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CAYLEY–DICKSON SPLIT-ALGEBRAS:
DOUBLY ALTERNATIVE ZERO DIVISORS AND RELATION GRAPHS

A. E. Guterman and S. A. Zhilina UDC 512.554

Abstract. Our paper is devoted to the investigations of doubly alternative zero divisors of the real Cay-
ley–Dickson split-algebras. We describe their annihilators and orthogonalizers and also establish the rela-
tionship between centralizers and orthogonalizers for such elements. Then we obtain an analogue of the
real Jordan normal form in the case of the split-octonions. Finally, we describe commutativity, orthogo-
nality, and zero divisor graphs of the split-complex numbers, the split-quaternions, and the split-octonions
in terms of their diameters and cliques.

To the memory of V. T. Markov

1. Introduction

The zero divisors of the Cayley–Dickson algebras are of special interest; however, the problem of their
identification and description of their annihilators is rather difficult. Some attempts to classify the zero
divisors of the algebras of the main sequence were made by Moreno in [20–22] and by Biss et al. in [11].
However, until now this problem is far from being solved. Particularly, [11] contains the description
of top-dimensional zero divisors only. It should be noted that Moreno was the first to study doubly
alternative zero divisors of the algebras of the main sequence, i.e., the elements whose both components
are alternative. Then their annihilators were described in [11, Proposition 11.1]. Still, there is no simple
criterion for doubly alternative elements to be zero divisors, except for Theorem 2.9 in [20].

An important approach to the visualization of numerous algebraic relations, such as zero division,
commutativity, etc., is to define a relation graph via the algebraic properties under consideration. The
research in the area of graphs determined by the relations in the algebraic systems originates from the
group theory (see, e.g., [5]). Rings and algebras were first studied in this way by Beck in [9] (1988), where
the zero divisor graph of a commutative ring was first introduced and investigated. This definition was
later improved by Anderson and Livingston in [4]. As for zero divisor graphs of noncommutative rings,
Redmond was the first to introduce them in [23]. Commutativity graphs of non-commutative rings were
defined in [2] by Akbari et al. Orthogonality graphs represent a similar concept and were studied first
in [8] by Bakhadly et al.

Relation graphs of matrix rings are of particular interest (see [12]) for zero divisor graphs, [1, 3, 14]
for commutativity graphs, and [7, 8, 18] for orthogonality graphs.

In this paper, we consider doubly alternative zero divisors of arbitrary real Cayley–Dickson split-
algebras. Our main goal is to provide a criterion for a doubly alternative element to be a zero divisor
and to describe its left and right annihilators and its orthogonalizer. In the process, we classify alterna-
tive elements in the split-algebras. Also we generalize the relationship between the centralizer and the
orthogonalizer of an arbitrary doubly alternative zero divisor obtained in [17, Proposition 8.15] from the
split-sedenions to general split-algebras.

We apply the obtained results to relation graphs of the real low-dimensional Cayley–Dickson split-
algebras and focus on their combinatorial characteristics such as the diameter and the description of
cliques.
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The structure of this paper is as follows. Section 2 contains essential definitions and notations.
Section 3 is devoted to real Cayley–Dickson algebras. Particularly, we describe the Cayley–Dickson
process in detail in Sec. 3.1 and mention some of their properties in Sec. 3.2. Split-complex numbers,
the split-quaternions, and the split-octonions are introduced in Sec. 3.3. In Sec. 4, we study doubly
alternative zero divisors of arbitrary real Cayley–Dickson split-algebras. We use these results to describe
relation graphs of real low-dimensional Cayley–Dickson split-algebras in Sec. 5. Section 5.1 contains some
elementary results about relation graphs of the split-complex numbers. In Sec. 5.2, we give our proof of
some well-known results about relation graphs of the split-quaternions for the purpose of demonstrating an
analogy between the split-quaternions and the split-octonions. We obtain an analogue of the real Jordan
normal form for the split-octonions in Corollary 5.23 of Sec. 5.3, and then describe the orthogonality
graph and the zero divisor graph of the split-octonions.

2. Definitions

Let F be an arbitrary field and (A, +, ·) be an algebra with an identity 1A over the field F. A is not
assumed to be commutative and associative. Let a, b ∈ A. Then

• a and b commute if ab = ba,
• a and b anticommute if ab + ba = 0,
• a and b are orthogonal if ab = ba = 0,
• a is a left zero divisor if a �= 0 and there exists nonzero x ∈ A such that ax = 0,
• a is a right zero divisor if a �= 0 and there exists nonzero x ∈ A such that xa = 0,
• a is a two-sided zero divisor if it is both a left and a right zero divisor,
• a is a zero divisor if it is a left or a right zero divisor.

Definition 2.1.
• The center of an algebra A is the set CA = {a ∈ A | ab = ba for all b ∈ A}.
• ZL(A) denotes the set of left zero divisors of A.
• ZR(A) denotes the set of right zero divisors of A.
• Z(A) = ZL(A) ∪ ZR(A) is the set of zero divisors of A.
• ZLR(A) = ZL(A) ∩ ZR(A) is the set of two-sided zero divisors of A.

Definition 2.2. Let a be an arbitrary element of A.
• The centralizer of a is CA(a) = {b ∈ A | ab = ba}, namely, the set of all elements in A that

commute with a.
• The anticentralizer of a is AncA(a) = {b ∈ A | ab + ba = 0}, namely, the set of all elements in A

that anticommute with a.
• The left annihilator of a is the set l.AnnA(a) = {b ∈ A | ba = 0}.
• Similarly, the right annihilator of a is r.AnnA(a) = {b ∈ A | ab = 0}.
• The orthogonalizer of a is OA(a) = {b ∈ A | ab = ba = 0}, namely, the set of all elements in A

that are orthogonal to a.

Remark 2.3. Let a ∈ A. It can be easily seen that CA, CA(a), AncA(a), l.AnnA(a), r.AnnA(a), and
OA(a) are vector spaces over F.

We can now introduce some relation graphs to be studied in this paper.

Definition 2.4. For an algebra A, we define the following structures.
• The commutativity graph ΓC(A): its vertex set is A\CA, and distinct vertices a and b are adjacent

if and only if ab = ba.
• The orthogonality graph ΓO(A): its vertex set is ZLR(A), and distinct vertices a and b are adjacent

if and only if ab = ba = 0.
• The directed zero divisor graph ΓZ(A): its vertex set is Z(A), and distinct vertices a and b are

connected with an edge directed from a to b if and only if ab = 0.
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We will need the following graph theory definitions.

Definition 2.5. Let Γ be a directed or an undirected graph.
• Γ is called connected if for each ordered pair of vertices (x, y) there exists a path leading from x

to y.
• The distance d(x, y) = dΓ(x, y) between two vertices x and y in Γ is the number of edges in

a shortest path from x to y. If there is no path from x to y, then d(x, y) = ∞.
• The diameter d(Γ) of Γ is defined as sup

x,y∈Γ
d(x, y).

An undirected graph Γ has also the following invariants.
• A connected component of Γ is a maximal connected subgraph of Γ.
• A clique Q in Γ is a subset of vertices of Γ such that every two distinct vertices in Q are adjacent.
• A clique Q is called maximal if Q is maximal by inclusion.

3. An Overview of Real Cayley–Dickson Algebras

3.1. Constructing Cayley–Dickson Algebras.

Definition 3.1 ([19, p. 139, Definition 1.5.1]). Let (A, +, ·) be an algebra over a field F. An involution
a �→ ā on A is an endomorphism of the vector space A such that for all a, b ∈ A we have ¯̄a = a and
ab = b̄ā.

Definition 3.2. Let (A, +, ·) be an algebra over a field F with an identity 1A and an involution a �→ ā.
This involution is called regular if it satisfies a + ā = t(a)1A and aā = āa = n(a)1A, where t(a), n(a) ∈ F,
for any a ∈ A. Here t(a) is called the trace of a and n(a) is called the norm of a.

Henceforth we assume that A is an algebra over a field F with a regular involution a �→ ā. Below we
provide several basic facts, which will be used later. For the completeness we give the proofs for some of
them.

Proposition 3.3. Let a ∈ A, λ ∈ F. Then n(a − λ1A) = λ2 − t(a)λ + n(a).

Proof. For any b ∈ A, we have b̄ = b1A = 1A · b̄, so 1A = 1A. Thus,

(a − λ1A)(a − λ1A) = (a − λ1A)(ā − λ1A) = aā − λ(a + ā) + λ21A =
(
λ2 − t(a)λ + n(a)

)
1A.

Definition 3.4. The characteristic polynomial of a ∈ A is

pa(λ) = n(a − λ1A) = λ2 − t(a)λ + n(a).

Its discriminant is dis(a) =
(
t(a)

)2 − 4n(a).

Proposition 3.5 ([24, p. 438]). For any a ∈ A, we have pa(a) = 0.

In this section, we use [19,24] to recall the classical nonassociative algebras, the so-called Cayley–Dick-
son algebras.

