2/

�
tZ

t2

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t2

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

D 2G.m1 Cm2/

Qx2.t/ � Qx1.t/
�

tZ

t2

2Gm1 d. Qx2.s/ � Qx1.s//
. Qx2.s/ � Qx1.s � ⌧1;2.s///2

�
tZ

t2

2Gm2 d. Qx2.s/ � Qx1.s//
. Qx2.s � ⌧2;1.s// � Qx1.s//2

C
tZ

t2

2G.m1 Cm2/

. Qx2.s/ � Qx1.s//2
d. Qx2.s/ � Qx1.s//:

Here, we have also used Lemma 1 and Corollary 1.
Thus,

�
v2.t/ � v1.t/

�2 D 2G.m1 Cm2/

Qx2.t/ � Qx1.t/
�

tZ

t2

✓
2Gm1

. Qx2.s/ � Qx1.s � ⌧1;2.s///2
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C 2Gm2

. Qx2.s � ⌧2;1.s// � Qx1.s//2

� 2G.m1 Cm2/

. Qx2.s/ � Qx1.s//2
◆
d . Qx2.s/ � Qx1.s// ; t � t2: (40)

By Lemma 1 and Corollary 1, the integral on the right-hand side of (40) is independent of Q⌫ 2 R: Hence, by
virtue of (38) and (39), for any s 2 Œt0; t ç; we can choose Q⌫ such that

j Qx2.s/ � Qx1.s � ⌧1;2.s///j < j Qx2.s/ � Qx1.s/j

and

j Qx2.s � ⌧2;1.s/// � Qx1.s/j < j Qx2.s/ � Qx1.s/j :

Therefore, the function

I.t/ D
tZ

t0

✓
2Gm1

. Qx2.s/ � Qx1.s � ⌧1;2.s///2
C 2Gm2

. Qx2.s � ⌧2;1.s// � Qx1.s//2

� 2G.m1 Cm2/

. Qx2.s/ � Qx1.s//2
◆
d . Qx2.s/ � Qx1.s//

takes positive values for any t > t2 and is strictly increasing on Œt0;C1/: Thus, in view of (36) and (40), we have
v2.t1/ � v1.t1/ D 0 for some t1 > t2: However, according to the reasoning used at the beginning of the proof of
the lemma, this contradicts (35).

Thus, the assumption v⇤2;1 62 V1 is not true.
Lemma 2 is proved.

Lemma 3. V2 6D ¿:

Proof. We use relation (33) in the case where

v2.t0/ � v1.t0/ D 2v⇤2;1: (41)

This relation has the form

�
v2.t/ � v1.t/

�2 D 8G.m1 Cm2/

x2.t0/ � x1.t0/
�

tZ

t0

✓
2Gm1

.x2.s/ � x1.s � ⌧1;2.s///2

C 2Gm2

.x2.s � ⌧2;1.s// � x1.s//2
◆
d.x2.s/ � x1.s//: (42)

The following inclusion is true:

2v⇤2;1 2 V2:
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Indeed, the function v2.t/� v1.t/ satisfying equality (41) is continuous at the point t0: According to (42), the
set of intervals Œt0; ✓/; ✓ > t0; on each of which v2.t/ � v1.t/ > 0 is nonempty. Assume that, for some T > t0;

we have

v2.t/ � v1.t/ > 0 for all t 2 Œt0; T / (43)

and

v2.T / � v1.T / D 0: (44)

In view of (43), we obtain

x2.T / � x1.T / > 0: (45)

We use the relation

x1.s � ⌧1;2.s// <
x1.s/C x2.s/

2
< x2.s � ⌧2;1.s//; (46)

which can be easily deduced by using the following formulas for the location of the points M1 and M2 on the
Ox-axis and the velocities of their motion:

maxfx1.s/; x1.s � ⌧1;2.s//g < x2.s/; x1.s/ < minfx2.s/; x2.s � ⌧2;1.s//g

[see (24) and (25)] and

max
¶ˇ̌
Px1.s/

ˇ̌
;
ˇ̌
Px2.s/

ˇ̌·
< c

[the restriction imposed on the velocities of points M1 and M2 is required for the substantiation of relations (24)
and (25)]. In the presented auxiliary relations, s is an arbitrary element from Œt0 � maxf⌧1;2.t0/; ⌧2;1.t0/g;C1/

such that x2.s/ > x1.s/:
It follows from (46) that

max
º

x2.s/ � x1.s/
x2.s/ � x1.s � ⌧1;2.s//

;
x2.s/ � x1.s/

x2.s � ⌧2;1.s// � x1.s/

»
< 2 (47)

for all s 2 Œt0 �maxf⌧1;2.t0/; ⌧2;1.t0/g;C1/ such that x2.s/ > x1.s/:

According to (47), for all t 2 .t0; T ç; we get

tZ

t0

✓
2Gm1

.x2.s/ � x1.s � ⌧1;2.s///2
C 2Gm2

.x2.s � ⌧2;1.s// � x1.s//2
◆
d.x2.s/ � x1.s//

< 8G.m1 Cm2/

tZ

t0

d.x2.s/ � x1.s//
.x2.s/ � x1.s//2

D 8G.m1 Cm2/

x2.t0/ � x1.t0/
� 8G.m1 Cm2/

x2.t/ � x1.t/
:
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By using (42) and (45), we arrive at the relation

�
v2.t/ � v1.t/

�2
>
8G.m1 Cm2/

x2.T / � x1.T /
> 0;

which contradicts (44).
Thus, relation (43) is also true for T D C1: By using (28), we get

lim
t!C1

.x2.t/ � x1.t// D C1:

Hence, 2v⇤2;1 2 V2 and V2 6D ¿:
Lemma 3 is proved.

