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MAXIMALLY АCCRETIVE AND NONNEGATIVE EXTENSIONS OF  
A NONNEGATIVE LINEAR RELATION 

О. H. Storozh  UDC 513.88 

In terms of spaces of boundary values, we formulate and prove criteria of maximal θ-accretivity and 
maximal nonnegativity for the proper extension of a closed nonnegative linear relation in a Hilbert 
space.  In the case of differential operators, this directly leads to boundary conditions. 
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Introduction and Main Notation 

For the last several decades, numerous mathematicians focus their attention on the theory of linear relations 
(multivalued maps) in Hilbert spaces.  For any relation  T   of this kind, there exist adjoint  T ∗  and inverse  T −1  
relations.  This fact appears to be quite useful for the investigation, in particular, of different classes of exten-
sions of nondensely defined operators.  

Note that the theory of linear relations in Hilbert spaces was formulated by R. Arens in [10].  Various as-
pects of this theory (first of all, we mean the theory of extensions of the indicated relations) were later developed 
in the works of numerous researchers (see, e.g., [11, 13] and the references therein). 

The present paper is a direct continuation of author’s works [14, 15].  Our aim is to establish the conditions 
of maximal nonnegativity and maximal accretivity of the proper extension of a closed linear nonnegative rela-
tion in a Hilbert space in the terms of “abstract boundary conditions.”   

In what follows, we understood  H   as a fixed complex Hilbert space with a scalar product   (⋅ ⋅)  and the 
corresponding norm  ⋅ .  Any (closed) linear manifold in  H 2 def

= H ⊕H   is called a (closed) linear relation in  
H ,  and a linear operator is identified with its graph.  For any linear relation (in particular, an operator)  
T ⊂ H 2 ,  there exists an adjoint (closed linear) relation  T ∗ ⊂ H 2   that can be defined as follows:    

  T
∗ = JT ⊥  (= (JT )⊥ ), 

where,  ∀(y, ′y )∈H 2 ,  J (y, ′y ) = (−i ′y ,iy)   and  “⊥ ”  is the symbol of orthogonal complement in  H 2 . 
We use the following notation:  

 – D(T ) ,  R(T ) ,  and  kerT   are the domain of definition, the range of values, and the manifold of zeros, 
respectively, of the relation (operator)  T : 

  D(T ) = {y ∈H (∃ ′y ∈H ): (y, ′y )∈T }, 
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  R(T ) = { ′y ∈H (∃y ∈H ): (y, ′y )∈T }, 

  kerT = {y ∈H : (y,0)∈T }; 

if    λ ∈!! ,  then  

  λT = {(y,λ ′y ): (y, ′y )∈T }, 

  T − λ = {(y, ′y − λy): (y, ′y )∈T } 

(therefore,   ker (T − λ) = {y ∈H : (y,0)∈T − λ} ≡ {y ∈H : (y,λy)∈T }), 

   ker
! (T − λ) = {(y,λy): y ∈ker (T − λ)}; 

  T
−1 = {( ′y , y)∈H 2 : (y, ′y )∈T } ; 

if  X   and  Y   are Hilbert spaces, then   (⋅ ⋅)X   is the symbol of scalar product on  X   and   B(X,Y )   is a collec-
tion of linear continuous operators  S : X → Y   such that  D(S) = X ; 

  B(X ) = B(X,X ); 

 –  IX   is the identical transformation of the space  X ; 

 – S ↓ E   is the restriction of the mapping  S   to the set  E ; 

 – SE   is the image of set  E   under the mapping  S ; 

 – +
.

,  ⊕,  and  Θ   are the symbols of direct sum, orthogonal sum, and orthogonal complement, respec-
tively; 

 – E   is the closure of the set  E ; 

 – if  Ai : X → Yi ,   i = 1,…,n ,  are linear operators, then the notation   A = A1⊕…⊕ An   means that 

 Ax = (A1x,…,Anx)    for  ∀x ∈X . 

Recall that the linear relation  T   in  H   is called nonnegative (and we write  T ≥ 0 )  if   

  ∀(y, ′y )∈T ( ′y y) ≥ 0 , 

positively definite  ( T ≫ 0)  if, in addition,  

  infT
def
= inf{( ′y y): (y, ′y )∈T , y = 1} > 0 , 

and self-adjoint if  T = T ∗ .  This relation is called  θ-accretive,   
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 − π
2 ≤ θ ≤ π

2 ,   

provided that    

 ∀ŷ = (y, ′y )∈T arg( ′y y)∈ θ− π
2 ,θ + π

2
⎡
⎣

⎤
⎦ , 

i.e., 

 ∀ŷ ∈T arg(π2 ŷ π1ŷ)∈ θ− π
2 ,θ + π

2
⎡
⎣

⎤
⎦ , 

where  π1   and  π2   are the orthoprojectors  H 2 → H ⊕ {0}  and  H 2 → {0}⊕H ,  respectively.  Furthermore, 
if  T   has no  θ-accretive extensions in  H ,  then it is said that  T   is the maximally θ-accretive relation (com-

pare with the corresponding definitions introduced in [7]).  In the case where  θ = 0  θ = π
2

⎛
⎝⎜ ,  or  θ = − π

2
⎞
⎠⎟ ,  the  

θ-accretive relation is called accretive (dissipative, or accumulative).    
In the present work, we choose a closed linear nonnegative relation  L0 ⊂ H 2   as the subject of inquiry.  