Definition 3.6 ([24]). The algebra A{γ} produced by the Cayley–Dickson process, when applied to A
with the parameter γ ∈ F, γ �= 0, is defined as the set of ordered pairs of elements of A with operations

α(a, b) = (αa, αb),

(a, b) + (c, d) = (a + c, b + d),

(a, b)(c, d) = (ac + γd̄b, da + bc̄)

and the involution
(a, b) = (ā,−b), a, b, c, d ∈ A, α ∈ F.
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Proposition 3.7 ([24]).
• A{γ} is an algebra over F with the identity 1A{γ} = (1A, 0) and a regular involution.
• Let A be an n-dimensional algebra and {ei}i=1,...,n be a basis in A. Then A{γ} is 2n-dimensional

and {(ei, 0), (0, ei)}i=1,...,n is a basis in A{γ}.
Thus if we begin with a one-dimensional algebra and successively apply the Cayley–Dickson process

to it, we will get a 2n-dimensional algebra in the nth step.

Proposition 3.8 ([19, p. 161, Exercise 2.5.1]). Let γ′ = α2γ with α �= 0. Then A{γ} and A{γ′} are
isomorphic.

However, the converse implication in Proposition 3.8 fails, see Example 5.17.

Lemma 3.9 ([24, p. 435]). Let a, b ∈ A, (a, b) ∈ A{γ}. Then

t
(
(a, b)

)
= t(a),

n
(
(a, b)

)
= n(a) − γn(b).

Henceforth we assume that F = R, and R1A is identified with R. Consider the following definitions,
which are analogous to those for complex numbers.

Definition 3.10. The real part of an element a ∈ A is

Re(a) =
a + ā

2
,

the imaginary part of a is

Im(a) =
a − ā

2
,

the norm of a is n(a) = aā = āa. Then a is said to be pure if Re(a) = 0.

Observe that Re(a), n(a) ∈ R1A = R, since the involution on A is regular. Clearly, the introduced
notion of the norm is well-agreed with Definition 3.2.

Remark 3.11. The norm of a is often defined as
√

aā, unlike n(a) = aā, in this paper. However, most
of the results can be easily extended to the norm modified in this way.

Lemma 3.12. For any a ∈ A we have dis(a) = −4n
(
Im(a)

)
.

Proof. We have

dis(a) =
(
t(a)

)2 − 4n(a) = (a + ā)2 − 2aā − 2āa = (a − ā)2 = −(a − ā)(a − ā) = −4n
(
Im(a)

)
.

Definition 3.13. For every integer n ≥ 0 and nonzero real numbers γ0, . . . , γn−1, the real Cayley–Dickson
algebra An = An{γ0, . . . , γn−1} is defined inductively:

(1) A0 = R, and e
(0)
0 = 1 is its only basis element;

(2) if An{γ0, . . . , γn−1} is constructed, then An+1{γ0, . . . , γn} = (An{γ0, . . . , γn−1}){γn}. Its basis
elements are e

(n+1)
0 , . . . , e

(n+1)
2n+1−1

such that

e(n+1)
m =

{(
e
(n)
m , 0

)
, 0 ≤ m ≤ 2n − 1,

(
0, e

(n)
m−2n

)
, 2n ≤ m ≤ 2n+1 − 1.

Lemma 3.14. For every integer n ≥ 0, the structure An in Definition 3.13 is a 2n-dimensional algebra
over R with the identity e

(n)
0 and a regular involution.

Proof. It follows from Proposition 3.7 by induction on n.

We will use the notation 1 = 1(n) = e
(n)
0 and r = r1(n) for r ∈ R.
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3.2. Some Properties of Real Cayley–Dickson Algebras. Henceforth we assume that A is an
arbitrary algebra over a field F, and An = An{γ0, . . . , γn−1} is an arbitrary real Cayley–Dickson alge-
bra. Proposition 3.8 implies that An{γ0, . . . , γn−1} is isomorphic to An{sgn(γ0), . . . , sgn(γn−1)}, so it is
sufficient to consider only γk ∈ {±1}, k = 0, . . . , n − 1.

Notation 3.15. For every m = 0, . . . , 2n − 1, we define

δ(n)
m =

n−1∏

l=0

(−γl)cm,l ,

where the degrees cm,l ∈ {0, 1} are the unique coefficients of the binary decomposition

m =
n−1∑

l=0

cm,l2l

(cf. [17, Proposition 3.18]).

Lemma 3.16. Let a = a0 + a1e
(n)
1 + · · · + a2n−1e

(n)
2n−1 ∈ An. Then

ā = a0 − a1e
(n)
1 − · · · − a2n−1e

(n)
2n−1,

Re(a) = a0,

Im(a) = a1e
(n)
1 + · · · + a2n−1e

(n)
2n−1,

n(a) =
2n−1∑

m=0

δ(n)
m a2

m,

here we consider conjugation in the sense of Definition 3.6, and norm, real and imaginary parts in the
sense of Definition 3.10.

Proof. Follows from Lemma 3.9 by direct calculations.

Notation 3.17. Given

a =
2n−1∑

m=0

ame(n)
m , b =

2n−1∑

m=0

bme(n)
m ∈ An,

let us define

〈a, b〉 =
2n−1∑

m=0

δ(n)
m ambm.

Proposition 3.18. 〈a, b〉 is a real-valued symmetric bilinear form associated with the quadratic form n(a),
i.e.,

〈a, a〉 = n(a),

〈a1 + a2, b〉 = 〈a1, b〉 + 〈a2, b〉,
〈αa, b〉 = α〈a, b〉,
〈a, b〉 = 〈b, a〉,
〈a, b〉 ∈ R,

for all a, a1, a2, b ∈ A, α ∈ R.

Proof. The first equality follows from Lemma 3.16, while other properties can be verified directly.

Proposition 3.19. Let a, b ∈ An. Then 2〈a, b〉 = ab̄ + bā = āb + b̄a.
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Proof. By Proposition 3.18 we have

2〈a, b〉 = 〈a + b, a + b〉 − 〈a, a〉 − 〈b, b〉 = (a + b)(a + b) − aā − bb̄ = ab̄ + bā.

Similarly,
2〈a, b〉 = 〈a + b, a + b〉 − 〈a, a〉 − 〈b, b〉 = (a + b)(a + b) − āa − b̄b = āb + b̄a.

Corollary 3.20. Let a, b ∈ An. Then 〈a, b〉 = Re(ab̄) = Re(b̄a).

Proof. Indeed, by Proposition 3.19 we have 2Re(ab̄) = ab̄ + ab̄ = ab̄ + bā = 2〈a, b〉. Similarly, 2Re(b̄a) =
b̄a + b̄a = b̄a + āb = 2〈a, b〉.

The following lemma describes the anticentralizer of an arbitrary element of An.

Lemma 3.21 ([17, Lemma 5.8]). Let a ∈ An, a �= 0.
(1) If Re(a) �= 0, n(a) �= 0, then AncAn(a) = {0}.
(2) If Re(a) �= 0, n(a) = 0, then AncAn(a) = Rā.
(3) If Re(a) = 0, then AncAn(a) = {b ∈ An | Re(b) = 0 and 〈a, b〉 = 0}.
We now proceed to some concepts related to associativity.

Definition 3.22. The associator of a, b, c ∈ A is the element [a, b, c] = (ab)c − a(bc).

Proposition 3.23 ([19, p. 141]). The associator is a trilinear function of its arguments.

Definition 3.24 ([19, Definition 2.1.1]).
• An algebra A is called flexible if for all a, b ∈ A the equality (ab)a = a(ba) holds.
• An element a ∈ A is called alternative if for all b ∈ A the equalities a(ab) = a2b and (ba)a = ba2

hold.
• An algebra A is called alternative if all its elements are alternative.

Proposition 3.25 ([19, Exercise 2.1.1]).
• If A is flexible then for all a, b, c ∈ A, we have [a, b, c] = −[c, b, a].
• If A is alternative, then the associator in A is skew-symmetric, i.e., it changes sign if an argument

transposition is performed.

Lemma 3.26 ([24, p. 436, p. 438, Theorem 1]).
• An is commutative if and only if n ≤ 1.
• An is associative if and only if n ≤ 2.
• An is alternative if and only if n ≤ 3.
• An is flexible for all n ∈ N ∪ {0} and γ0, . . . , γn−1 ∈ R \ {0}.

We now recall some basic facts concerning algebra automorphisms.

Definition 3.27. A mapping φ : A → A is called an automorphism of A if φ is bijective and for any
a, b ∈ A and γ ∈ F we have φ(a + b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), and φ(γa) = γφ(a). AutF(A)
denotes the set of all automorphisms of A.

Lemma 3.28. Let φ ∈ AutF(A). Then φ preserves pairs of commuting elements, pairs of orthogonal
elements, and pairs of zero divisors.

Proof. It follows directly from the definition of an algebra automorphism.

Notation 3.29. Let m ∈ N, a1, . . . , am ∈ An. Then

Lin(a1, . . . , am) = Ra1 + · · · + Ran,

Lin∗(a1, . . . , am) = Lin(a1, . . . , am) \ {0},
Lin∗

I(a1, . . . , am) = Lin(1, a1, . . . , am) \ R.
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3.3. Some Examples of Real Cayley–Dickson Algebras.