Lemma 4. The set V2 is closed and connected.

Proof. We use the standard initial conditions imposed in the previous steps. Let x1.t/ and x2.t/ be the
corresponding solutions of system (9) and let

v2.t0/ � v1.t0/ 2 V2: (48)

In view of this inclusion, we obtain

v2.t/ � v1.t/ > 0; t � t0; (49)

and

lim
t!C1

.x2.t/ � x1.t// D C1: (50)

Consider an arbitrary number ı � 0 and the solutions x1;ı.t/ and x2;ı.t/ of system (9) such that

x1;ı.t/ D x1.t/ and x2;ı.t/ D x2.t/ for all t 2 It0 ; (51)

x1;0.t/ D x1.t/ and x2;0.t/ D x2.t/ for all t 2 It0 [ Œt0;C1/; (52)

lim
t!t0C0

Px2;ı.t/ D v2.t0/C ı (53)

and, in view of (27), the requirement lim
t!t0�0

Px1;ı.t/ D v1.t0/ can be violated.

Hence, the functions x2;ı.t/ � x1;ı.t/ and v2;ı.t/ � v1;ı.t/ D Px2;ı.t/ � Px1;ı.t/ satisfy the integral relations

v2;ı.t/ � v1;ı.t/ D v2.t0/C ı � v1.t0/

�
tZ

t0

✓
Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
2
C Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//2
◆
ds (54)
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and

x2;ı.t/ � x1;ı.t/ D x2.t0/ � x1.t0/C .t � t0/.v2.t0/C ı � v1.t0//

�
tZ

t0

0

@
⌧Z

t0

✓
Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
2

C Gm2

.x2;ı .s � ⌧2;1;ı.s// � x1;ı.s//2
◆
ds

1

Ad⌧; (55)

similar to relations (28) and (29), where t is an arbitrary time from an interval
⇥
t0; t

⇤� ⇢ Œt0;C1/ on which
x2;ı.t/ � x1;ı.t/ > 0; the quantities ⌧1;2;ı.s/ and ⌧2;1;ı.s/ are delays satisfying, according to the third and fourth
equations in system (9) and the location of the pointsM1 andM2 on the Ox-axis, the following relations:

c⌧2;1;ı.s/ D x2;ı.s � ⌧2;1;ı.s// � x1;ı.s/; (56)

c⌧1;2;ı.s/ D x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s//: (57)

Note that, for ı D 0; relations (54) and (55) coincide with relations (28) and (29), respectively, and relations
(56) and (57) coincide with the third and fourth equations in system (9), ⌧1;2;0.s/ D ⌧1;2.s/; and ⌧2;1;0.s/ D
⌧2;1.s/:

According to (9) and (53), the relations

x2;ı.t/ D x2.t0/C .t � t0/.v2.t0/C ı/ �
tZ

t0

0

@
⌧Z

t0

Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
2
ds

1

Ad⌧ (58)

and

x1;ı.t/ D x1.t0/C .t � t0/v1.t0/C
tZ

t0

0

@
⌧Z

t0

Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//2
ds

1

Ad⌧ (59)

are also true.
We study the influence of the quantity ı on the functions x2;ı.t/ � x1;ı.t/ and v2;ı.t/ � v1;ı.t/ for t > t0:
In view of (54) and (55), these functions depend on x2;ı.s/�x1;ı.s�⌧1;2;ı.s// and x2;ı.s�⌧2;1;ı.s//�x1;ı.s/:

In addition, at points s of the set

Rı D fsW s � ⌧1;2;ı.s/ D t0g [ fsW s � ⌧2;1;ı.s/ D t0g;

the right-hand sides of (56) and (57) are continuous and can be not differentiable. By virtue of the fact that the
functions s � ⌧1;2;ı.s/ and s � ⌧2;1;ı.s/ are strictly increasing, the set Rı contains one or two points for every
ı � 0.
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We differentiate both sides of (56) and (57) with respect to ı: For s 2
⇥
t0; t

⇤� nRı ; we obtain

c
d⌧2;1;ı.s/

dı
D d.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//

dı
D �v2;ı.s � ⌧2;1;ı.s//

d⌧2;1;ı.s/

dı
� dx1;ı.s/

dı
;

c
d⌧1;2;ı.s/

dı
D d.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///

dı
D dx2;ı.s/

dı
C v1;ı.s � ⌧1;2;ı.s//

d⌧1;2;ı.s/

dı
:

This implies that

d⌧2;1;ı.s/

dı
D � 1

c C v2;ı.s � ⌧2;1;ı.s//

dx1;ı.s/

dı
; (60)

d⌧1;2;ı.s/

dı
D 1

c � v1;ı.s � ⌧1;2;ı.s//

dx2;ı.s/

dı
(61)

for s 2
⇥
t0; t

⇤� nRı :