Our aim is to describe its maximally nonnegative and proper maximally accretive extensions (an extension  L1   
of the relation  L0   is called proper if  L0 ⊂ L1 = L1 ⊂ L0

∗ ).  It is known [12] that there exist (nonnegative) self-
adjoint extensions  LF   and  LK   of the relation  L0   with the following property:  

a self-adjoint extension  L1   of the relation  L0   is nonnegative if and only if, for any  ε > 0 ,  

  ∀y ∈H ((LF + ε)
−1 y y) ≤ ((L1 + ε)

−1 y y) ≤ ((LK + ε)−1 y y). 

For the case of densely defined operator  L0 ,  this property was proved in [5].  
The extensions  LF   and  LK   are called stiff and soft extensions of the relation  L0 ,  respectively. 

1.  Preliminary Results and Formulation of the Problem  

Everywhere in what follows, we set  L def
= L0

∗ . 

Definition 1.  Suppose that  G   is a Hilbert space and   Γ1,Γ2 ∈B(L,G).  A triple   (G,Γ1,Γ2 )   is called the 
space of boundary values (SBV) of the relation  L0   if 

  R(Γ1 ⊕Γ2 ) = G⊕G, ker(Γ1 ⊕Γ2 ) = L0 ,  

and, for any  ŷ = (y, ′y ),  ẑ = (z, ′z )∈L , 

  ( ′y z)− (y ′z ) = (Γ1ŷ Γ2 ẑ)G − (Γ2 ŷ Γ1ẑ)G . 
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If, in addition,  kerΓ1 = LK   and  kerΓ2 = LF ,  then we say that   (G,Γ1,Γ2 )  is a stiff  SBV of relation  L0 . 
Everywhere in what follows, we assume that   (G,Γ1,Γ2 )  is a fixed SBV for  L0   such that   

 L2
def
= kerΓ2 ≥ 0 .  

Hence, for any  λ < inf L2 ,  the  following operators are correctly defined: 

 
  
Lλ = (L2 − λ)−1 ∈B(H ), L̂λ =

Lλ
IH + λLλ

⎛
⎝⎜

⎞
⎠⎟
∈B(H ,H 2 ), 

 
 
Zλ = (Γ1L̂λ )∗ ∈B(G,H ), Ẑλ =

Zλ
λZλ

⎛
⎝⎜

⎞
⎠⎟
∈B(G,H 2 ). 

Definition 2.  A   B(G)-valued function  

 M (λ) = Γ1Ẑλ , λ < inf L2 , 

is called the Weyl function of relation  L0   corresponding to its SBV   (G,Γ1,Γ2 ) .   

Remark 1.  The notion of SBV was introduced in [4] under the assumption that  L0   is a densely defined 
symmetric operator with identical defective numbers.  In [6], it was extended to the case of nondensely defined 
operators.  The notion of Weyl function corresponding to a given SBV was proposed in [3] and found its subse-
quent development in the works of numerous mathematicians (see [2] and the references therein).  It is easy to 
see that Definition 2 is equivalent to the corresponding definitions from cited works. 

We set 

  U (λ) = (M (λ)− i)(M (λ)+ i)−1 

and present some results from [15] necessary in what follows and formulated, for the sake of convenience, in the 
form of a theorem. 

Theorem 1.  There exist unitary operators  
 
U−∞ ,U0 ∈B(G),  defined as follows: 

 U−∞ = s − lim
λ→−∞

U (λ), U0 = s − lim
λ→−0

U (λ) ; (1) 

moreover, 

   LF = {ŷ ∈L :(U−∞ − IG )Γ1ŷ + i(U−∞ + IG )Γ2 ŷ = 0} , (2) 

   LK = {ŷ ∈L :(U0 − IG )Γ1ŷ + i(U0 + IG )Γ2 ŷ = 0}, (3) 

where  U−∞  and  U0   are the same as in (1). 
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Corollary 1.  If   L2 ≫ 0,  then there exists 

 
 
B def

= s − lim
λ→−∞

(M (λ)−M (0))−1, (4) 

where   B ∈B(G)   and  B ≤ 0 .  In this situation, the space   (G,γ1,γ 2 ),  where 

 γ1ŷ = Γ1ŷ −M (0)Γ2 ŷ, ŷ ∈L , (5) 

  γ 2 ŷ = Γ2 ŷ − B γ1ŷ ≡ − BΓ1ŷ + (IG + BM (0))Γ2 ŷ, ŷ ∈L , (6) 

and  B   is defined according to (4), is a stiff  SBV of the relation  L0   and, in particular, 

 LF = ker γ 2 ≡ {ŷ ∈L : γ 2 ŷ = 0} , (7) 

 LK = ker γ1 ≡ {ŷ ∈L : γ1ŷ = 0} . (8) 

In the present paper, we consider the problem of establishing the criteria of maximal accretivity and maxi-
mal nonnegativity of the relation 

  L1 = {ŷ ∈L :A1Γ1ŷ + A2Γ2 ŷ = 0}, (9) 

where   A1,A2 ∈B(G) . 

