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We study the extension of the problem of optimal investments in two factors of pro-

duction (physical and human capital) for an arbitrary linearly homogeneous production

function satisfying the limit conditions for partial derivatives, where the total discounted

utility function of consumption for infinite time is maximized. We show that, with a

sufficiently small discount rate of utility and a sufficiently large relative risk aversion

of a consumer, it is optimal for the consumer to initially increase only physical capital

until the rate of technological substitution of physical and human capital (the ratio of

the corresponding partial derivatives) is equal to the efficiency of investments in human

capital and then invest in both types of capital in a constant proportion, which leads to

unlimited growth. Bibliography: 12 titles. Illustrations: 3 figures.

How much resources should be spent on production and how much on development of technolo-

gies is one of the main questions of the theory of economic growth. To solve this problem, as

well as the Ramsey problem [1] of optimal investment in physical capital [2], methods of optimal

control theory began to be applied [3] almost immediately after the publication of the maximum

principle [4].

In works on optimal technological development, in addition to consumption, the shares of

limited resources allocated to technological development are chosen as controls: labor [3], human

capital [5], and physical capital. The target functional is usually the total discounted utility from

the consumption of a representative household over infinite time.

Optimal control problems in infinite time present mathematical difficulties in choosing the

correct condition on the conjugate variables of transversality type, as shown, for example, in [6].

This direction of the theory is still developing [7], even on the example of the classical Ramsey

problem [8]. The optimal solution for an infinite planning horizon may not exist in optimal
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resource exploitation problems [9]. Therefore, for the mathematical justification of a solution,

it is good if one manages to formulate a problem to which sufficient optimality conditions can

be applied [10, 11].

Economic papers mainly study the balanced growth path of the model when all variables grow

at a constant rate. The dependence on the parameters of the problem of a constant growth rate of

average labor productivity on this trajectory helps to explain cross-country differences. However,

the transitional trajectory to the balanced growth path is no less interesting to study since it

proposes the current optimal policy of investment in capital and technological development, the

ratio of which can radically differ on the transitional trajectory and on the balanced growth path.

In this paper, we consider a generalization of the model from [12], where, unlike a similar

problem in [5], it was assumed that the rate of human capital growth is proportional to the

amount of the final product spent on it, which, together with consumption, can temporarily

exceed the current output by reducing the stock of physical capital. The assumption that

control is unlimited from above admits the nonexistence of a locally bounded optimal control.

However, in the present formulation, we can use the sufficient conditions of the Mangasaryan

optimality [10], which guarantees the existence. The necessary optimality conditions are used to

prove that there are no solutions with investment in human capital under certain parameters.

1 Statement of the Problem

We assume that the population and the labor supplied by the population in the economy are

constant and normalize them to 1. We consider the problem of a central planner maximizing

the utility of consumers in the economy discounted with the norm ρ > 0

∞∫

0

e−ρ t u(C(t)) dt → max
C(·),G(·)

, C(t) � 0, G(t) � 0, K(t) > 0,

the growth speed of the physical capital K or the net investment flow

K̇(t) = F (K(t), A(t))− C(t)−G(t), K(0) = K0 > 0, (1.1)

this is what remains of the net output F after the private consumption C and the government

spending G. The growth speed of the human capital A

Ȧ(t) = γ G(t), A(0) = A0 > 0, (1.2)

is proportional to the government spending G, where γ > 0 is the efficiency coefficient of

investment in human capital. 1)

We assume that F is a linearly homogeneous and differentiable function in both variables

A,K > 0 such that its partial derivative monotonically decreases with respect to the differenti-

ation variable and monotonically increases with respect to the other variable.

1) The net output is the output minus the expenses due to depreciation of capital. Also, the capital growth

is called the net investment which, in addition to the costs of capital depreciation, would amount to the gross

investment.
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Assumption 1.1. For all A > 0

lim
K→∞

F ′
K(K,A) � min{ρ, γ · lim

K→∞
F ′
A(K,A)},

lim
K→0

F ′
K(K,A) � max{ρ, γ · lim

K→0
F ′
A(K,A)}.