Further, we differentiate both sides of (58) and (59) with respect to the variable ı: By using (60) and (61), we
obtain

dx2;ı.t/

dı
D t � t0

C
tZ

t0

0

@
⌧Z

t0

2Gm1

.x2;ı.s/ � x1;ı .s � ⌧1;2;ı.s///
3

d..x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///

dı
ds

1

Ad⌧

D t � t0 C
tZ

t0

0

@
⌧Z

t0

2Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
3

c d⌧1;2;ı.s/

dı
ds

1

Ad⌧

D t � t0 C
tZ

t0

0

@
⌧Z

t0

2Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
3

c

c � v1;ı.s � ⌧1;2;ı.s//

dx2;ı.s/

dı
ds

1

Ad⌧ (62)

and

dx1;ı.t/

dı
D �

tZ

t0

0

@
⌧Z

t0

2Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//3
d.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//

dı
ds

1

Ad⌧

D �
tZ

t0

0

@
⌧Z

t0

2Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//3
c⌧2;1;ı.s/

dı
ds

1

Ad⌧

D
tZ

t0

0

@
⌧Z

t0

2Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//3
c

c C v2;ı.s � ⌧2;1;ı.s//

dx1;ı.s/

dı
ds

1

Ad⌧: (63)
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The operation of differentiation under the integral signs in (62) and (63) is possible by virtue of the Lebesgue
theorem on limit transition under the integral sign and the Riemann integrability of a bounded almost everywhere
continuous function [13, pp. 120, 125] fthe integrands in (62) and (63) are continuous and bounded on Œt0; t / nRı ;

at points of the set Rı ; these functions have finite upper and lower (right and left) derivatives [14] that do not affect
the values of the corresponding integralsg.

By virtue of (56), (57) and the positivity of the delays ⌧2;1;ı.s/ and ⌧1;2;ı.s/; the functions

2Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
3

c

c � v1;ı.s � ⌧1;2;ı.s//
(64)

and

2Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//3
c

c C v2;ı.s � ⌧2;1;ı.s//
(65)

in (62) and (63) are continuous and positive on each interval Œt0; t / for all points of which we have

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s// 6D 0: (66)

For this reason, by virtue of (62), the function dx2;ı.t/=dı takes positive values on each interval .t0; t / at
every point of which relation (66) is true. On this interval, the function dx1;ı.t/=dı becomes equal to zero because
relation (63) with respect to dx1;ı.t/=dı is a linear homogeneous equation with quasinilpotent operator.

Thus,

d.x2;ı.t/ � x1;ı.t//
dı

D dx2;ı.t/

dı
� dx1;ı.t/

dı
D dx2;ı.t/

dı
> 0 (67)

for every t > t0 such that, relation (66) is true for all points s 2 .t0; t /.
Further, differentiating both sides of (54) with respect to the variable ı and using relations (56), (57), (60), and

(61) and the properties of functions (64) and (65), dx2;ı.t/=dı; and dx1;ı.t/=dı; we obtain

d.v2;ı.t/ � v1;ı.t//
dı

D 1C
tZ

t0

2Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
3

c

c � v1;ı.s � ⌧1;2;ı.s//

dx2;ı.s/

dı
ds

C
tZ

t0

2Gm2

.x2;ı.s � ⌧2;1;ı.s// � x1;ı.s//3
c

c C v2;ı.s � ⌧2;1;ı.s//

dx1;ı.s/

dı
ds

D 1C
tZ

t0

2Gm1

.x2;ı.s/ � x1;ı.s � ⌧1;2;ı.s///
3

c

c � v1;ı.s � ⌧1;2;ı.s//

dx2;ı.s/

dı
ds � 1 (68)

for any t > t0 such that relation (66) holds for all points s 2 .t0; t /.
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Inequality (68) is true for all ı � 0:

By using the same reasoning as above and relations (49), (50), (67), and (68), we get

lim
t!C1

.x2;ı.t/ � x1;ı.t// D C1

for all ı � 0:

Hence, in view of (48), we get Œv2.t0/ � v1.t0/;C1/ ⇢ V2:

By using the same reasoning as above, we also conclude that V2 D S
v2V2

Œv;C1/: Therefore, V2 is a
connected set.

Consider the velocity v⇤2;c D v2.t0/ � v1.t0/ of the point M2 relative to the point M1 given by the equality
v⇤2;c D infv2V2

v:

We want to show that

v⇤2;c 2 V2: (69)

This would imply that the set V2 is closed.
Assume that relation (69) is not true, i.e.,

v⇤2;c 2 V1: (70)

According to Lemma 2, we get v⇤2;1  v⇤2;c : Thus, v
⇤
2;c > 0: By virtue of (32), (33), and (70), on some

interval Œt0; t1/; t1 > t0; the velocity v2.t/ � v1.t/ of the point M2 relative to the point M1 is positive, strictly
decreases, and v2.t1/ � v1.t1/ D 0: Moreover, the distance x2.t/ � x1.t/ between the pointsM1 andM2 on the
interval Œt0; t1/ is strictly increasing. By using the arguments from the proof of Lemma 2, on a certain interval
Œt1; t2/; t2 > t1; the difference x2.t/ � x1.t/ is strictly decreasing and, moreover, lim

t!t2�0
.x2.t/ � x1.t// D 0 (the

pointsM1 andM2 collide at the time t2).
We fix an arbitrary tC2 2 .t1; t2/:
Consider an arbitrary number ı > 0 and the solutions x1;ı.t/ and x2;ı.t/ of system (9) satisfying conditions