2.  Main Results 

Theorem 2.  Suppose that   L2 ≡ kerΓ2 ≫ 0 ,  the operator B is defined according to (4), and the relation  
L1   is given by formula (9).  Also let   

   a1 = A1(IG +M (0)B)+ A2B, a2 = A1M (0)+ A2 . (10) 

 (і) The following assertions are equivalent: 

 (1°) L1   is a maximally θ-accretive relation; 

 (2°)  Re(e
iθa1a2

∗) ≤ 0 ,   ker(a1 − e− iθa2 ) = {0}; 

 (3°) there exists a contraction   K ∈B(G)  such that 

   L1 = {ŷ ∈L :(K − IG )γ1ŷ + e
iθ(K + IG )γ 2 ŷ = 0} , 

  where  γ1  and  γ 2   are defined according to (5), (6). 
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 (іі) The following propositions are equivalent: 

 (1°) L1   is a maximally nonnegative relation; 

 (2°) a1a2
∗ ≤ 0 ,   ker (a1 − a2 ) = {0}; 

 (3°) there exists a self-adjoint contraction   K ∈B(G)  such that 

   L1 = {ŷ ∈L :(K − IG )γ1ŷ + (K + IG )γ 2 ŷ = 0}. 

Proof.  Since [see (5), (6), and (10)]  

 
 
a1γ1 + a2γ 2 = ( a1 a2 )

γ1
γ 2

⎛
⎝⎜

⎞
⎠⎟

 

  
  
= ( A1 A2 )

IG +M (0)B M (0)
B IG

⎛
⎝⎜

⎞
⎠⎟

IG −M (0)
−B IG + BM (0)

⎛
⎝⎜

⎞
⎠⎟

Γ1
Γ2

⎛
⎝⎜

⎞
⎠⎟

 

  
 
= ( A1 A2 )

Γ1
Γ2

⎛
⎝⎜

⎞
⎠⎟
= A1Γ1 + A2Γ2, 

the validity of this theorem follows from the results presented in [14] and Corollary 1, in particular, with (7), 
(8). 

Remark 2.  As follows from (10),   Im(a1a2
∗) = Im(A1A2

∗).  Therefore, the conditions of maximal dissipativi-
ty and maximal accumulativity of the relation  L1   can be formulated in a much simpler form than the conditions 
of maximal accretivity of this relation.  

Theorem 3.  Let  L1   be an arbitrary proper maximally accretive extension of the relation  L0 .  Then 

  ∀ε > 0 (LF + ε)
−1 ≤ Re(L1 + ε)

−1 ≤ (LK + ε)−1. (11) 

Proof.  First, we suppose that   L0 ≫ 0  and   (G,Γ1,Γ2 )   is a stiff SBV of the relation  L0 . 
It is known (see either [14] or Theorem 2 with  B = M (0) = 0 )  that, for a certain contraction   K ∈B(G), 

   L1 = {ŷ ∈L :(K − IG )Γ1ŷ + (K + IG )Γ2 ŷ = 0} . (12) 

Applying Theorem 1 from [8] with  M 0 = L0 ,  λ = −ε < 0,   A1 = K − IG ,  and   A2 = K + IG ,  we obtain  

 (L1 + ε)
−1 = (LF + ε)

−1    − Z−ε[(K − IG )M (−ε)+ (K + IG )]−1(K − IG )Z−ε
∗ . (13) 

In view of the inequalities   KK
∗ ≤ IG   and  M (−ε) ≤ M (0) = 0 ,  we get    
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  Re (K − IG ) (K − IG )M (−ε)+ (K + IG )[ ]∗{ }  

  
  = Re (K − IG ) M (−ε)(K ∗ − IG )+ (K ∗ + IG )⎡⎣ ⎤⎦{ } 

    = (K − IG )M (−ε)(K ∗ − IG )+ (KK ∗ − IG ) ≤ 0 .   

Since the nonpositivity of the operator     Re{(K − IG )[(K − IG )M (−ε)+ (K + IG )]∗}  is equivalent to the 
nonpositivity of the operator     Re{[(K − IG )M (−ε)+ (K + IG )]−1(K − IG )},  relation (13) implies that the first 
inequality in (11) is true.   
 Further,  LK   with   K = − IG   is defined by a condition of the form  

  (LK + ε)−1 = (LF + ε)
−1 − Z−εM (−ε)−1Z−ε

∗ . (14) 

It is clear from (13) and (14) that 

  Re(L1 + ε)
−1 ≤ (LK + ε)−1 

   
  ⇔ Re (K − IG )M (−ε)+ (K + IG )[ ]−1(K − IG ){ } ≥ M (−ε)−1  

   
  ⇔ Re (K − IG ) (K − IG )M (−ε)+ (K + IG )[ ]∗{ }  

    ≥ (K − IG )M (−ε)+ (K + IG )[ ]M (−ε)−1 

     × (K − IG )M (−ε)+ (K + IG )[ ]∗ 

     ⇔ (KK ∗ − IG )+ (K + IG )M (−ε)−1(K + IG ) ≤ 0 ; 

hence, the second inequality in (11) is true.   
Now let  inf L0 = 0 ,  ξ > 0 .  By  (L + ξ)F   and  (L + ξ)K    we denote the stiff and soft extensions of the re-

lation  L0 + ξ ,  respectively.  It follows from the propositions proved above that 

 
 
∀ε > 0, ∀λ ∈(−ε,0) (LF + ε)

−1 = LF +
ε
2

⎛
⎝⎜

⎞
⎠⎟ +

ε
2

⎛
⎝⎜

⎞
⎠⎟
−1

 

  
 
≤ Re L1 +

ε
2

⎛
⎝⎜

⎞
⎠⎟
+ ε
2

⎛
⎝⎜

⎞
⎠⎟
−1

= Re(L1 + ε)
−1. 