Definition 3.30.
• It is said that the algebra An{γ0, . . . , γn−1} is an algebra of the main sequence if γk = −1 for

each k = 0, . . . , n − 1. We denote this algebra by Mn.
• The algebra An{γ0, . . . , γn−1} is called a Cayley–Dickson split-algebra if γk = −1 for each k =

0, . . . , n − 2 and γn−1 = 1. We denote it by Hn, since the norm in Hn appears to be hyperbolic.

Proposition 3.31.
• Let

a =
2n−1∑

m=0

ame(n)
m , b =

2n−1∑

m=0

bme(n)
m ∈ Mn.

Then

〈a, b〉 =
2n−1∑

m=0

ambm

is a Euclidean inner product. Particularly,

n(a) =
2n−1∑

m=0

a2
m,

so n(a) = 0 if and only if a = 0.
• Let

a =
2n−1∑

m=0

ame(n)
m , b =

2n−1∑

m=0

bme(n)
m ∈ Hn.

Then

〈a, b〉 =
2n−1−1∑

m=0

ambm −
2n−1∑

m=2n−1

ambm.

Proof. The expression for the inner product on the algebras of the main sequence can be obtained by
substituting

δ(n)
m =

n−1∏

l=0

(−γl)cm,l = 1

for every m = 0, . . . , 2n − 1 to the definition of 〈a, b〉.
In case of the split-algebras we have δ

(n)
m = 1 for every m = 0, . . . , 2n−1 − 1 and δ

(n)
m = −1 for every

m = 2n−1, . . . , 2n − 1.

Example 3.32.
• The complex numbers (C), the quaternions (H), the octonions (O), and the sedenions (S) are the

algebras of the main sequence for n = 1, 2, 3, and 4, correspondingly. We refer the reader to [6]
for the definition of H and O, and to [13] for that of S.

• The split-complex numbers (Ĉ), the split-quaternions (the coquaternions; Ĥ), and the split-
octonions (the hyperbolic octonions; Ô) are the examples of real low-dimensional split-algebras,
all of them being defined in [10].

Exact definitions and some basic properties of these algebras are given below.

Definition 3.33 ([10, pp. 3, 5, and 6]).

• The algebra of the split-complex numbers Ĉ is the algebra of the elements of the form a+ b� with
a, b ∈ R, �2 = 1 and an involution a + b� = a − b�.
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• The algebra of the split-quaternions Ĥ is a four-dimensional algebra over R, its basis elements
being equal to 1, i, �, �i. The involution in Ĥ is given by the formula

a0 + a1i + a2� + a3�i = a0 − a1i − a2� − a3�i,

and multiplication is given by Table 1.

Table 1. Multiplication table of the unit split-quaternions.

× 1 i � �i

1 1 i � �i

i i −1 −�i �

� � �i 1 i

�i �i −� −i 1

• The algebra of the split-octonions Ô is an eight-dimensional algebra over R, its basis elements
being equal to 1, i, j, k, �, �i, �j, �k. The involution in Ô is given by the formula

a0 + a1i + a2j + a3k + a4� + a5�i + a6�j + a7�k = a0 − a1i− a2j − a3k− a4�− a5�i− a6�j − a7�k,

and multiplication is given by Table 2.

Table 2. Multiplication table of the unit split-octonions.

× 1 i j k � �i �j �k

1 1 i j k � �i �j �k

i i −1 k −j −�i � −�k �j

j j −k −1 i −�j �k � −�i

k k j −i −1 −�k −�j �i �

� � �i �j �k 1 i j k

�i �i −� −�k �j −i 1 k −j

�j �j �k −� −�i −j −k 1 i

�k �k −�j �i −� −k j −i 1

Proposition 3.34 ([10, p. 2]). The following isomorphisms hold : Ĉ ∼= H1, Ĥ ∼= H2, and Ô ∼= H3.

Proof. By [20, p. 1], we have the isomorphisms R ∼= M0, C ∼= M1, and H ∼= M2. Now the desired
isomorphisms can be defined on the generating bases as follows:

Ĉ ∼= R{1} : 1 �→ (1, 0), � �→ (0, 1);

Ĥ ∼= C{1} : 1 �→ (1, 0), i �→ (i, 0), � �→ (0, 1), �i �→ −(0, i);

Ô ∼= H{1} : 1 �→ (1, 0), i �→ (i, 0), j �→ (j, 0), k �→ (k, 0),

� �→ (0, 1), �i �→ −(0, i), �j �→ −(0, j), �k �→ −(0, k).

Corollary 3.35.
• Ĉ is both commutative and associative;
• Ĥ is noncommutative associative;
• Ô is noncommutative non-associative but alternative.

Proof. Follows immediately from Lemma 3.26 and Proposition 3.34.
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Proposition 3.36. Let a = a0 + a1i + a2� + a3�i ∈ Ĥ. Then

Re(a) = a0,

Im(a) = a1i + a2� + a3�i,

n(a) = a2
0 + a2

1 − a2
2 − a2

3.

Proof. It is a special case of Lemma 3.16 for n = 2, γ0 = −1, γ1 = 1, since by Proposition 3.34 we have
Ĥ ∼= H2.

Lemma 3.37 ([19, p. 66]). Ĥ is isomorphic to M2(R), i.e., the algebra of real 2×2 matrices. The required
isomorphism σ

Ĥ
: Ĥ → M2(R) is defined as follows:

1 �→ I =
(

1 0
0 1

)
, i �→

(
0 1
−1 0

)
, � �→

(
1 0
0 −1

)
, �i �→

(
0 1
1 0

)
.

Now we translate the concepts of conjugate, real part, and norm to the elements of M2(R).

Proposition 3.38 ([19, p. 157]). For any

A =
(

a b
c d

)
∈ M2(R),

we have

Ā = tr(A)I − A =
(

d −b
−c a

)
,

2Re(A) = tr(A) = a + d, n(A) = det(A) = ad − bc.

Below we identify the elements of Ĥ with their σ
Ĥ
-images.

Proposition 3.39. Let

a = a0 + a1i + a2j + a3k + a4� + a5�i + a6�j + a7�k ∈ Ô.

Then

Re(a) = a0,

Im(a) = a1i + a2j + a3k + a4� + a5�i + a6�j + a7�k,

n(a) = a2
0 + a2

1 + a2
2 + a2

3 − a2
4 − a2

5 − a2
6 − a2

7.

Proof. It is a special case of Lemma 3.16 for n = 3, γ0 = −1, γ1 = −1, and γ2 = 1, since by Proposition 3.34
we have Ô ∼= H3.

Notation 3.40. Let a ∈ H, Re(a) = 0, a = a1i + a2j + a3k. Then a can be identified with a vector
a = (a1, a2, a3)t ∈ R

3.

Lemma 3.41 ([19, p. 158]). The algebra of the split-octonions Ô is isomorphic to the Zorn vector-matrix
algebra, which consists of all 2 × 2 matrices of the following form:

(
a v
w b

)
, where a, b ∈ R, v,w ∈ R

3,

while addition and multiplication are given by the formulas
(

a v
w b

)
+

(
a′ v′
w′ b′

)
=

(
a + a′ v + v′
w + w′ b + b′

)
,

(
a v
w b

)(
a′ v′
w′ b′

)
=

(
aa′ + v ·w′ a v′ + b′v + w ×w′

a′w + bw′ − v × v′ bb′ + v′ ·w
)

,
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where · and × denote the dot product and the cross product of the elements of R
3, respectively. The

identity of this algebra is

I =
(

1 0
0 1

)
.

The required isomorphism σ
Ô

is defined as follows:

(a + c) + �(b + d) �→
(

a + b c + d
−c + d a − b

)
,

where a, b ∈ R, c, d ∈ H, and Re(c) = Re(d) = 0.

Proposition 3.42 ([19, p. 158]). Now we carry over the concepts of conjugate, real part, and norm to
the elements of the Zorn vector-matrix algebra, so that for any

A =
(

a v
w b

)
,

we have

Ā = tr(A)I − A =
(

b −v
−w a

)
,

2Re(A) = tr(A) = a + b, n(A) = det(A) = ab − v ·w.

We will identify the elements of Ô with their σ
Ô
-images.

4. Doubly Alternative Zero Divisors in Arbitrary Split-Algebras

Lemma 4.1 ([24, Lemma 2]). For any x, y, z ∈ An, we have Re([x, y, z]) = 0.

The following lemma is proved in [20] for the case of the algebras of the main sequence only; however,
the proof is valid for an arbitrary real Cayley–Dickson algebra.

Lemma 4.2 ([20, Lemma 1.3]). Let x, y, z ∈ An. Then 〈x, yz〉 = 〈xz̄, y〉 = 〈ȳx, z〉.
Proof. By using Corollary 3.20 and Lemma 4.1, we obtain

〈x, yz〉 = Re
(
x(yz)

)
= Re

(
x(z̄ȳ)

)
= Re

(
(xz̄)ȳ

)
= 〈xz̄, y〉.