We assume that the consumers have a constant relative risk aversion θ > 0, i.e.,

u′(C) = C−θ. (1.3)

This means that we consider instantaneous utility functions, for example,

u(C) =
C1−θ

1− θ
,

where θ �= 1 and u(C) = lnC for which θ = 1.

2 Optimality Conditions

The Hamilton–Pontryagin function

H (K,A,C,G, λ, ψ) = u(C) + λ(F (K,A)− C −G) + ψ γ G

is concave over the set of its variables (K,A,C,G). Therefore, we can use the Mangasarian

sufficient optimality conditions [10] consisting of the following conditions.

1. The maximum condition

(Ĉ(t), Ĝ(t)) ∈ arg max
C,G�0

H (K̂(t), Â(t), C,G, λ(t), ψ(t)) (2.1)

which can be written as

u′(Ĉ(t))− λ(t) = 0, (2.2)

Ĝ(t) ∈ argmax
G�0

[γ ψ(t)− λ(t)]G (2.3)

in view of the strict concavity of u(C).

2. The adjoint equations

ρλ(t)− λ̇(t) =
∂H

∂K
,

ρψ(t)− ψ̇(t) =
∂H

∂A

in the form

ρ λ(t)− λ̇(t) = λ(t)F ′
K(K̂(t), Â(t)), (2.4)

ρψ(t)− ψ̇(t) = λ(t)F ′
A(K̂(t), Â(t)). (2.5)
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3. The limit conditions of transversality type in the form

lim inf
t→∞ e−ρ tλ(t)(K(t)− K̂(t)) � 0,

lim inf
t→∞ e−ρ tψ(t)(A(t)− Â(t)) � 0,

where K(·) > 0 and A(·) > 0 are admissible trajectories satisfying Equations (1.1) and (1.2) for

nonnegative controls C(·) and G(·).
Since K(t) and A(t) are positive, the limit conditions are satisfied if

lim
t→∞ e−ρ tλ(t) K̂(t) = 0,

lim
t→∞ e−ρ tψ(t) Â(t) = 0,

(2.6)

where only optimal variables are involved. We will omit the symbol ̂ over the optimal variables.

It is convenient to pass to the new specific variables per unit of human capital

f(k) :=
F (K,A)

A
= F (k, 1), k :=

K

A
, g :=

G

A
, c :=

C

A
.

From (1.1) and (1.2), we can express the growth rates of the physical and human capital in the

new variables as
K̇(t)

K(t)
=

f(k(t))− g(t)− c(t)

k(t)
,

Ȧ(t)

A(t)
= γ g(t).

Then for the dynamics of physical capital per unit of human capital

k̇(t) =

(
K̇(t)

K(t)
− Ȧ(t)

A(t)

)
k(t)

we obtain the equation

k̇(t) = f(k(t))− c(t)− (1 + γ k(t))g(t), k(0) = k0 :=
K0

A0
> 0. (2.7)

The dynamics of human capital (1.2) takes the form

Ȧ(t) = γ g(t)A(t), A(0) = A0 > 0. (2.8)

By the Euler theorem, for a homogeneous function of the first degree we have 2)

F ′
K(K,A) = f ′(k),

F ′
A(K,A) = f(k)− f ′(k) k.

(2.9)

Then the adjoint equations (2.4) and (2.5) can be written as

ρ λ(t)− λ̇(t) = f ′(k(t))λ(t), (2.10)

ρψ(t)− ψ̇(t) = λ(t)[f(k(t))− f ′(k(t)) k(t)]. (2.11)

2) By the Euler theorem , F (K,A) = F ′
K(K,A)K + F ′

A(K,A)A and F ′
K(K,A) = F ′

k(k, 1). Dividing the first

identity by A and taking into account the second one F ′
K(K,A) = f ′

k(k), we get f(k) = F ′
K(K,A) k+F ′

A(K,A) =

f ′(k) k + F ′
A(K,A).
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From the maximum condition it follows that λ(t) = u′(C(t)) = [C(t)]−θ > 0, C(t) > 0, since