We introduce the notation   
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  L
λ( ) def

= L0 +
.
ker! (L − λ)M (λ),     λ < 0 .   

It is known (see, e.g. [1, 2, 12]) that  L(λ ) =  (L − λ)K + λ .  Therefore, in view of the propositions proved above, 
for any  ε > 0   and  λ ∈(−ε,0),  we find 

  (L
(λ ) + ε)−1 = ((L − λ)K + (ε + λ))−1  

   ≥ Re((L1 − λ)+ (ε + λ))−1 = Re(L1 + ε)
−1. 

To complete the proof, it suffices to apply the relation  

 
 
s − lim

λ→−0
(L(λ ) + ε)−1 = (LK + ε)−1  

established in the cited works [1, 2, 12].  Q.E.D.    

In what follows, we always assume that  L0   is a nonnegative (generally speaking, nonpositively definite) 
relation and   (G,Γ1,Γ2 )  is the SBV of this relation such that 

 L2 ≡ kerΓ2 = LF . (15) 

It follows from Theorem 1 [in particular, from (2)] that, in this case, 

 
 
U−∞ ≡ s − lim

λ→−∞
U (λ) = IG . 

Remark 3.  Assumption (15) does not lead to the loss of generality.  Indeed, let   (G,Γ1,Γ2 )  be the SBV of 
the relation  L0   (satisfying the condition  kerΓ2 ≥ 0 ).  We set 

    Γ̂1 = i
2 (U−∞ + IG )Γ1 −

1
2 (U−∞ − IG )Γ2 ,      

   Γ̂2 = 1
2 (U−∞ − IG )Γ1 +

i
2 (U−∞ + IG )Γ2. 

By direct calculations, we can show that  (G, Γ̂1, Γ̂2 )   is the SBV of relation  L0 .  Thus, in view of Theo-
rem 1,  we get  ker Γ̂2 = LF .  

Theorem 4.  The relation  L1   is maximally accretive (maximally nonnegative) if and only if 

 (i) there exists  
 
s − lim

λ→−0
A1M (λ)A1

∗ def
= A0 ∈B(G), 

 (ii)  A0 + Re(A1A2
∗) ≤ 0 ,   A0 + A1A2

∗ ≤ 0, 
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 (iii) for some (and, hence, for any)  λ < 0 , 

  ker(A1 − A2 − A1M (λ)) = {0}. (16) 

Proof.  Since the maximal accretivity (maximal nonnegativity) of a closed linear relation  T ⊂ H 2   is 
equivalent to the simultaneous accretivity (nonnegativity) of the relations  T   and  T ∗,  the relation  L1   is max-
imally accretive (maximally nonnegative) if and only if the extension  L1 + ε   has the same property for any  
ε > 0 .  Further, as follows from the definition of the function  M (λ) ,   (G,Γ1 −M (−ε)Γ2 ,Γ2 )  is a stiff SBV of 
the positive definite relation  L0 + ε .  In addition, relation (9) is equivalent to the following relation: 

  L1 = {ŷ ∈L :A1(Γ1 −M (−ε)Γ2 )ŷ + (A2 + A1M (−ε))Γ2 ŷ = 0}. 

Therefore, by applying either the results obtained in [14] or Theorem 2 with  B = M (0) = 0 ,  we conclude that  
L1 + ε   is maximally accretive (maximally nonnegative) if and only if    

  A1M (−ε)A1
∗ + Re(A1A2

∗) ≤ 0, A1M (−ε)A1
∗ + (A1A2

∗) ≤ 0 . 

 By using the monotonicity of the function  M (λ)   and the theorem on the limit of a nondecreasing sequence 
of self-adjoint operators bounded above (see [9, Problem 94]), we conclude that  L1   belongs to one of the ana-
lyzed classes if and only if conditions (i) and (іі) are true and equality (16) is satisfied for all  λ < 0 . 

Suppose now that conditions (і) and (іі) are satisfied and (16) is true for some  λ = −ε < 0 .  Then  L1
∗ + ε   is 

maximally accretive (maximally nonnegative) and, hence,   R(L1
∗ + 2ε) = H .  This fact and the accretivity 

(nonnegativity) of  L1
∗   yield the maximal accretivity (maximal nonnegativity) of the relation  L1   (see [1, 12]) 

and, hence, the validity of relation (12) for all  λ < 0 .   

3.  Relationship between  Lmin   and  Lmax  

We set  

  Lmin = LF ∩ LK , Lmax = LF +" LK . (17) 

It is easy to see that  Lmin
∗ = Lmax   and  Lmax

∗ = Lmin ,  where  Lmax   is the closure of relation  Lmax .  It is clear 
that, in this case,  LF   is a stiff extension and  LK   is a soft extension (not only of the relation  L0   but also of  
Lmin ).  In the case where   LF ≫ 0 ,  we get  Lmin = L0   and  Lmax = L   (for details, see, e.g., [1, 2, 12]).  In the 
general case, in view of (3) and (15), we obtain    

  ̂y ∈Lmin ⇔ Γ2 ŷ = 0, (U0 − IG )Γ1ŷ = 0 . 