Similarly,
〈ȳx, z〉 = Re

(
(ȳx)z̄

)
= Re

(
ȳ(xz̄)

)
= 〈xz̄, y〉.

Notation 4.3. Let a ∈ An. Then the mappings La, Ra : An → An are given by

La(x) = ax,

Ra(x) = xa,

for all x ∈ An.

Proposition 4.4 ([19, p. 55]). For any a ∈ An the mappings La and Ra are R-linear operators on the
2n-dimensional vector space An.

The following lemma demonstrates that in case of real Cayley–Dickson algebras all zero divisors
appear to be two-sided zero divisors.

Lemma 4.5. Let a ∈ An. Then dim(KerLa) = dim(KerRa).
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Proof. Let b ∈ KerLa, i.e., ab = 0. Then, by Lemma 4.2, we have

〈b̄, xa〉 = 〈b̄ā, x〉 = 〈ab, x〉 = 〈0, x〉 = 0,

for all x ∈ An, whence b̄ ⊥ ImRa. Hence KerLa ⊥ Im Ra and dim(Ker La) + dim(ImRa) ≤ dim(An).
Then

dim(KerRa) = dim(An) − dim(Im Ra) ≥ dim(Ker La) = dim(KerLa).
Similarly, dim(KerLa) ≥ dim(KerRa), so we have dim(Ker La) = dim(KerRa).

Corollary 4.6. Z(An) = ZLR(An).

Proof. Let a ∈ An, a �= 0. Then, by Lemma 4.5, Ker La �= {0} if and only if KerRa �= {0}. Equivalently,
a ∈ ZL(An) if and only if a ∈ ZR(An). Hence ZL(An) = ZR(An), and thus Z(An) = ZLR(An).

Lemma 4.7. Let a, b, c ∈ Mn satisfy Re(a) = Re(b) = 0, [a, b, b] = 0, and b = [a, c, b]. Then b = 0.

Proof. We use here considerations from [20, p. 21].
Consider a mapping S : Mn → Mn such that S(x) = [a, x, b] for all x ∈ Mn. Then S = RbLa−LaRb.

By [20, Proposition 1.7], La and Rb are skew-symmetric with respect to the Euclidean inner product 〈·, ·〉,
and thus S is also skew-symmetric. Then S

(
S(x)

)
= 0 if and only if S(x) = 0. We have b = S(c) and

0 = [a, b, b] = S(b) = S
(
S(c)

)
, whence b = S(c) = 0.

The arguments of the following lemma are similar to those in [21, p. 15].

Lemma 4.8. Let a, b ∈ An, [a, a, b] = 0. Then n(ab) = n(ba) = n(a)n(b).

Proof. Note that
[ā, a, b] = [2Re(a) − a, a, b] = −[a, a, b] = 0,

so ā(ab) = (āa)b. By Proposition 3.18, n(ab) = 〈ab, ab〉. It follows from Lemma 4.2 for x = ab, y = a,
and z = b that

〈ab, ab〉 = 〈ā(ab), b〉 = 〈(āa)b, b〉 = 〈n(a)b, b〉 = n(a)〈b, b〉 = n(a)n(b).

Now we can apply Lemma 4.2 for x = ba, y = b, and z = a to get n(ba) = 〈ba, ba〉 = 〈(ba)ā, b〉. Since,
by flexibility, [b, a, ā] = −[b, a, a] = [a, a, b] = 0, we have

〈(ba)ā, b〉 = 〈b(aā), b〉 = 〈n(a)b, b〉 = n(a)〈b, b〉 = n(a)n(b).

Therefore, n(ba) = n(a)n(b).

Now consider zero divisors (a, b) ∈ An such that both elements a and b are alternative elements
in An−1.

Definition 4.9. The set of doubly alternative elements of An is

DA(An) = {(a, b) ∈ An | both a and b are alternative elements in An−1}.
Clearly, this definition makes sense for n ≥ 1 only. The next proposition determines the condition

under which all elements of An are doubly alternative. Particularly, it implies that all elements of the
split-complex numbers, the split-quaternions, and the split-octonions are doubly alternative.

Proposition 4.10. Let n ≥ 1. Then DA(An) = An if and only if n ≤ 4.

Proof. By Lemma 3.26, the algebra An is alternative if and only if n ≤ 3, whence the proposition follows
immediately.

Note that doubly alternative elements need not be alternative (see Lemma 4.16).

Lemma 4.11. Let (a, b) ∈ DA(Hn) \ {0}. Then (a, b) ∈ Z(Hn) if and only if n
(
(a, b)

)
= n(a)−n(b) = 0.
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Proof. Let n
(
(a, b)

)
= 0. Then

(a, b)(a, b) = (a, b)(a, b) = n
(
(a, b)

)
= 0,

hence (a, b) ∈ Z(Hn).
To prove the converse, we use the argument similar to that in [20, p. 25]. By Corollary 4.6, we may

assume that (a, b) ∈ ZL(Hn). Then there exist c, d ∈ Mn−1 such that (c, d) ∈ Hn\{0} and (a, b)(c, d) = 0.
Since (a, b)(c, d) = (ac + d̄b, da + bc̄), we have ac + d̄b = 0 and da + bc̄ = 0. If c = 0, then d̄b = da = 0
implies d = 0, since n(b)d̄ = d̄(bb̄) = (d̄b)b̄ = 0, n(a)d = d(aā) = (da)ā = 0, and (a, b) �= 0. Therefore,
c �= 0. The elements a and b are alternative, whence [a, a, c] = 0, [a, a, d] = 0, [b, b, c̄] = 0, and [b, b, d̄] = 0.
Then we can use Lemma 4.8 to obtain that

n(a)n(c) = n(ac) = n(−d̄b) = n(d̄b) = n(d̄)n(b) = n(b)n(d),

n(a)n(d) = n(da) = n(−bc̄) = n(bc̄) = n(b)n(c̄) = n(b)n(c),
(
n(a)

)2
n(c) = n(a)

(
n(a)n(c)

)
= n(a)

(
n(b)n(d)

)
= n(b)

(
n(a)n(d)

)
= n(b)

(
n(b)n(c)

)
=

(
n(b)

)2
n(c).

Since c �= 0, we have n(c) �= 0, and thus the equality
(
n(a)

)2
n(c) =

(
n(b)

)2
n(c) implies that

(
n(a)

)2 =
(
n(b)

)2. Moreover, n(a) ≥ 0 and n(b) ≥ 0; so n(a) = n(b), whence n
(
(a, b)

)
= n(a) − n(b) = 0.

Corollary 4.12. If 1 ≤ n ≤ 4, then

Z(Hn) = {x ∈ Hn \ {0} | n(x) = 0}.
Proof. By Proposition 4.10, the equality DA(Hn) = Hn holds, so we may use Lemma 4.11.

Now we show that the set of elements of zero norm is in general strictly smaller than the set of zero
divisors.

Proposition 4.13. For n ≥ 5 the set Z(Hn) contains elements of nonzero norm.

Proof. If n ≥ 5, then there exist c, d ∈ Z(Mn−1) such that cd = dc = 0 (see [20, Corollary 1.6]). Then
(c, 0)(d, 0) = (d, 0)(c, 0) = 0; however, n

(
(c, 0)

)
= n(c) �= 0 and n

(
(d, 0)

)
= n(d) �= 0.

Lemma 4.14 ([24, Lemma 4]). For any m = 1, . . . , 2n − 1, the element e
(n)
m ∈ An is alternative.

Lemma 4.15. Let a, b ∈ An, Re(a) = 0. Then a(ab) = (ba)a.

Proof. Since Re(a) = 0 implies a2 ∈ R, by flexibility we have

0 = [a, a, b] + [b, a, a] = a2b − a(ab) + (ba)a − ba2 = (ba)a − a(ab).

The following auxiliary Lemma 4.16 is similar to Theorem 3.3 in [21] for Mn, except for item (3).

Lemma 4.16. Let n ≥ 4, a, b ∈ Mn−1, Re(a) = Re(b) = 0. Consider the following statements:
(1) (a, b) ∈ Hn is alternative;
(2) a and b are alternative and linearly dependent ;
(3) a = ±b.

Then the condition (1) is equivalent to either (2) or (3).

Proof. Let us consider the alternativity condition for the element (a, b). For an arbitrary (c, d) ∈ Hn, we
have

(a, b)
(
(a, b)(c, d)

)
= (a, b)(ac + d̄b, da + bc̄) =

(
a(ac + d̄b) + (da + bc̄)b, (da + bc̄)a + b(ac + d̄b)

)

= (a(ac) − (cb)b − [a, d̄, b], (da)a − b(bd) + [b, c̄, a]) = (A, B).

It holds that [a, d̄, b] = −[a, d, b] and, by flexibility, [b, c̄, a] = −[b, c, a] = [a, c, b]. Moreover, it follows
from Lemma 4.15 that (cb)b = b(bc) and (da)a = a(ad). Hence A = a(ac) − b(bc) + [a, d, b], and B =
a(ad) − b(bd) + [a, c, b].
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Now consider

(a, b)2(c, d) = −n
(
(a, b)

)
(c, d) = −(

n(a) − n(b)
)
(c, d) = (a2 − b2)(c, d).