θ > 0. Substituting λ(t) = [A(t) c(t)]−θ into (2.10) and taking into account (2.8), we write the

equation of the dynamics of specific consumption

θ ċ(t) = c(t)[f ′(k(t))− ρ− θ γ g(t)]. (2.12)

Introducing the variable z(t) = ψ(t)/λ(t), from (2.10) and (2.11) we obtain the equation

ż(t) = f ′(k(t)) z(t) + f ′(k(t)) k(t)− f(k(t)). (2.13)

We write the maximum condition (2.3) in the new variables as

g(t) ∈ argmax
g�0

[γ z(t)− 1]g. (2.14)

It is clear that 0 < g(t) < ∞ for all t � T only if z(t) = 1/γ for all t � T . In (2.13) this

condition holds for the stationary value k = k which exists and is unique in view of Assumption

1.1 and formula (2.9),

f ′(k)︸ ︷︷ ︸
F ′
K(K,A)

= (f(k)− f ′(k) k)︸ ︷︷ ︸
F ′
A(K,A)

γ. (2.15)

Using the differential equation in (2.7) with k = k and taking into account that

f(k) =
(1
γ
+ k

)
f ′(k),

it is possible to express the specific consumption from (2.15) as

c(t) = f(k)− (1 + γ k)g(t) =
(1
γ
+ k

)
(f ′(k)− γg(t)). (2.16)

Substituting (2.16) into (2.12), we get the differential equation

ġ(t) = −
[f ′(k)

γ
− g(t)

][f ′(k)− ρ

θ
− γ g(t)

]
. (2.17)

Equation (2.17) has two stationary solutions. The first solution

g̃ =
f ′(k)
γ

corresponds to the zero stationary consumption c̃ = 0 according to (2.16). The second one

g =
f ′(k)− ρ

θ γ
, (2.18)

which is positive if

f ′(k)− ρ > 0, (2.19)

corresponds to the stationary consumption

c =
(1
γ
+ k

)(θ − 1)f ′(k) + ρ

θ
, (2.20)
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which is positive if g < g̃, i.e.,

(θ − 1)f ′(k) + ρ > 0. (2.21)

We note that for θ � 1 the inequality (2.21) holds if (2.19) is fulfilled.

From (2.17) we can see that for g(t) < g̃ � g the derivative is negative, ġ(t) < 0, i.e.,

if (2.21) holds, then the solution of Equation (2.17) cannot converge to a trajectory with the

zero consumption c̃ = 0, having a positive consumption c(t) > 0 In view of (2.16). The other

stationary consumption is negative c < 0. It is clear that ġ(t) < 0 for g(t) < g � g̃ or

g � g̃ < g(t) and ġ(t) > 0 for g < g(t) < g̃, i.e., if (2.21) holds and the specific investment in the

human capital is g(t) �= g, then it becomes nonpositive in a finite time or converges to g̃ as the

consumption converges to zero. Therefore, if both conditions (2.19) and (2.21) hold, the only

way to have positive consumption is to have stationary g(t) = g > 0 and c(t) = c > 0 for all

t � T .

If the condition (2.19) fails, then g ≡ 0 satisfies the maximum condition (2.14) at z(t) � 1/γ,

and from the stationarity conditions f ′(k∗) = ρ and c∗ = f(k∗) of the system (2.7), (2.12) we

find its saddle point (k∗, c∗) which exists and is unique by Assumption 1.1 and to which the

solution of the system should converge along the saddle path (2.7), (2.12) with g ≡ 0, which

coincides with the solution of the Ramsey model without exogenous technological growth.

Now, we are ready to formulate the main theorem.

Theorem 2.1. Let Assumption 1.1 hold. Then there is a ratio of the physical K and human

A capitals
K

A
= k > 0 determined by (2.15) such that

F ′
K(K,A)

F ′
A(K,A)

= γ ∀A > 0, K > 0,
K

A
= k.