Remark 4.  If  X   and  Y   are linear relations, then 

   X +! Y def
= {(x + u, y + v): x,u ∈X, y,v ∈Y } 
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(component-wise sum).  In the case where    X ∩Y = {0} ,  we write  X +
.
Y   instead of   X +

!Y   [compare (17) with 
the definition of relation  L(λ )  in Theorem 3]. 

Lemma 1.  Let  ŷ ∈L .  Then   

 (i)   ̂y ∈Lmax ⇔ Γ2 ŷ ∈R(U0 − IG );  (18) 

 (ii)   ̂y ∈Lmax ⇔ Γ2 ŷ ∈R(U0 − IG ).  (19) 

Proof  (і). We denote by  P1  the orthoprojector    G→ R(U0 − IG ).  It is clear that   

  Lmin = kerΓ2 ∩  kerP1Γ1.   

Since   (G,Γ1,Γ2 )   is the SBV of the relation  L0 ,  we have    Lmax = Lmin
∗ = ker(IG − P1)Γ2 ,  i.e., condition (18) 

is satisfied.   

(іі).  Let  ŷ = ŷ1 + ŷ2 ,  where  ŷ1 ∈LF   and  ŷ2 ∈LK .  In view of (3), it is easy to see that there exists  h ∈G    
satisfying the equalities 

  Γ1ŷ = − i(U0 + IG )h ,         Γ2 ŷ = (U0 − IG )h . (20) 

Conditions (20) are satisfied by the solution of the system    

   (U0 − IG )Γ1ŷ2 + i(U0 + IG )Γ2 ŷ2 = 0, 

   (U0
∗ + IG )Γ1ŷ2 − i(U0

∗ − IG )Γ2 ŷ2 = − 4ih. 

Furthermore,  Γ2 ŷ1 = 0 ,  and, hence,  

   Γ2 ŷ = (U0 − IG )h ∈R(U0 − IG ). 

On the contrary, assume that  h ∈G   and    Γ2 ŷ = (U0 − IG )h .  There exists  ŷ2 ∈L   satisfying conditions 
(20).  It is clear that  ŷ2 ∈LK   and  ŷ − ŷ2 ∈LF . 

Corollary 2. 

 (i)   Lmin = L0 ⇔ ker(U0 − IG ) = {0}; 

 (ii)   Lmax = Lmax ⇔ R(U0 − IG ) = R(U0 − IG ); 

 (iii)   Lmax = L⇔ R(U0 − IG ) = G .  
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Corollary 3. 

 (i)   L1 ⊂ Lmax ⇔ R(A1
∗)⊂ R(U0 − IG ); 

 (ii)   L1 ⊂ Lmax ⇒ R(A1
∗)⊂ R(U0 − IG )     

in the case where    A ∈B(G2 ,G)  defined by the condition 

 A(h1,h2 ) = A1h1 + A2h2 , h1,h2 ∈G , 

is normally solvable, and the converse assertion is also true.  

Proof.  First, let the operator  A    be normally solvable.  Then (see [8, Lemma 9])  

 L1
∗ = {ẑ ∈L ∃h ∈G :Γ1ẑ = A2

∗h, Γ2 ẑ = −A1
∗h} , 

and, therefore,   {Γ2 ẑ : ẑ ∈L1
∗} = R(A1

∗).  We see that, in this case, the validity of Corollary 3 follows from Lem-
ma 1.  In the general situation, one should use the fact that there exist   C ∈B(G)  and   Â ∈B(G⊕G,G)  such 
that   kerC = {0},  A   is a normally solvable operator, and  A = CÂ .    

Lemma 2.  Suppose that  e∈G   and  e = 1.  If   

 
 
sup
ε>0

(M (−ε)e e) < +∞,   

then there exists a nonnegative self-adjoint relation  Le ⊂ L   such that, for some  ŷ ∈Le ,  the equality  Γ2 ŷ = e   
is true. 

Proof.  Let  P   be the orthoprojector   G→ sp{e},  i.e.,   Ph = (h e)e,  α > 0 ,   Le = ker(αPΓ1 − Γ2 ).  It is 
clear that  Le

∗ = Le.  Further, by using the theorem on the limit of a monotone bounded operator function cited 
above (see [9, p. 246]), Theorem 4 with  A1 = αP   and   A2 = −IG ,  and the equalities 

 
 
(A1M (−ε)A1

∗ + A1A2
∗)h h( )G  

   = α2 (M (−ε)h e)G e (h e)G e( )G − α(h e)G(e h)G  

   = α (h e) 2 α(M (−ε)e e)G −1( ) , 

we conclude that, for   

  0 < α < (max{1,sup(M (−ε)e e)G})−1 ,   
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the relation  Le   is nonnegative.  Finally, there exists  ŷ ∈L   such that  Γ2 ŷ = e   and  Γ1ŷ =
1
α e,  and hence,  

ŷ ∈Le . 