Note that B can be obtained by interchanging c and d in A. Thus, (a, b) is alternative if and only if for
any c, d ∈ Mn−1 we have

a(ac) − b(bc) + [a, d, b] = (a2 − b2)c. (1)

By substituting c = 0 and d = 0 independently, we obtain that this condition is equivalent to the system
{

a(ac) − b(bc) = (a2 − b2)c,
[a, d, b] = 0,

for any c, d ∈ Mn−1.
By [21, Theorem 2.3] and flexibility, [a, d, b] = 0 for any d ∈ Mn−1 if and only if a and b are linearly

dependent.
Now let a and b be linearly dependent. We may suppose, without loss of generality, that b = βa for

some β ∈ R, whence (a, b) is alternative if and only if (1−β2)a(ac) = (1−β2)a2c for any c ∈ Mn−1. This
condition holds if and only if either β = ±1 or a is alternative.

Example 4.17 below demonstrates that we can not replace Hn in Lemma 4.11 with an arbitrary
algebra An such that γn−1 = 1.

Example 4.17. Let n ≥ 4, An = Hn−1{1}. Consider

a =
(
e
(n−2)
1 , 0

)
, b =

(
e
(n−2)
1 , e

(n−2)
1

)
, c =

(
e
(n−2)
2 ,−e

(n−2)
2

) ∈ Hn−1.

Then (a + b, a) and (c,−c) are doubly alternative and orthogonal in An, whence (a + b, a) ∈ Z(An);
however, n

(
(a + b, a)

) �= 0.
Indeed, by applying Lemma 4.16 to the result of Lemma 4.14 we obtain that (a + b, a) and (c,−c)

are doubly alternative. Moreover, by item (3) of Lemma 3.21, a and c anticommute. One can also verify
that b and c are orthogonal. Then

(a + b, a)(c,−c) =
(
(a + b)c − c̄a,−c(a + b) + ac̄

)
=

(
ac + ca,−(ac + ca)

)
= 0,

(c,−c)(a + b, a) =
(
c(a + b) − āc, ac − c(a + b)

)
= (ac + ca, ac + ca) = 0,

so (a + b, a) and (c,−c) are orthogonal. Finally, n
(
(a + b, a)

)
= n(a + b) − n(a) = 2, since

n(a + b) = n
((

2e
(n−2)
1 , e

(n−2)
1

))
= n

(
2e

(n−2)
1

) − n
(
e
(n−2)
1

)
= 4 − 1 = 3

and n(a) = n(e(n−2)
1 ) − n(0) = 1.

Lemmas 4.18 and 4.21 originate from [11, Proposition 11.1].

Lemma 4.18. Let (a, b) ∈ DA(Hn) ∩ Z(Hn). Then

l.AnnHn

(
(a, b)

)
=

{(
c,−(bc)a

n(a)

) ∣
∣
∣
∣ [a, c, b] = 0

}
,

r.AnnHn

(
(a, b)

)
=

{(
c,−(bc̄)ā

n(a)

) ∣
∣
∣
∣ [a, c, b] = 0

}
.

Proof. We consider l.AnnHn

(
(a, b)

)
first. Let (c, d) ∈ Hn such that (c, d)(a, b) = (ca + b̄d, bc + dā) = 0.

Then bc + dā = 0, so n(a)d = d(āa) = (dā)a = −(bc)a. Moreover, ca + b̄d = 0 and, by Lemma 4.11,
n(a) = n(b), hence

b(ca) = −b(b̄d) = −(bb̄)d = −n(b)d = −n(a)d = (bc)a.
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Thus, [b, c, a] = 0 or, by flexibility, [a, c, b] = 0. Reasoning in the opposite way, we may conclude that for
any c ∈ Mn−1 such that [a, c, b] = 0 we have that

(
c,−(bc)a

n(a)

)
∈ l.AnnHn

(
(a, b)

)
.

So, the converse is also true.
We now proceed to r.AnnHn

(
(a, b)

)
. Let (c, d) ∈ Hn such that (a, b)(c, d) = (ac + d̄b, da + bc̄) = 0.

Then da + bc̄ = 0, whence
n(a)d = d(aā) = (da)ā = −(bc̄)ā.

Since ac + d̄b = 0 and n(a) = n(b), we have

(ac)b̄ = −(d̄b)b̄ = −d̄(bb̄) = −n(b)d̄ = −n(a)d = (bc̄)ā = a(cb̄).

Thus, [a, c, b̄] = 0 or, equivalently, [a, c, b] = 0. Clearly, the converse is also true in this case, i.e., for any
c ∈ Mn−1 such that [a, c, b] = 0 we have

(
c,−(bc̄)ā

n(a)

)
∈ r.AnnHn

(
(a, b)

)
.

Proposition 4.19. Let x ∈ Z(An), Re(x) �= 0, OAn(x) �= {0}. Then n(x) = 0, OAn(x) = Lin(x̄) and the
connected component of ΓO(An) that contains x is a complete bipartite graph, its parts being Lin∗(x) and
Lin∗(x̄).

Proof. OAn(x) ⊂ AncAn(x), whence AncAn(x) �= {0}. Then by Lemma 3.21 we have n(x) = 0 and
AncAn(x) = Lin(x̄), so we also have OAn(x) = Lin(x̄). Similarly, OAn(x̄) = Lin(x). The proposition
follows immediately.

Due to Proposition 4.19, it is natural to give the following definition.

Definition 4.20. ZIm(An) = {x ∈ Z(An) | Re(x) = 0} is the set of all zero divisors with zero real part.
ΓIm

O (An) is the subgraph of ΓO(An) on the vertex set ZIm(An).

Lemma 4.21. Let (a, b) ∈ DA(Hn) ∩ ZIm(Hn). Then

OHn

(
(a, b)

)
=

{(
c,−(bc)a

n(a)

) ∣
∣
∣
∣ Re(c) = 0, [a, c, b] = 0

}
.

Proof. OHn

(
(a, b)

) ⊂ AncHn

(
(a, b)

)
, so it follows from Lemma 3.21 that for any (c, d) ∈ OHn

(
(a, b)

) ⊂
AncHn

(
(a, b)

)
, we have Re(c) = 0. Now we use the representation of l.AnnHn

(
(a, b)

)
and r.AnnHn

(
(a, b)

)

from Lemma 4.18. For any (c, d) ∈ OHn

(
(a, b)

) ⊂ l.AnnHn

(
(a, b)

)
, we have [a, c, b] = 0 and

d = −(bc)a
n(a)

.

Conversely, for any c ∈ Mn−1 such that Re(c) = 0 and [a, c, b] = 0 we have
(

c,−(bc)a
n(a)

)
∈ l.AnnHn

(
(a, b)

) ∩ r.AnnHn

(
(a, b)

)
= OHn

(
(a, b)

)
.

Thus, the equality

OHn

(
(a, b)

)
=

{(
c,−(bc)a

n(a)

) ∣
∣
∣
∣ Re(c) = 0, [a, c, b] = 0

}

holds.

Lemma 4.22 ([17, Lemma 8.11]). Let x ∈ An \ {0}, Re(x) = 0. Then
(1) if n(x) = 0 and n ≤ 3, then CAn(x) = R ⊕ OAn(x);
(2) if n(x) �= 0, then CAn(x) = R ⊕ Rx ⊕ OAn(x).
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The following theorem is a generalization of Proposition 8.15 in [17]. Proposition 8.19 in [17] demon-
strates that its conditions are essential.

Theorem 4.23. Let (a, b) ∈ DA(Hn) ∩ ZIm(Hn). Then CHn

(
(a, b)

)
= R ⊕ OHn

(
(a, b)

)
.

Proof. Assume that there exists (c, d) ∈ CHn

(
(a, b)

) \
(
R ⊕ OHn

(
(a, b)

))
. Without loss of generality, we

may suppose that n(a) = n(b) = 1 and Re(c) = 0. Then

(a, b)(c, d) = (c, d) · (a, b) = (c, d)(a, b) = (a, b)(c, d),

i.e., (a, b)(c, d) = r ∈ R. Since (c, d) /∈ OHn

(
(a, b)

)
, we have r �= 0. Assume, without loss of generality,

that r = 1. We have

(1, 0) = (a, b)(c, d) = (ac + d̄b, da + bc̄) = (ac + d̄b, da − bc).

Then da = bc implies d = d(aā) = (da)ā = (bc)ā, and thus d̄ = a(c̄b̄) = −a(cb̄). We next multiply the
equality 1 = ac + d̄b by b̄ on the right and substitute the expression for d̄, whence

b̄ = (ac)b̄ + (d̄b)b̄ = (ac)b̄ + d̄(bb̄) = (ac)b̄ + d̄ = (ac)b̄ − a(cb̄) = [a, c, b̄].

It follows from Lemma 4.1 that Re(b̄) = Re([a, c, b̄]) = 0, hence b̄ = −b and b = [a, c, b]. By Lemma 4.7,
we have b = 0, a contradiction.