If (2.19) and (2.21) hold, 0 < 1− ρ/f ′(k) < θ, and k0 � k, then the optimal solution is the

dynamics of (2.7), (2.12) with g(t) = 0, t ∈ [0, T ], and k(0) = k0 :

k̇(t) = f(k(t))− c(t), (2.22)

θ
ċ(t)

c(t)
= f ′(k(t))− ρ, (2.23)

until the moment T = T (k0) when the specific capital and consumption reach the stationary

values k(T ) = k and c(T ) = c calculated from (2.15) and (2.20) when the investment g(·) jumps

from zero to g in (2.18) and, like the other specific variables, c(t) = c and k(t) = k remain at

its stationary level g(t) = g for all t > T .

If (2.19) is not satisfied and f ′(k) � ρ, i.e., 1− ρ/f ′(k) � 0 < θ, then the optimal dynamics

does not include the human capital investment, g(t) ≡ 0, and is described by Equations (2.22),

(2.23) for T = ∞, where c(t) and k(t) converge to the stationary values c∗ and k∗ determined

from the conditions c∗ = f(k∗) and f ′(k∗) = ρ.

Proof. Let (2.19) and (2.21) be satisfied. We show that, up to the moment t = T , the

maximum condition leads to g(t) = 0. Equation (2.13) with the condition z(T ) = 1/γ for

k < k for t < T gives ż(t) > 0 due to the fact that the marginal productivity of physical

capital f ′(k) decreases by k and the marginal productivity of human capital f(k) − f ′(k) k
increases by k. Hence z(t) < 1/γ for t < T and from the maximum condition (2.14) we have
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g(t) = 0 if k0 < k. We note that for k0 > k the maximum condition would yield g(0) = ∞.

We show that the solution satisfies (2.6). Starting from the time T , the variables K and A

grow at the same rate γ g. The adjoint variables λ and ψ also grow at the same rate because

ψ(t)/λ(t) = z = 1/γ. Both conditions in (2.6) are fulfilled if λ̇(t)/λ(t) + K̇(t)/K(t) − ρ < 0

which, along with K̇(t)/K(t) = γ g, (2.10), ρ − λ̇(t)/λ(t) = f ′(k), (2.18), ρ + θ γ g = f ′(k),
amounts to (2.21).

If (2.19) is not satisfied and f ′(k) � ρ, then for g ≡ 0 we consider the solution which

monotonically tends to (k∗, c∗) along the saddle trajectory of the system (2.22), (2.23), i.e.,

A ≡ A0, K → A0 k
∗, C → A0 f(k

∗), λ = u′(C) → u′(A0 f(k
∗)) as t → ∞. The variable z(t)

should tend to the stationary value

z(t) → z∗ =
f(k∗)− f ′(k∗) k∗

f ′(k∗)
<

f(k)− f ′(k) k
f ′(k)

=
1

γ

less than 1/γ due to the relation f ′(k) � ρ = f ′(k∗) and the fact that the marginal productivity

of physical capital (in the denominator) is a decreasing function and the marginal productivity

of human capital (in the numerator) is an increasing function of k. In view of the inequality

obtained, the maximum condition for g ≡ 0 holds. For the adjoint variable we have ψ(t) =

λ(t) z(t) → const. Thus, both conditions in (2.6) are satisfied.

Remark 2.1. In the case of (2.19), (2.21) with a large initial specific capital k0 > k, it

is not possible to find locally bounded controls g(·) leading to a stationary solution. One can

consider a problem with restriction from above on the values of the function g(·), which would be

physically justified, or with the possibility to exchange at the initial moment the excess capital

k0−k for technologies at the price γ. However, the latter case does not seem to be economically

natural.

Remark 2.2. If (2.19) holds, but (2.21) fails, i.e., 0 < 1− ρ/f ′(k) � θ, when the consumer

risk aversion θ is small, there is no optimal solution with positive investment in human capital.

Otherwise, there should be the zero consumption. One can say that the consumer would indef-

initely postpone the consumption. Moreover, there is no optimal solution at all if, in addition,

we have

max
k

(
f(k)− (1 + γ k)

ρ

1− θ

)
> 0.

Indeed, having a positive capital, it is not optimal to stop consumption forever because the

capital could be “consumed.” The conditions (2.2), (2.3) and (2.4), (2.5) are also included in

the necessary optimality conditions of the Pontryagin maximum principle in the normal form

(see, for example,

[7]). In this case, Equation (2.17) has no solution corresponding to a positive consumption,

and the stationary solution g̃ with the zero consumption contradicts the maximum condition

(2.2) because of the infinite derivative of the utility function at zero.