Lemma 3.  For any nonnegative self-adjoint extension  L1   of the relation  L0 ,  the following relation is 
true:    

 Lmin ⊂ L1 ⊂ Lmax . (21) 

Proof.  As follows from the definition of stiff and soft extensions of a nonnegative relation, for all  f ∈H ,   
we get  

 
  
0 ≤ [(L1 +1)−1 − (LF +1)−1 ] f f( )   ≤ [(LK +1)−1 − (LF +1)−1 ] f f( ) . (22) 

Suppose that   

  ̂y0 = (y0 , ′y0 )∈Lmin ≡ LF ∩ LK       and      f0
def
= ′y0 + y0 .   

Then   (y0 , f0 )∈LF +1  and   (y0 , f0 )∈ LK +1,  i.e.,   (LK +1)−1 f0 = (LF +1)−1 f0 = y0 .  Substituting  f = f0   in 
(22), we conclude that  

 
  
[(L1 +1)

−1 − (LF +1)−1 ] f0 f0( ) = 0. 

However,   (L1 +1)
−1 ≥ (LF +1)

−1  and, therefore,   (L1 +1)
−1 f0 = y0 ,  which follows from the following series of 

implications: 

 
   
W =W ∗ ∈B(G),W ≥ 0, (Wf0 f0 ) = 0( )⇒W 1/2 f0 = 0 ⇒Wf0 = 0 . 

Hence,   (y0 , ′y0 )∈L1.  
Thus,  Lmin ⊂ L1  but  L1

∗  is also a nonnegative self-adjoint extension of the relation  L0 .  Therefore,  
Lmin ⊂ L1

∗   and, hence,  L1 ⊂ Lmin
∗ = Lmax .    

Corollary 4.  If  
 
sup
ε>0

(M (−ε)h h)G < +∞ ,  then   h ∈R(U0 −1G ). 

Proof.  We set   

 e = h
h . 

According to Lemma 2, there exists a nonnegative self-adjoint relation  Le ⊂ L   such that, for some  ŷ ∈L ,  
the equality  Γ2 ŷ = e   is true.  Since, by virtue of Lemma 3,  ŷ ∈Lmax ,  we have (see (18))    e∈R(U0 − IG )  and, 
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therefore,    h ∈R(U0 − IG ).     

Theorem 5.  For any proper maximally accretive extension  L1   of the relation  L0 ,  conditions (21) are 
satisfied. 

Proof.  Assume that the relation   L1 = ker(A1Γ1 + A2Γ2 )  is maximally accretive.  Theorem 4 implies that, 
for any   h ∈R(A1

∗),  
 
sup
ε>0

(M (−ε)h h)G < +∞   and, therefore (in view of Corollary 4),    h ∈R(U0 − IG ).  Thus, 

   R(A1
∗)⊂ R(U0 − IG ),   

i.e., (see Corollary 3),  L1
∗ ⊂ Lmax   and, hence,  Lmin = Lmax

∗ ⊂ L1 .  Since  L1
∗   is also a proper maximally accre-

tive extension of the relation  L0 ,  we conclude that  L1 = L1
∗∗ ⊂ Lmax .   

4.  Some Corollaries 

In what follows, we use the following notation: 

   G1 = R(U0 − IG ), G2 = GΘG1 , 

 γ11 = P1Γ1, γ12 = P2Γ1, γ 21 = P1Γ2 , γ 22 = P2Γ2 , 

where  Pi   is the orthoprojector  G → Gi ,  i = 1,2 , 

 
 
M (λ) =

m(λ) m12 (λ)
m21(λ) m22 (λ)

⎛
⎝⎜

⎞
⎠⎟
, U0 =

u0 0
0 I2

⎛
⎝⎜

⎞
⎠⎟

 

are the matrix representations of the corresponding operators as mappings  G1⊕G2 → G1⊕G2   (see [9]), and  

 Ii = IGi
,  i = 1,2 .  

It is easy to see that  

 LF = {ŷ ∈L : γ 21ŷ = 0, γ 22 ŷ = 0} , 

   LK = {ŷ ∈L :(u0 − I1)γ11ŷ + i(u0 + I1)γ 21ŷ = 0, γ 22 ŷ = 0}, 

  Lmin = {ŷ ∈L : γ 21ŷ = γ 22 ŷ = γ11ŷ = 0}, 

  Lmax = {ŷ ∈L : γ 22 ŷ = 0} , 

and   (G1,γ11,γ 21)  is the SBV of the relation  Lmin .  Therefore, in view of Theorem 5, any proper maximally 
accretive extension  L1   of the relation  L0   can be represented in the following form: 
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  L1 = {ŷ ∈Lmax :α1γ11ŷ +α2γ 21ŷ = 0}, (23) 

where   α1,α2 ∈B(G1).  Hence, the problem formulated at the beginning of the present work is now, in fact, re-
duced to the case where  G = G1,  i.e., where  Lmin = L0 . 

Lemma 4.  If    h ∈R(u0 − I1),  then there exists  
 
lim
ε→+0

(m(−ε)h h)G1
  and 

 
  
lim
ε→+0

(m(−ε)h h)G1
≤ (−i(u0 + I1)(u0 − I1)−1h h)G1

. 

Proof.  Since  LK   is a proper maximally nonnegative extension of the relation  L0 ,  it follows from (3) and 
Theorem 4 (more exactly, from its proof) that  

 
  ∀ε > 0, ∀g ∈G (U0 − IG )M (−ε)(U0 − IG )∗g g( )G  

  
  ≤ i(U0 − IG )(U0 + IG )∗g g( )G  

  
  = −i(U0 + IG )(U0 − IG )∗g g( )G  (24) 

(the last equality follows from the self-adjointness of the operator    i(U0 − IG )(U0 + IG )∗).  Assume that  h   be-
longs to  

 
  
R(u0 − I1) = R(U0 − IG ) = R((U0 − IG )∗) = R((u0 − I1)

∗)⎛
⎝⎜

⎞
⎠⎟ . 