(51)–(53) under which

v2;ı.t0/ � v1;ı.t0/ D v2.t0/ � v1.t0/C ı D v⇤2;c C ı 2 V2:

It follows from the continuous dependence of the solutions x1;ı.t/ and x2;ı.t/ on ı that

lim
ı!C0

max
t2Œt0;tC2 ç

ˇ̌
.x2;ı.t/ � x1;ı.t// � .x2.t/ � x1.t//

ˇ̌
D 0:

Hence, for sufficiently small values of ı > 0; the distance x2;ı.t/ � x1;ı.t/ between the pointsM1 andM2 is not
strictly increasing on Œt0;C1/; which is impossible because

�
v⇤2;c ;C1

�
⇢ V2:

Thus, the assumption that relation (70) holds is not true.
Lemma 4 is proved.

Lemma 5. The set V1 is open and connected.

This statement is a corollary of Lemma 4.
By virtue of the presented lemmas and their proofs, the following statement is true:
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Theorem 2. Suppose that the functions  1.s/ and  2.s/ are initial values of the solution x1.t/ and x2.t/ of
system (9), these functions are continuously differentiable on int It0 and continuous on It0 ;  2.s/� 1.s/ > 0 for
all s 2 It0 ; the derivatives P 1.s/ and P 2.s/ are bounded and integrable on int It0 ; the limits lim

s!t0�0

P i .s/; i D
1; 2; exist, v1.t0/ and v2.t0/ are arbitrary numbers from the interval .�c; c/ for which v2.t0/ � v1.t0/ 2 .�c; c/;
and the limits lim

s!t0�0

P 1.s// and lim
s!t0�0

P 2.s/ cannot coincide with v1.t0/ and v2.t0/; respectively.

Suppose that:

(i) x1.t�⌧1;2.t// D  1.t�⌧1;2.t// for all t � t0 such that t�⌧1;2.t/ 2 Œt0�⌧1;2.t0/; t0ç and x2.t�⌧2;1.t// D
 2.t � ⌧2;1.t// for all t � t0 for which t � ⌧2;1.t/ 2 Œt0 � ⌧2;1.t0/; t0çI

(ii) c⌧2;1.t0/ D  2.t0 � ⌧2;1.t0// �  1.t0/ and c⌧1;2.t0/ D  2.t0/ �  1.t0 � ⌧1;2.t0//:

Then:

(i) if v2.t0/ � v1.t0/ 2 .�c; 0ç; then there exists a number T > t0 such that, for the solution x1.t/; x2.t/ of
system (9), the difference x2.t/ � x1.t/ is strictly decreasing on the interval Œt0; T / and lim

t!T�0
.x2.t/ �

x1.t// D 0 (the pointsM1 andM2 collide at time T );

(ii) there exists a number v⇤2;c > v
⇤
2;1 such that

(a) if v2.t0/ � v1.t0/ 2
�
0; v⇤2;c

�
; then, for some numbers T1 and T2 (t0 < T1 < T2), the difference x2.t/ �

x1.t/ is strictly increasing and strictly decreasing, respectively, for the solution x1.t/; x2.t/ of system (9)
on the intervals Œt0; T1/ and ŒT1; T2/ and, in addition, lim

t!T2�0
.x2.t/� x1.t// D 0 (collision of the points

M1 andM2 at the time T2);

(b) if v2.t0/ � v1.t0/ � v⇤2;c ; then, for the solution x1.t/; x2.t/ of system (9), the difference x2.t/ � x1.t/ is
strictly increasing on Œt0;C1/ and lim

t!C1
.x2.t/ � x1.t// D C1:

Remark 2. In Theorem 2, x2.t/ � x1.t/ is the distance between the pointsM1 andM2:

Remark 3. The velocity v⇤2;c in Theorem 2 is the escape velocity with regard for the speed of gravity. This is
the minimal velocity v2.t0/�v1.t0/ of motion of the pointM2 relative to the pointM1 at the time t0 for coordinates
x2.t/ and x1.t/ at the time t such that the relation lim

t!C1
.x2.t/ � x1.t// D C1 is true. By virtue of Lemma 2

and the proof of Lemma 4, we get v⇤2;c > v
⇤
2;1; i.e., the actual escape velocity v

⇤
2;c (due to finiteness of the speed

of gravity) is higher than the escape velocity v⇤2;1 in the classical celestial mechanics.

4.3. Estimates of the Difference v⇤
2;c

� v⇤
2;1: To find the difference v⇤2;c � v⇤2;1; we need some auxiliary

statements.

Lemma 6. Suppose that the solution x1.t/; x2.t/ of system (9) satisfies the conditions of Theorem 2.