In the abnormal form of the maximum principle, when the Pontryagin function has the form

H (K,A,C,G, λ, ψ) = λ(F (K,A)− C −G) + ψ γ G,

from the maximum condition (2.1) it follows that for positive values of C and G the identities

λ(t) ≡ 0 and γ ψ(t)− λ(t) ≡ 0 are satisfied, which implies ψ(t) = λ(t) ≡ 0. But this contradicts

the assumptions of the Pontryagin maximum principle.
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It could be neither optimal to stop investment in human capital forever because the objective

functional would be finite, while we can find admissible controls such that the functional is

infinite

∞∫

0

e−ρ t u(C(t)) dt =

t0∫

0

e−ρ t u(C(t)) dt+
A1−θ

0 c1−θ

1− θ

∞∫

t0

e((1−θ)g−ρ) t dt = ∞,

where we take c(t) = g(t) = 0 for t ∈ [0, t0) and g(t) = g > ρ/(1− θ), c(t) = c > 0 for all t � t0.

It is possible if the maximal specific consumption for stationary k in (2.7) is positive. Then

there is no optimal solution.

3 Example

We consider the Cobb-Douglas production function with a constant rate δ > 0 of capital

depreciation (see [12]) F (K,A) = KαA1−α − δ K, α ∈ (0, 1), and the logarithmic instantaneous

utility function, i.e., θ = 1. In the specific variables, the net output is f(k) = kα − δ k.

Figure 1. The phase diagram of the system (3.1), (3.2). The stationary curves are drawn

by the bold solid lines. The optimal trajectory, indicated by arrows converging to the

point (k, c), which becomes stationary at time t = T when the human capital investment

g(t), increases from 0 to g in (3.4). The dots denote the stationary positions (k, c) at

different values of the human capital investment efficiency γ.

The dynamics of specific capital and consumptions (2.22) and (2.23)

k̇(t) = (k(t))α − c(t)− δ k(t), k(0) = k0, k(T ) = k, (3.1)

ċ(t)

c(t)
= α (k(t))α−1 − ρ− δ, c(T ) = c, (3.2)

is represented in the phase diagram of Figure 1, where k is the solution to Equation (2.15)

αkα−1 − δ = (1− α) kαγ, (3.3)
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which exists and is unique because the left-hand side of (3.3) strictly monotonically decreases

from +∞ to −δ, and the right-hand side strictly monotonically increases from 0 to +∞ at

k ∈ (0,+∞), i.e., Assumption 1.1 is satisfied.

The steady-state level of investment in human capital is found by formula (2.18)

g =
α k

α−1 − δ − ρ

γ
(3.4)

and the stationary consumption is determined by (2.20)

c =

(
1

γ
+ k

)
ρ. (3.5)

The optimal trajectory of the absolute values of K and C is depicted in the phase diagram of

Figure 2.

Figure 2. The phase diagram for absolute variables K and C. The optimal trajectory

moves along the arrow-marked transition path to the balanced growth trajectory point

(A0k,A0c), which is reached at time t = T , then the human capital investment g(t)

increases from 0 to g from (3.4) and the optimal trajectory follows the balanced growth

trajectory indicated by the bold black line.

Figure 3 depicts the capital and consumption trajectories over time. It can be seen that,

after time t = T when the investment in human capital begins, the growth rate of physical

capital falls and the previously slowing growth of consumption begins to accelerate.

The condition (2.21) is satisfied since θ = 1. From the condition (2.19) of positive human

capital investment (3.4) αkα−1 − δ − ρ > 0 and the stationarity condition of this regime (3.3)

we can deduce that for the unlimited economic growth in this example it is sufficient for the

efficiency of human capital investment to be above a certain value:

γ >
ρ

1− α

(δ + ρ

α

) α
1−α

.

Otherwise, the country will never invest in human capital.
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Figure 3. Trajectories of the capital K(t) and consumption C(t) over time.
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