There exists  g ∈G1  such that 

   h = (U0 − IG )∗ = (u0 − I1)∗g . (25) 

In view of (24) and (25), we obtain 

 
  (m(−ε)h h)G1

= (M (−ε)h h)G = M (−ε)(U0 − IG )∗ g (U0 − IG )∗g( )G  

  
  = (U0 − IG )M (−ε)(U0 − IG )∗g g( )G  

  
  ≤ −i(U0 + IG )(U0 − IG )∗g g( )G  

  
  
= −i(u0 + I1)(u0 − I1)∗g g( )G1
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= −i(u0 + I1)h ((u0 − I1)∗)−1h( )G1

 

  
  
= −i(u0 − I1)−1(u0 + I1)h h( )G1

 

  
  
= −i(u0 + I1)(u0 − I1)−1 h h( )G1

. 

To complete the proof, it is sufficient to apply the theorem on the limit of a bounded monotone operator 
function. 

Remark 5.  It is easy to see that  m(λ)   is the Weyl function of the relation  Lmin   corresponding to its SBV  

 (G1,γ11,γ 21).  Further, since  LF   and  LK   are the stiff and soft extensions of this relation, we find  

 
  
u0 = s − lim

λ→−0
(m(λ)− iI1)(m(λ)+ iI1)−1 

(this follows from the definition of the function  U (λ)  and Theorem 1) and, hence, 

 
  
u0 − I1 = s − lim

λ→−0
(−2i)(m(λ)+ iI1)−1 . (26) 

Lemma 5.  If there exists  lim
ε→+0

m(−ε)h ,  then   h ∈R(u0 − I1)  and  

 
  
lim
ε→+0

m(−ε)h = − i(u0 + I1)(u0 − I1)−1h . (27) 

Proof.  Let  lim
ε→+0

m(−ε)h = g .  Then  

 
  
lim
ε→+0

(m(−ε)+ iI1)h = g + ih .   

Further, the identities 

   −2i(m(−ε)+ iI1)−1(m(−ε)+ iI1)h = −2ih , 

 
  
lim
ε→+0

(−2i)(m(−ε)+ iI1)−1(g + ih) = (u0 − I1)(g + ih)  

are satisfied [see (26)].  Since, for any  ε > 0 ,  we have  

 
  (m(−ε)+ iI1)−1(m(−ε)+ iI1)h − (m(−ε)+ iI1)−1(g + ih)  

  
  ≤ (m(−ε)+ iI1)−1 m(−ε)h + ih − g − ih  
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= (m(−ε)+ iI1)−1 m(−ε)h − g ≤ m(−ε)h − g →

ε→+0
0  

(here, we have used the theorem on the spectrum of self-adjoint operator), i.e., 

 
  
−2i(m(−ε)+ iI1)−1(g + ih) →

ε→+0
− 2ih  

and, as follows from (26),  

 
  
−2i(m(−ε)+ iI1)−1(g + ih) →

ε→+0
(u0 − I1)(g + ih) , 

we obtain  

   −2ih = (u0 − I1)(g + ih) 

and, in particular,    h ∈R(u0 − I1).  Furthermore, the last equality implies that  

  g + ih = − 2i(u0 − I1)−1h , 

   g = − 2i(u0 − I1)−1h − ih = − i(2(u0 − I1)−1h + (u0 − I1)−1(u0 − I1)h)  

   = −i(u0 − I1)−1(2h + u0h − h) = − i(u0 − I1)−1(u0 + I1)h , 

i.e., (27) is satisfied. 

Corollary 5.    R(u0 − I1) = G1   if and only if, for every  h ∈G1  there exists  lim
ε→+0

m(−ε)h.  In this case, 

 
  
s − lim

ε→+0
m(−ε) = − i(u0 + I1)(u0 − I1)−1 ∈B(G1). (28) 

Proof.  The necessity of the condition   R(u0 − I1) = G1  and the validity of relation (28) follow from Lem-
ma 5.  On the contrary, if   R(u0 − I1) = G1,  then, in view of the Banach theorem on inverse operator, 

   − i(u0 + I1)(u0 − I1)−1 ∈B(G1).  

Hence, as follows from Lemma 4 and the theorem on the limit of monotone operator function, there exists 
an operator   m0 ∈B(G1)  such that  s − lim

ε→+0
m(−ε) = m0 .  To complete the proof, it remains to apply Lemma 5 

once again. 

Corollary 6.  Suppose that  Lmax = Lmax   and the relation  L1   is defined according to (9): 
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  L1 = {ŷ ∈L :A1Γ1ŷ + A2Γ2 ŷ = 0}, 

where   A1,A2 ∈B(G)   and  kerΓ2 = LF . 
The relation  L1   is maximally accretive (maximally nonnegative) if and only if  

 (i)  A1M 0A1
∗ + Re(A1A2

∗) ≤ 0   (resp.,  A1M 0A1
∗ + A1A2

∗ ≤ 0),  where 

 
 
M 0 = −i(u0 − I1)−1(u0 + I1) 0

0 0
⎛
⎝⎜

⎞
⎠⎟

; 

 (ii) for some (and, hence, for any)  ε > 0 , 

  ker(A1 − A2 − A1M (−ε)) = {0}. 