If

.x2.s/ � x1.s � ⌧1;2.s///.x2.s � ⌧2;1.s// � x1.s// 6D 0

for every s 2 Œt0; T /; then the following equalities are true:

1

.x2.s/ � x1.s � ⌧1;2.s///2
D

✓
1C v⇤1 .s/

c

◆2
1

.x2.s/ � x1.s//2
(71)
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and

1

.x2.s � ⌧2;1.s// � x1.s//2
D

✓
1C v⇤2 .s/

c

◆2
1

.x2.s/ � x1.s//2
(72)

for all s 2 Œt0; T /; where

v⇤1 .s/ D
x1.s � ⌧1;2.s// � x1.s/

⌧1;2.s/
and v⇤2 .s/ D

x2.s/ � x2.s � ⌧2;1.s//

⌧2;1.s/
:

Note that v⇤1 .s/ and v
⇤
2 .s/ are the mean velocities of the points M1 and M2 on the segments Œs � ⌧1;2.s/; sç

and Œs � ⌧2;1.s/; sç; respectively.

Proof. We fix an arbitrary s 2 Œt0; T /: It is easy to see that the following equalities are true:

1

.x2.s/ � x1.s � ⌧1;2.s///2
D

✓
1C �x1.s/C x1.s � ⌧1;2.s//

x2.s/ � x1.s � ⌧1;2.s//

◆2 1

.x2.s/ � x1.s//2
(73)

and

1

.x2.s � ⌧2;1.s// � x1.s//2
D

✓
1C x2.s/ � x2.s � ⌧2;1.s//

x2.s � ⌧2;1.s// � x1.s/

◆2 1

.x2.s/ � x1.s//2
: (74)

According to (9), (24), and (25), we find

x2.s/ � x1.s � ⌧1;2.s// D c⌧1;2.s/ and x2.s � ⌧2;1.s// � x1.s/ D c⌧2;1.s/:

Therefore,

�x1.s/C x1.s � ⌧1;2.s//

x2.s/ � x1.s � ⌧1;2.s//
D v⇤1 .s/

c
and

x2.s/ � x2.s � ⌧2;1.s//

x2.s � ⌧2;1.s// � x1.s/
D v⇤2 .s/

c
:

Hence, in view of (73) and (74), we obtain (71) and (72).
Lemma 6 is proved.

Lemma 7. If the velocities of the pointsM1 andM2 are bounded on the interval Œt0;C1/ and the numbers
"1 and "2 are such that

m1"1

m1 Cm2
�

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c
and

m2"2

m1 Cm2
�

sups>t0�⌧1;2.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c
; (75)

then

s✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
2 V2: (76)
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Proof. We use relations (33) in the case where

v2.t0/ � v1.t0/

D

s✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
: (77)

By virtue of (12), this relation takes the form

�
v2.t/ � v1.t/

�2 D
✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/

C
✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/

�
tZ

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

: (78)

We now show that inclusion (76) is true.
The function v2.t/ � v1.t/ satisfying equality (77) is continuous at the point t0: Therefore, according to (78),

the set of intervals Œt0; ✓/; ✓ > t0; in each of which v2.t/ � v1.t/ > 0; is nonempty.
Assume that, for some T > t0;

v2.t/ � v1.t/ > 0 for all t 2 Œt0; T / (79)

and

v2.T / � v1.T / D 0: (80)

Note that, in view of (79), we have x2.T / � x1.T / > 0:
By virtue of (71), (72), and (75), for all t 2 .t0; T ç; we obtain

tZ

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

C
tZ

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

D
tZ

t0

 
2Gm1

✓
1C v⇤1 .s/

c

◆2

C 2Gm2

✓
1C v⇤2 .s/

c

◆2
!
d.x2.s/ � x1.s//
.x2.s/ � x1.s//2


 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2

2Gm1

tZ

t0

d.x2.s/ � x1.s//
.x2.s/ � x1.s//2
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C
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2

2Gm2

tZ

t0

d.x2.s/ � x1.s//
.x2.s/ � x1.s//2

D
 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2 ✓
2Gm1

x2.t0/ � x1.t0/
� 2Gm1

x2.T / � x1.T /

◆

C
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2 ✓
2Gm2

x2.t0/ � x1.t0/
� 2Gm2

x2.T / � x1.T /

◆
:

By virtue of (75) and (78), we get

�
v2.t/ � v1.t/

�2 �
✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/

C
✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/

�
 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2 ✓
2Gm1

x2.t0/ � x1.t0/
� 2Gm1

x2.T / � x1.T /

◆

�
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2 ✓
2Gm2

x2.t0/ � x1.t0/
� 2Gm2

x2.T / � x1.T /

◆

D

0

@
✓
1C m1"1

m1 Cm2

◆2

�
 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2
1

A 2Gm1

x2.t0/ � x1.t0/

C

0

@
✓
1C m2"2

m1 Cm2

◆2

�
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2
1

A 2Gm2

x2.t0/ � x1.t0/

C
 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2
2Gm1

x2.T / � x1.T /

C
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2
2Gm2

x2.T / � x1.T /
> 0;

which contradicts (80).
Thus, relation (79) remains true for T D C1: Hence, by analogy with the proof of Lemma 3, we get

lim
t!C1

.x2.t/ � x1.t// D C1:
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Thus, inclusion (76) is true.
Lemma 7 is proved.