Corollary 4.24. Let (a, b) ∈ DA(Hn) ∩ ZIm(Hn). Then x ∈ OHn

(
(a, b)

)
if and only if Re(x) = 0 and

x ∈ CHn

(
(a, b)

)
.

Proof. Note that OHn

(
(a, b)

) ⊂ AncHn

(
(a, b)

)
, so by Lemma 3.21 we have Re(x) = 0, for any x ∈

OHn

(
(a, b)

)
. By Theorem 4.23, we have CHn

(
(a, b)

)
= R ⊕ OHn

(
(a, b)

)
, thus Im

(
CHn

(
(a, b)

))
=

OHn

(
(a, b)

)
.

Lemma 4.25 ([24, p. 438]).
(1) If n ≤ 1, then CAn = An, so the vertex set of ΓC(An) is the empty set.
(2) If n ≥ 2, then CAn = R, so the vertex set of ΓC(An) is An \ R.

Proposition 4.26. Any path between any two vertices in ΓC(An) can be modified so that all intermediate
elements are pure.

Proof. It follows immediately from the fact that R ⊆ CAn .

Proposition 4.27. Let 2 ≤ n ≤ 4, x ∈ Hn \ R, n
(
Im(x)

) �= 0. Then CHn(x) = Lin(1, x) and the
connected component of ΓC(Hn) which contains x is the complete graph on the vertex set Lin∗

I(x).

Proof. By Corollary 4.12, Im(x) /∈ Z(Hn), so OHn

(
Im(x)

)
= {0}. Thus, Lemma 4.22 implies that

CHn(x) = CHn

(
Im(x)

)
= R ⊕ RIm(x) = R ⊕ Rx.

Then the proposition follows immediately.

Notation 4.28. Let Γ be an undirected graph. Then C(Γ) is the set of all connected components of Γ,
and Q(Γ) is the set of all maximal cliques in Γ.

Notation 4.29. Let S be a subset of Im(Hn). Then R + S = {x ∈ Hn | Im(x) ∈ S}.
Theorem 4.30. Let 2 ≤ n ≤ 4. Let us denote the subgraph of ΓC(Hn) on the vertex set R + ZIm(Hn) =
{x ∈ Hn \R | n

(
Im(x)

)
= 0} by ΓC . We also denote here ΓO = ΓIm

O (Hn) for short. Then ΓC and ΓO are
related as follows.

(1) Consider a mapping φC : C(ΓO) → C(ΓC) such that φC(C) = R + C for any C ∈ C(ΓO). Then φC
is a bijection and preserves diameters.
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(2) Similarly, we define a mapping φQ : Q(ΓO) → Q(ΓC) such that φQ(Q) = R + Q for any Q ∈
Q(ΓO). Then φQ is a bijection.

Proof. We now show that φC is a bijection and preserves diameters. It can be easily seen that the diameter
of any connected component of ΓC can be achieved on the pair of elements with distinct imaginary parts.
Now let x, y ∈ (

R + ZIm(Hn)
)
, Im(x) �= Im(y). Then dΓC

(x, y) = dΓC

(
Im(x), Im(y)

)
. Orthogonality

implies commutativity, whence any path between Im(x) and Im(y) in ΓO is also a path in ΓC , hence
dΓC

(
Im(x), Im(y)

) ≤ dΓO

(
Im(x), Im(y)

)
. Moreover, it follows from Proposition 4.26 that any path

between Im(x) and Im(y) in ΓC can be modified so that all intermediate elements are pure, and by
Corollary 4.24 this new path is also a path in ΓO. Thus we have dΓO

(
Im(x), Im(y)

) ≤ dΓC

(
Im(x), Im(y)

)
.

Hence dΓC
(x, y) = dΓC

(
Im(x), Im(y)

)
= dΓO

(
Im(x), Im(y)

)
.

By Corollary 4.12, any element of ZIm(Hn) has zero norm and thus is orthogonal to itself. Let
now x, y ∈ (

R + ZIm(Hn)
)
. By Corollary 4.24, x and y commute if and only if Im(x) and Im(y) are

orthogonal. That is, x and y are connected in ΓC if and only if either Im(x) = Im(y) or Im(x) and Im(y)
are connected in ΓO. Thus we may infer that φQ is a bijection.

5. Applications to Graphs

5.1. Split-Complex Numbers.

5.1.1. Orthogonality.

Proposition 5.1. ΓO(Ĉ) is a complete bipartite graph, its parts being Lin∗(1 + �) and Lin∗(1 − �).

Proof. By Corollary 4.12,

Z(Ĉ) = {a ∈ Ĉ \ {0} | n(a) = 0} = Lin∗(1 + �) ∪ Lin∗(1 − �).

Then we use Proposition 4.19.

5.1.2. Zero divisors.

Proposition 5.2. ΓZ(Ĉ) is obtained from ΓO(Ĉ) by replacing every undirected edge with a pair of directed
edges.

Proof. Ĉ is commutative, whence the conditions ab = 0 and ba = 0 are equivalent.

5.2. Split-Quaternions.

5.2.1. Real Jordan normal form.

Remark 5.3. Let A ∈ Ĥ. Then the characteristic polynomial pA(λ) introduced in Definition 3.4 coincides
with the standard characteristic polynomial of A as a matrix, and its discriminant is dis(A) =

(
tr(A)

)2 −
4 det(A).

Lemma 5.4. Let A ∈ Ĥ \ RI. Then there exists φ ∈ AutR(Ĥ) such that
(1) if dis(A) > 0, i.e., dis(A) = d2 for some d �= 0, then

φ(A) =
tr(A) + d�

2
=

1
2

(
tr(A) + d 0

0 tr(A) − d

)
;

(2) if dis(A) < 0, i.e., dis(A) = −d2 for some d �= 0, then

φ(A) =
tr(A) + di

2
=

1
2

(
tr(A) d
−d tr(A)

)
;

(3) if dis(A) = 0, then

φ(A) =
tr(A) + i + �i

2
=

1
2

(
tr(A) 2

0 tr(A)

)
.

346



Proof. Let JA be the real Jordan normal form of A.
(1) If dis(A) > 0, i.e., dis(A) = d2 for some d �= 0, then the roots of pA(λ) are (tr(A) ± d)/2, whence

JA =
1
2

(
tr(A) + d 0

0 tr(A) − d

)
.

(2) If dis(A) < 0, i.e., dis(A) = −d2 for some d �= 0, then the roots of pA(λ) are (tr(A) ± di)/2,
whence

JA =
1
2

(
tr(A) d
−d tr(A)

)
.

(3) If dis(A) = 0, then pA(λ) has a root tr(A)/2 of multiplicity 2, whence

JA =
1
2

(
tr(A) 2

0 tr(A)

)
,

since A /∈ RI.
There exists C ∈ Ĥ such that C is invertible and A = C−1JAC. Consider φ : Ĥ → Ĥ such that φ(B) =
CBC−1 for any B ∈ Ĥ. Then φ ∈ AutR(Ĥ) and φ(A) = JA.

5.2.2. Orthogonality. It should be noted that Theorem 5.6 is a particular case of Lemma 4.1 in [8];
however, we suppose that the formulation of Theorem 5.6 is more convenient.

Lemma 5.5. Let A ∈ Z(Ĥ). Then O
Ĥ
(A) = Lin(Ā).

Proof. Consider two cases.
If Re(A) �= 0, then we use Proposition 4.19.
If Re(A) = 0, then it follows from Lemma 4.21 that dim

(
O

Ĥ
(A)

)
= 1. Since Lin(Ā) ⊂ O

Ĥ
(A), we

have O
Ĥ
(A) = Lin(Ā) = Lin(A).

Theorem 5.6. The connected components of ΓO(Ĥ) are as follows:
(1) a complete bipartite graph, its parts being Lin∗(A) and Lin∗(Ā), where det(A) = 0, tr(A) �= 0;
(2) a complete graph on the vertex set Lin∗(A), where det(A) = 0, tr(A) = 0.

Proof. The theorem follows immediately from Lemma 5.5.

5.2.3. Zero divisors. Note that Theorem 5.9 is a particular case of Lemma 4.2 in [12]. But still we give
our proof of this statement to draw an analogy between the cases of Ĥ and Ô (see Theorems 5.9 and
5.32, respectively). Moreover, it is shown in [12, Proposition 3.2] that for any commutative ring R and
any n ≥ 2, there exists a directed 3-cycle in Γ

(
Mn(R)

)
. However, Lemma 5.11 provides a more concrete

result for R = R and n = 2.

Notation 5.7. Let us denote

E11 =
(

1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

Lemma 5.8. Let A ∈ Z(Ĥ). Then there exists φ ∈ AutR(Ĥ) such that
(1) if tr(A) �= 0, then φ(A) = tr(A)E11;
(2) if tr(A) = 0, then φ(A) = E12.

Proof. By Corollary 4.12, A ∈ Z(Ĥ) implies det(A) = 0, so dis(A) =
(
tr(A)

)2 − 4 det(A) =
(
tr(A)

)2.
Thus both cases follow immediately from Lemma 5.4.