Proof.  As follows from Corollaries 2 and 5, the operator   M 0 ∈B G( )  is correctly defined and, in addition,  
s − lim

ε→+0
M (−ε) = M 0 . Therefore, the validity of the required assertion directly follows from Theorem 4. 

Remark 6.  We recall that [see (23)], in the case where  Lmax = Lmax ,  any proper maximally accretive ex-
tension  L1   of the relation  L0   can be represented in the form 

  L1 = {ŷ ∈Lmax :α1Γ1ŷ +α2Γ2 ŷ = 0} , 

where   α1,α2 ∈B(G1) .  Corollary 6 implies that this extension  L1   of the relation  L0   is maximally accretive 
(maximally nonnegative) if and only if  

 (i)  α1m0α1
∗ + Re(α1α2

∗ ) ≤ 0 , 

 (ii) for some (and, hence, for any)  ε > 0 , 

  ker(α1 − α2 − α1m(−ε)) = {0}. 

REFERENCES 

 1. Yu. M. Arlins’kyi,  Maximal Accretive Extensions of Sectorial Operators [in Ukrainian], Author’s Abstract of the Doctoral-Degree 
Thesis (Phys., Math.), Kyiv (2000). 

 2. V. A. Derkach and M. M. Malamud,  Theory of Extensions of Symmetric Operators and Boundary Problems [in Russian], Proceed-
ings of the Institute of Mathematics, National Academy of Science of Ukraine, Mathematics and Its Applications, Vol. 104, Kyiv 
(2017)  

 3. V. A. Derkach and M. M. Malamud,  Weyl Function of a Hermitian Operator and Its Relationship with the Characteristic Function 
[in Russian], Preprint No. 85–9, Donetsk Fiz.-Tekh. Inst., Akad. Nauk Ukr. SSR, Donetsk (1985). 

 4. A. N. Kochubei,  “Extensions of symmetric operators and symmetric binary relations,”  Mat. Zametki, 17, No. 1, 41–48 (1975), Eng-
lish translation: Math. Notes Acad. Sci. USSR, 17, No. 1, 25–28 (1975); https://doi.org/10.1007/BF01093837. 

 5. M. G. Krein,  “Theory of the self-adjoint extensions of semibounded Hermitian operators and its applications, I, II,”  Mat. Sb., 
20(62), No.3, 431–495; 21(63), No. 3, 365–404 (1947). 



18 О. H. STOROZH 

 6. M. M. Malamud,  “One approach to the theory of extensions of a nondensely defined Hermitian operator,”  Dokl. Akad. Nauk Ukr. 
SSR, No. 3, 20–25 (1990). 

 7. V. A. Mikhailets, “Spectra of operators and boundary problems,” in: Spectral Analysis of Differential Operators [in Russian], Insti-
tute of Mathematics, Akad. Nauk Ukr. SSR, Kiev (1980), pp. 106–131.  

 8. O. Pihura and O. Storozh,  “Resolvent and the conditions of solvability of proper extensions of linear relations in Hilbert spaces,”  
Visn. Lviv Univ., Ser. Mekh.-Mat., Issue 82, 174–185 (2016). 

 9. P. R. Halmos,  A Hilbert Space Problem Book, Van Nostrand Company, Princeton (1967).  
 10. R. Arens,  “Operational calculus of linear relations,”  Pacific J. Math., 11, No. 1, 9–23 (1961); DOI: 10.2140/pjm.1961.11.9. 
 11. E. A. Coddington,  “Self-adjoint subspace extensions of nondensely defined symmetric operators,”  Bull. Amer. Math. Soc., 79, 

No. 4, 712–715 (1973); https://doi.org/10.1090/S0002-9904-1973-13275-6. 
 12. E. A. Coddington and H. S. V. de Snoo,  “Positive self-adjoint extensions of positive symmetric subspaces,”  Math. Zeit., 159, 

No. 3, 203–214 (1978); https://doi.org/10.1007/BF01214571. 
 13. A. Dijksma and H. S. V. de Snoo,  “Self-adjoint extensions of symmetric subspaces,”  Pacific J. Math., 54, No. 1, 71–100 (1974); 

DOI: 10.2140/pjm.1974.54.71. 
 14. O. G. Storozh,  “Maximal accretive extensions of positively definite linear relation in a Hilbert space,” in: Book of Abstracts of the 

Internat. Conf. Devoted to the 70th Birthday of Prof. Oleh Lopushansky “Infinite-Dimensional Analysis and Topology” [in Ukraini-
an], Ivano-Frankivsk (2019), pp. 49–50. 

 15. O. G. Storozh,  “On an approach to the construction of the Friedrichs and Neumann–Krein extensions of nonlinear relations,”  Kar-
path. Mat. Publ., 10, No. 2, 387–394 (2018); https://doi.org/10.15330/cmp.10.2.387-394. 


	Abstract
	Introduction and Main Notation
	1. Preliminary Results and Formulation of the Problem
	2. Main Results
	3. Relationship between Lmin and Lmax
	4. Some Corollaries
	REFERENCES