Remark 4. The velocities of the points M1 and M2 are bounded in the interval Œt0;C1/ if these points do
not collide, i.e., inf

t�t0
.x2.t/ � x2.t// > 0:

Remark 5. By Lemma 7 and the definition of v⇤2;c ; the following inequality is true:

v⇤2;c  v⇤2;c;"1;"2 ;

where

v⇤2;c;"1;"2 D

s✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
: (81)

Lemma 8. If the positive numbers �1 and �2 are such that

m1�1

m1 Cm2
<

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c
and

m2�2

m1 Cm2
<

sups>t0�⌧1;2.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c
; (82)

then

s✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
2 V1: (83)

Proof. We use relation (33) in the case where

v2.t0/ � v1.t0/ D

s✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
:

This relation takes the form

�
v2.t/ � v1.t/

�2 D
✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/

C
✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/

�
tZ

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

: (84)

As in the proof of Lemma 2, we assume that inclusion (83) is not true, i.e., the relations

v2.t/ � v1.t/ > 0 for all t > t0 (85)
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and

lim
t!C1

.x2.t/ � x1.t// D C1 (86)

hold.
By using the equality

tZ

t0

2G.m1 Cm2/

.x2.s/ � x1.s//2
d.x2.s/ � x1.s// D

2G.m1 Cm2/

x2.t0/ � x1.t0/
� 2G.m1 Cm2/

x2.t/ � x1.t/
; t � t0;

which follows from (85) and (86), we represent (84) in the form

�
v2.t/ � v1.t/

�2 D
 ✓
1C m1�1

m1 Cm2

◆2

� 1
!

2Gm1

x2.t0/ � x1.t0/

C
 ✓
1C m2�2

m1 Cm2

◆2

� 1
!

2Gm2

x2.t0/ � x1.t0/

C 2G.m1 Cm2/

x2.t/ � x1.t/
�

tZ

t0

2Gm1 d.x2.s/ � x1.s//
.x2.s/ � x1.s � ⌧1;2.s///2

�
tZ

t0

2Gm2 d.x2.s/ � x1.s//
.x2.s � ⌧2;1.s// � x1.s//2

C
tZ

t0

2G.m1 Cm2/

.x2.s/ � x1.s//2
d.x2.s/ � x1.s//: (87)

Applying Lemma 6 to (87), for all t � t0; we conclude that

�
v2.t/ � v1.t/

�2 D
 ✓
1C m1�1

m1 Cm2

◆2

� 1
!

2Gm1

x2.t0/ � x1.t0/

C
 ✓
1C m2�2

m1 Cm2

◆2

� 1
!

2Gm2

x2.t0/ � x1.t0/
C 2G.m1 Cm2/

x2.t/ � x1.t/

� 2Gm1

tZ

t0

 ✓
1C v⇤1 .s/

c

◆2

� 1
!
d.x2.s/ � x1 /

.x2.s/ � x1.s//2

� 2Gm2

Z t

t0

 ✓
1C v⇤2 .s/

c

◆2
� 1

!
d.x2.s/ � x1.s//
.x2.s/ � x1.s//2

�
 ✓
1C m1�1

m1 Cm2

◆2
� 1

!
2Gm1

x2.t0/ � x1.t0/
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C
 ✓
1C m2�2

m1 Cm2

◆2
� 1

!
2Gm2

x2.t0/ � x1.t0/
C 2G.m1 Cm2/

x2.t/ � x1.t/

�

0

@
 
1C

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c

!2
� 1

1

A
✓

2Gm1

x2.t0/ � x1.t0/
� 2Gm1

x2.t/ � x1.t/

◆

�

0

@
 
1C

sups>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c

!2
� 1

1

A
✓

2Gm2

x2.t0/ � x1.t0/
� 2Gm2

x2.t/ � x1.t/

◆
:

Therefore, by using the equality lim
t!C1

1=.x2.t/ � x1.t// D 0 and requirements (82) imposed on �1 and �2;

we conclude that there exists a number t1 > t0 such that v2.t1/ � v1.t1/ D 0; which contradicts (85).
Thus, inclusion (83) is valid in the case where relations (82) are true.
Lemma 8 is proved.

Remark 6. The following inequality is true:

v⇤2;1 < v⇤2;1;�1;�2
;

where

v⇤2;1;�1;�2
D

s✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
: (88)

This inequality follows from the relations

✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/

>
2Gm1

x2.t0/ � x1.t0/
C 2Gm2

x2.t0/ � x1.t0/
D v⇤2;1:

According to the results of investigations presented above, we find

0 < v⇤2;1 < v⇤2;1;�1;�2
< v⇤2;c  v⇤2;c;"1;"2 < C1

and

0 < v⇤2;1;�1;�2
� v⇤2;1 < v⇤2;c � v⇤2;1  v⇤2;c;"1;"2 � v

⇤
2;1; (89)

whence, in view of (89) and equalities (12), (81), and (88), we arrive at the following assertion for the estimate of
the difference v⇤2;c � v⇤2;1:
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Theorem 3. The escape velocities v⇤2;c and v
⇤
2;1 satisfy the relation

0 <

s✓
1C m1�1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2�2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/

�
s
2G.m1 Cm2/

x2.t0/ � x1.t0/
< v⇤2;c � v⇤2;1  �

s
2G.m1 Cm2/

x2.t0/ � x1.t0/

C

s✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
(90)

for all "1; "2; �1; and �2 satisfying (75) and (82).