Theorem 5.9. The diameter of ΓZ(Ĥ) equals 2.
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Proof. First, we show that d
(
ΓZ(Ĥ)

) ≤ 2. It follows from Lemmas 3.28 and 5.4 that it is sufficient to
prove the following. Let

A =
(

a b
c d

)
, det(A) = ad − bc = 0.

Then
(1) d(E11, A) ≤ 2:

• if a �= 0 or c �= 0, then (
1 0
0 0

)
−→

(
0 0
c −a

)
−→

(
a b
c d

)
;

• if a = 0 and c = 0, then either b �= 0 or d �= 0, whence
(

1 0
0 0

)
−→

(
0 0
d −b

)
−→

(
a b
c d

)
;

(2) d(E12, A) ≤ 2:
• if a �= 0 or c �= 0, then (

0 1
0 0

)
−→

(
c −a
0 0

)
−→

(
a b
c d

)
;

• if a = 0 and c = 0, then either b �= 0 or d �= 0, whence
(

0 1
0 0

)
−→

(
d −b
0 0

)
−→

(
a b
c d

)
.

Moreover, d
(
ΓZ(Ĥ)

) ≥ 2, since there exists a pair of vertices that are not adjacent (for example, E11 �→
E12). Hence d

(
ΓZ(Ĥ)

)
= 2.

Proposition 5.10.
(1) l.Ann

Ĥ
(E11) = Lin(E12, E22), r.Ann

Ĥ
(E11) = Lin(E21, E22);

(2) l.Ann
Ĥ
(E12) = Lin(E12, E22), r.Ann

Ĥ
(E12) = Lin(E11, E12).

Proof. All equalities can be verified directly.

Lemma 5.11. Let A, B ∈ Z(Ĥ) be linearly independent, AB = 0. Then there exists C ∈ Z(Ĥ) such that
A, B, and C are linearly independent and form a directed 3-cycle in ΓZ(Ĥ), i.e., BC = CA = 0.

Proof. It follows from Lemma 5.8 that we can take A ∈ {E11, E12}. Consider the following cases:
(1) A = E11. Then B = αE21 + βE22, (α, β) ∈ R

2 \ (0, 0), whence C = βE12 − αE22;
(2) A = E12. Then B = αE11 + βE12, (α, β) ∈ R

2. Since A and B are linearly independent, we have
α �= 0, whence C = βE12 − αE22.

5.3. Split-Octonions.

5.3.1. Real Jordan normal form.

Theorem 5.12 (Artin’s theorem [25, Theorem 3.1]). Let A be an alternative algebra. Then the subalgebra
generated by any two elements of A is associative.

Lemma 5.13. Let n ≤ 3, a, b ∈ An. Then the set Lin(1, a, b, ab) is closed under multiplication and
conjugation.

Proof. By Proposition 3.5, a2 = 2Re(a)a−n(a) ∈ Lin(1, a, b, ab) and b2 = 2Re(b)b−n(b) ∈ Lin(1, a, b, ab).
Moreover,

ba = (2Re(b) − b̄)a = 2Re(b)a − b̄a = 2Re(b)a − 2〈a, b〉 + āb

= 2Re(b)a − 2〈a, b〉 + (2Re(a) − a)b

= 2Re(b)a + 2Re(a)b − 2〈a, b〉 − ab ∈ Lin(1, a, b, ab).
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By Lemma 3.26, An is alternative, so Theorem 5.12 implies that the subalgebra generated by a and b is
associative, and thus any word consisting of a and b belongs to Lin(1, a, b, ab).

For any x ∈ An we have x̄ = 2Re(x) − x, so Lin(1, a, b, ab) is also closed under conjugation.

Definition 5.14. Let A have a regular involution. The algebra A is called a composition algebra if for
all a, b ∈ A, the equality n(ab) = n(a)n(b) holds.

Lemma 5.15 ([6, p. 9]). Let A be an alternative algebra with a regular involution. Then A is a compo-
sition algebra.

Theorem 5.16 (Jacobson necessity theorem [19, Theorem 2.6.1]). Let A be a proper finite-dimensional
subalgebra of a composition algebra B over a field F such that norm form n(·) is nondegenerate on A. Let
also x ∈ A⊥ with n(x) = −γ �= 0 (such x always exists). Consider a mapping σ : A + Ax → A{γ} such
that for any a, b ∈ A we have σ(a + bx) = (a, b). Then σ is isomorphic and isometric.

Example 5.17. The converse implication in Proposition 3.8 fails, since Ĉ{1} ∼= Ĉ{−1}.
We will identify the subalgebra Lin(1, �) ⊂ Ĥ with Ĉ. Then we use Theorem 5.16 for A = Ĉ and

x = i first, whence Ĥ ⊇ Ĉ + Ĉ · i ∼= Ĉ{−1}. Similarly, for x = �i we have Ĥ ⊇ Ĉ + Ĉ · (�i) ∼= Ĉ{1}. Then,
by reasons of dimension, we obtain that Ĉ{−1} ∼= Ĥ ∼= Ĉ{1}.
Lemma 5.18. Let ı̃, j̃, �̃ ∈ Ô such that

(1) Re(̃ı) = Re(j̃) = Re(�̃) = 0;
(2) n(̃ı) = n(j̃) = 1, n(�̃) = −1;
(3) 〈̃ı, j̃〉 = 〈�̃, ı̃〉 = 〈�̃, j̃〉 = 〈�̃, ı̃j̃〉 = 0.

Then there exists φ ∈ AutR(Ô) such that φ(̃ı) = i, φ(j̃) = j, and φ(�̃) = �.

Proof. Let A be a subalgebra of Ô generated by ı̃ and j̃. By Lemma 5.13, A = Lin(1, ı̃, j̃, ı̃j̃). It follows
from Theorem 5.12 that A is associative. By Lemma 3.21, ı̃ and j̃ anticommute, whence one can verify
that there exists an isomorphism ψ : A → H such that ψ(1) = 1, ψ(̃ı) = i, ψ(j̃) = j, and ψ(̃ıj̃) = k.

Then we use Theorem 5.16 for A and x = �̃, whence Ô ⊇ A + A�̃ ∼= A{1} ∼= H{1} = Ô, and thus
A + A�̃ = Ô. Consider a mapping φ : Ô → Ô defined by φ(a + b�̃) = ψ(a) + ψ(b)� for all a, b ∈ A. Then
φ is the desired automorphism.

Lemma 5.19. Let �̃, �̃i, �̃j ∈ Ô such that
(1) Re(�̃) = Re(�̃i) = Re(�̃j) = 0;
(2) n(�̃) = n(�̃i) = n(�̃j) = −1;
(3) 〈�̃, �̃i〉 = 〈�̃j, �̃〉 = 〈�̃j, �̃i〉 = 〈�̃j, �̃ · �̃i〉 = 0.

Then there exists φ ∈ AutR(Ô) such that φ(�̃) = �, φ(�̃i) = �i, and φ(�̃j) = �j.

Proof. Let A be a subalgebra of Ô generated by �̃ and �̃i. By Lemma 5.13, A = Lin(1, �̃, �̃i, �̃ · �̃i). It
follows from Theorem 5.12 that A is associative. By Lemma 3.21, �̃ and �̃i anticommute, whence one
can verify that there exists an isomorphism ψ : A → Ĥ such that ψ(1) = 1, ψ(�̃ · �̃i) = i, ψ(�̃) = �, and
ψ(�̃i) = �i. We will identify the subalgebra Lin(1, i, �, �i) ⊂ Ô with Ĥ.

We use Theorem 5.16 for Ĥ and x = �j first, whence Ô ⊇ Ĥ + Ĥ · (�j) ∼= Ĥ{1}, and thus for reasons
of dimension we have Ô = Ĥ + Ĥ · (�j). Then we use Theorem 5.16 for A and x = �̃j, whence

Ô ⊇ A + A · (�̃j) ∼= A{1} ∼= Ĥ{1} ∼= Ĥ + Ĥ · (�j) = Ô,

and thus A + A · (�̃j) = Ô. Consider a mapping φ : Ô → Ô defined by φ
(
a + b · (�̃j)) = ψ(a) + ψ(b) · (�j)

for all a, b ∈ A. Then φ is the desired automorphism.

Lemma 5.20. Let a ∈ Ô \ {0}, Re(a) = 0. Then there exists φ ∈ AutR(Ô) such that
(1) if n(a) > 0, then φ(a) =

√
n(a) i;
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(2) if n(a) < 0, then φ(a) =
√−n(a) �;

(3) if n(a) = 0, then φ(a) = (i + �i)/2.

Proof. Let us denote A1 = Lin(i, j, k) and A2 = Lin(�, �i, �j, �k). Then for any a1 ∈ A1 \ {0} and
a2 ∈ A2 \ {0}, we have n(a1) > 0 and n(a2) < 0.