Remark 7. Since the differences "1 � �1 and "2 � �2 can be arbitrarily small, it follows from (90) and (12)
that

v⇤2;c D

s✓
1C m1"1

m1 Cm2

◆2 2Gm1

x2.t0/ � x1.t0/
C

✓
1C m2"2

m1 Cm2

◆2 2Gm2

x2.t0/ � x1.t0/
; (91)

where

m1"1

m1 Cm2
D

sups>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌

c
and

m2"2

m1 Cm2
D

sups>t0�⌧1;2.t0/

ˇ̌
v⇤2 .s/

ˇ̌

c
: (92)

Remark 8. The escape velocity v⇤2;1 in the Newton celestial mechanics is obtained from the escape velocity
v⇤2;c in the celestial mechanics constructed with regard for the finite speed of gravity by setting c D C1 [relation
(91) is a generalization of relation (12)]. Indeed, in view of (12), (91), and (92), we obtain

lim
c!C1

v⇤2;c D v⇤2;1:

5. Escape Velocity on Earth’s Surface

We determine the escape velocity v⇤2;c on Earth’s surface. Recall that, in the Newton mechanics, we have
v⇤2;1 D 11:2 km � sec�1 (see [15, p. 28]).

As in Sec. 4, we use the inertial coordinate system (see Fig. 1).
Consider a body with mass m located, up to time t0 (including this time), on Earth’s surface with mass M˚

and radius R: Assume that the body begins to move at a time t0 with a velocity v2.t0/ > 0 in the vertical direction
(along the coordinate axisOx). Then the Earth begins to move in the opposite direction with a velocity v1.t0/ < 0:
Assume that

v2.t0/ � v1.t0/ D v⇤2;c (93)

and the resistance forces are absent.
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Under the assumption that Earth’s center coincides with the point O; the motion of the Earth and the body
is described by the system of equations (9) with m1 D M˚ and m2 D m for which x1.s/ D 0 and x2.s/ D R

for s  t0; Px1.t0 � 0/ D Px2.t0 � 0/ D 0; Px1.t0 C 0/ D v1.t0/; and Px2.t0 C 0/ D v2.t0/: In the analyzed case,
x2.t0/ � x1.t0/ D R and the considered initial conditions satisfy the general requirements to system (9) and the
initial values of its solutions (see Sec. 4.2).

By using (93) and the proof of Lemma 4, we get

lim
t!C1

.x2.t/ � x1.t// D C1 and lim
t!C1

�
v2.t/ � v1.t/

�
D 0: (94)

In view of the equations of system (9), the velocities of the body and the Earth monotonically decrease and,
according to the initial values of these velocities, v1.t/ < 0 and v2.t/ > 0 for t > t0: By using (94), we get
lim

t!C1
vi .t/ D 0; i D 1; 2: Hence,

sup
s>t0�⌧1;2.t0/

ˇ̌
v⇤1 .s/

ˇ̌
D �v1.t0/ and sup

s>t0�⌧2;1.t0/

ˇ̌
v⇤2 .s/

ˇ̌
D v2.t0/: (95)

We now determine the relationship between v⇤2;c and v⇤2;1: To this end, in addition to (93), we use one more
relation that connects v2.t0/ and v1.t0/: According to (9) and the requirements imposed on the motion of the body
and the Earth, for any sufficiently small number ı > 0; we get the relation

mv2.t0 C ı/CM˚v1.t0 C ı/ � .mv2.t0 � 0/CM˚v1.t0 � 0//

D GmM˚

t0CıZ

t0�0

✓
x1.t � ⌧1;2.t// � x2.t/

jx1.t � ⌧1;2.t// � x2.t/j3
C x2.t � ⌧2;1.t// � x1.t/

jx2.t � ⌧2;1.t// � x1.t/j3
◆
dt: (96)

Since the integrand in (96) is bounded on the segment Œt0; t0 C ıç; according to v2.t0 � 0/ D v1.t0 � 0/ D 0;

we find

mv2.t0/CM˚v1.t0/ D 0: (97)

By using (93) and (97), we get

v1.t0/ D
�mv⇤2;c
M˚ Cm

; v2.t0/ D
M˚v⇤2;c
M˚ Cm

: (98)

Hence, in view of (92), (95), and (98), we obtain

M˚"1
M˚ Cm

D
mv⇤2;c

c.M˚ Cm/
and

m"2

M˚ Cm
D

M˚v⇤2;c
c.M˚ Cm/

;

whence, by virtue of (91) and (12), we conclude that

v⇤2;c D

vuut
 
1C

mv⇤2;c
c.M˚ Cm/

!2
2GM˚
R

C
 
1C

M˚v⇤2;c
c.M˚ Cm/

!2
2Gm

R
: (99)
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By using (99), we determine v⇤2;c : To do this, we square both sides of (99), perform necessary transformations,
and represent the relation obtained as a result in the form of a quadratic equation for v⇤2;c :

✓
1 � 2GmM˚

c2.M˚ Cm/

◆�
v⇤2;c

�2 C 8GmM˚
c.M˚ Cm/R

v⇤2;c �
�
v⇤2;1

�2 D 0:

We obtain the following relationship between v⇤2;c and v
⇤
2;1:

v⇤2;c D
� 4GmM˚
c.M˚ Cm/R

C
s

16G2m2M 2
˚

c2.M˚ Cm/2R2
C

✓
1 � 2GmM˚

c2.M˚ Cm/

◆⇣
v⇤2;1

⌘2

1 � 2GmM˚
c2.M˚ Cm/

:

After necessary transformations, we can represent this formula in the form

v⇤2;c D

0

@
s

1 � 2GmM˚
c2.M˚ Cm/

C
8Gm2M 2

˚
c2.M˚ Cm/3R

C

s
8Gm2M 2

˚
c2.M˚ Cm/3R

1

A
�1

v⇤2;1: (100)

In view of the fact that G D 6:67408 ⇥ 10�11 m3 �kg�1 �sec�2; M˚ D 5:9722 ⇥ 1024 �kg; c D 2:99792458 ⇥
108 m�sec�1; and R D 6:371 ⇥ 106 m; for m⌧M˚; we obtain

v⇤2;c ⇡
�
1C 7:4259154861063335 ⇥ 10�28fmg

�
v⇤2;1; (101)

where fmg is the numerical value of mass m of the body. The error in (101) is smaller than 10�28fmgv⇤2;1:
By using (100), (101), and the fact that

v⇤2;1 D
p
2G.M˚ Cm/=R;

we conclude that the mass m of the body strongly affects the value of the quantity v⇤2;c and, moreover,

lim
m!0

v⇤2;c
v⇤2;1

D 1 and lim
m!C1

v⇤2;c
v⇤2;1

D
✓
1 � 2GM˚

c2

◆�1=2

⇡ 1:0044646:

6. Instability of Motion of the PointsM1 and M2

The process of motion of the pointsM1 andM2 described by the system of equations (9) is Lyapunov unstable
if the corresponding solution x1.t/; x2.t/ of system (9) is Lyapunov unstable [16].

Theorem 4. The rectilinear motion of the points M1 and M2 described by the system of equations (9) for
which lim

t!C1
.x2.t/ � x1.t// D C1 is Lyapunov unstable.

Proof. The following cases are possible:

1) v2.t0/ � v1.t0/ D v⇤2;c I
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2) v2.t0/ � v1.t0/ > v⇤2;c :

In the first case, arbitrarily small perturbations of the initial values of solutions of system (9) and arbitrarily
small perturbations ı1 and ı2 of the velocities v1.t0/ and v2.t0/ may lead to the situation when the difference
.v2.t0/Cı2/� .v1.t0/Cı1/ becomes smaller than v⇤2;c : In this case, by Theorem 2, the pointsM1 andM2 collide.
At the same time, in the absence of perturbations, these points move so that lim

t!C1
.x2.t/� x1.t// D C1: Hence,

the process of motion of the pointsM1 andM2 is Lyapunov unstable.
In the second case, we fix an arbitrarily small ı > 0 and use the solutions x1.t/; x2.t/ and x1;ı.t/; x2;ı.t/ of

system (9) considered in the proof of Lemma 4.
According to relations (68), we get

v2;ı.t/ � v1;ı.t/ � v2.t/ � v1.t/C ı

for all t � t0:

Since we also have v2.t/ � v1.t/ > 0 for all t � t0 and lim
t!C1

.x2.t/ � x1.t// D C1; it is possible to

conclude that

lim
t!C1

�
.x2;ı.t/ � x1;ı.t// � .x2.t/ � x1.t//

�
D C1:

Therefore, in view of the arbitrary choice of the number ı > 0; we see that the solution x1.t/; x2.t/ of system (9)
is Lyapunov unstable.

Thus, in the second case, the process of motion of the pointsM1 andM2 is also Lyapunov unstable.
Theorem 4 is proved.

7. Additional Remarks and References

1. In the classical celestial mechanics, the two-body problem was studied by numerous mathematicians and
mechanicians (see, e.g., [17–19]).

Fundamental results in this field were obtained by Kepler [17] and Newton [9].
Thus, Kepler constructed the kinematic picture of motion of two bodies and presented it in the form of three

laws [17, 20]. On the basis of these laws, Newton deduced the law of gravitation. By using this law, together with
his three laws of motion, he constructed the dynamical picture of motion of the bodies. According to Newton’s
results, the trajectories of two bodies are curves called conic sections or straight lines [9, 10].

2. The results of investigation of the rectilinear motion of two bodies with regard for the finite speed of gravity
and conclusions concerning the escape velocity (for two bodies) are presented in the present paper for the first time.
The indicated speed obtained in the celestial mechanics with finite speed of gravity is higher than the corresponding
speed in the classical celestial mechanics (Sec. 5).

3. For the first time, the difference between the escape velocities in the Newton celestial mechanics and the
celestial mechanics with finite speed of gravity was shown by the author in [21] in analyzing the dynamics of three
bodies located on a straight line in the case where the masses of outer bodies and their distances from the central
body are identical. In [21], it is also shown that the motion of these bodies is unstable.

4. In the general case, the Lyapunov instability of star systems with unbounded trajectories studied with regard
for finiteness of the speed of gravity was shown in [22–24]. For the first time, this result in the case of two bodies
was obtained in [5]. The non-Keplerian behavior of motion of two bodies was demonstrated in [5].
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5. The law of gravitation for the finite speed of gravity was obtained with the use of Newton’s law of gravitation
and, for the first time, used in [6]. This law is a generalization of Newton’s law and coincides with it in the limit
case (c D C1).

6. For problems of celestial mechanics with the use of the theory of relativity, see, e.g., [11, 25].
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