(1) If n(a) > 0, then we choose b ∈ A1 such that b ∈ Lin(a)⊥ and n(b) = 1. Then we choose c ∈ A2

such that c ∈ Lin(a, b, ab)⊥ and n(c) = −1. By Lemma 5.18, there exists φ ∈ AutR(Ô) such that

φ

(
a

√
n(a)

)

= i, φ(b) = j, φ(c) = �.

Then
φ(a) =

√
n(a) i.

(2) If n(a) < 0, then we choose b ∈ A2 such that b ∈ Lin(a)⊥ and n(b) = −1. Then we choose c ∈ A2

such that c ∈ Lin(a, b, ab)⊥ and n(c) = −1. By Lemma 5.19, there exists φ ∈ AutR(Ô) such that

φ

(
a

√−n(a)

)

= �, φ(b) = �i, φ(c) = �j.

Then
φ(a) =

√
−n(a) �.

(3) If n(a) = 0, then a = a1 + a2, where a1 ∈ A1, a2 ∈ A2, n(a1) + n(a2) = n(a) = 0. Since a �= 0, we
have n(a1) = −n(a2) = c2/4 for some c ∈ R, c �= 0. Clearly, 〈a1, a2〉 = 0. We now choose b ∈ A1

such that b ∈ Lin(a1, a1a2)⊥ and n(b) = 1. Then 〈b, a2〉 = 0 automatically. Moreover, Lemma 4.2
for x = a2, y = a1, z = b implies 〈a2, a1b〉 = 〈ā1a2, b〉 = −〈a1a2, b〉 = 0. By Lemma 5.18, there
exists φ1 ∈ AutR(Ô) such that

φ1

(
a1

c/2

)
= i, φ1(b) = j, φ1

(
a2

c/2

)
= �.

We have

φ1(a) = φ1(a1) + φ1(a2) =
ci + c�

2
.

Note that

ci + c� =
(

1 + c2

2c
i − 1 − c2

2c
�

)
+

(
1 + c2

2c
� − 1 − c2

2c
i

)
,

n

(
1 + c2

2c
i − 1 − c2

2c
�

)
=

(
1 + c2

2c

)2

−
(

1 − c2

2c

)2

= 1,

n

(
1 + c2

2c
� − 1 − c2

2c
i

)
=

(
1 − c2

2c

)2

−
(

1 + c2

2c

)2

= −1,

〈
1 + c2

2c
i − 1 − c2

2c
�,

1 + c2

2c
� − 1 − c2

2c
i

〉
=

1 + c2

2c

1 − c2

2c
− 1 − c2

2c

1 + c2

2c
= 0.

By Lemma 5.18, there exists φ2 ∈ AutR(Ô) such that

φ2

(
1 + c2

2c
i − 1 − c2

2c
�

)
= i, φ2

(
1 + c2

2c
� − 1 − c2

2c
i

)
= �, φ2(j) = j.

Then

φ2

(
ci + c�

2

)
=

i + �

2
.
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Next, by Lemma 5.19, there exists φ3 ∈ AutR(Ô) such that

φ3(−�i) = �, φ3(�) = �i, φ3(�j) = �j.

Then
φ3(i) = φ3

(
(−�i) · �) = φ3(−�i) · φ3(�) = � · (�i) = i,

so

φ3

(
i + �

2

)
=

i + �i

2
.

Thus, φ = φ3 ◦ φ2 ◦ φ1 is the desired automorphism.

Lemma 5.21 ([15, p. 274]). Let φ ∈ AutR(An). Then for any a ∈ An we have Re
(
φ(a)

)
= φ

(
Re(a)

)
=

Re(a) and Im
(
φ(a)

)
= φ

(
Im(a)

)
, thus, φ(a) = φ(ā) and n

(
φ(a)

)
= n(a).

Notation 5.22. Let us denote e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, e3 = (0, 0, 1)t ∈ R
3.

The following corollary is completely analogous to Lemma 5.4.

Corollary 5.23. Let A ∈ Ô \ RI, dis(A) =
(
tr(A)

)2 − 4 det(A) is introduced in Definition 3.4. Then
there exists φ ∈ AutR(Ô) such that

(1) if dis(A) > 0, i.e., dis(A) = d2 for some d �= 0, then

φ(A) =
tr(A) + d�

2
=

1
2

(
tr(A) + d 0

0 tr(A) − d

)
;

(2) if dis(A) < 0, i.e., dis(A) = −d2 for some d �= 0, then

φ(A) =
tr(A) + di

2
=

1
2

(
tr(A) de1

−de1 tr(A)

)
;

(3) if dis(A) = 0, then

φ(A) =
tr(A) + i + �i

2
=

1
2

(
tr(A) 2e1

0 tr(A)

)
.

Proof. By Lemma 3.12, dis(A) = −4n
(
Im(A)

)
; so the proof follows immediately from Lemmas 5.20

and 5.21.

5.3.2. Orthogonality.

Notation 5.24. Let us denote

E11 =
(

1 0
0 0

)
, E12 =

(
0 e1

0 0

)
∈ Ô.

Lemma 5.25. Let A ∈ Z(Ô). Then there exists φ ∈ AutR(Ô) such that

(1) if tr(A) �= 0, then φ(A) = tr(A)E11;
(2) if tr(A) = 0, then φ(A) = E12.

Proof. By Corollary 4.12, A ∈ Z(Ô) implies det(A) = 0, whence dis(A) =
(
tr(A)

)2−4 det(A) =
(
tr(A)

)2.
Thus, both cases follow immediately from Corollary 5.23.

Lemma 5.26. Let A ∈ ZIm(Ô). Then dim
(
O

Ô
(A)

)
= 3.

Proof. It follows immediately from Lemma 4.21.
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Lemma 5.27. Let

A =
(

0 v
0 0

)
∈ Ô, v �= 0.

Then

O
Ô
(A) = RA ⊕

{(
0 0
w 0

) ∣
∣
∣
∣ w · v = 0

}
=

{(
0 μv
w 0

) ∣
∣
∣
∣ μ ∈ R, w · v = 0

}
.

Proof. One can verify that the inclusion from right to left holds. Since A ∈ ZIm(Ô), it follows from
Lemma 5.26 that dim

(
O

Ô
(A)

)
= 3. Thus, we have the equality.

Lemma 5.28. Let

A =
(

0 0
w 0

)
∈ Ô, w �= 0.

Then

O
Ô
(A) = RA ⊕

{(
0 v
0 0

) ∣
∣
∣
∣ v ·w = 0

}
=

{(
0 v

λw 0

) ∣
∣
∣
∣ λ ∈ R, v ·w = 0

}
.

Proof. One can verify that the inclusion from right to left holds. Since A ∈ ZIm(Ô), it follows from
Lemma 5.26 that dim

(
O

Ô
(A)

)
= 3. Thus we have the equality.

Lemma 5.29 ([16, p. 200]). For any u,v,w ∈ R
3, we have u× (v ×w) = v(u ·w) −w(u · v).

Theorem 5.30. ΓIm
O (Ô) is connected, and its diameter equals 3.

Proof. Lemmas 3.28 and 5.25 imply that it is sufficient to prove the following fact. Let

A =
(

a v
w b

)
∈ ZIm(Ô).

Then d(E12, A) ≤ 3.
We have tr(A) = a + b = 0, whence b = −a. Thus, det(A) = −a2 − v ·w = 0, whence a = 0 if and

only if w⊥v.
If w ⊥ e1 and w ⊥ v, then a = 0 and there exists w̃ �= 0 such that w̃ ⊥ e1, w̃ ⊥ v, and w̃ ‖ w, i.e.,

w × w̃ = 0. Thus, by Lemma 5.28, there exists a path of length 2 between E12 and A, namely,

E12 =
(

0 e1

0 0

)
←→ B =

(
0 0
w̃ 0

)
←→ A =

(
0 v
w 0

)
.

If w �⊥ e1 or w �⊥ v, then there exists w̃ �= 0 such that w̃ ⊥ e1, w̃ ⊥ v, and w̃ ∦ w, i.e., w × w̃ �= 0.
Thus, there exists a path of length 3 between E12 and A, namely,

E12 =
(

0 e1

0 0

)
←→ B =

(
0 0
w̃ 0

)
←→ C =

(
0 w × w̃

−aw̃ 0

)
←→ A =

(
a v
w −a

)
.

Indeed, by Lemma 5.28, E12, C ∈ O
Ô
(B). Moreover, by Lemma 5.29,

(w × w̃) × v = −(
v × (w × w̃)

)
= −(

w(v · w̃) − w̃(v ·w)
)

= (v ·w)w̃ = −a2w̃,

so

CA =
(

0 · a + (w × w̃) ·w 0− a(w × w̃) + (−aw̃) ×w
−a2w̃ + 0− (w × w̃) × v 0 · (−a) + (−aw̃) · v

)
= 0.

Then AC = ĀC̄ = CA = 0, i.e., A and C are orthogonal.
It can be easily seen from Lemmas 5.27 and 5.28 that for any w and v such that w �⊥ v there is no

path of length ≤ 2 between (
0 0
w 0

)
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and (
0 v
0 0

)
.

Therefore, the diameter of ΓIm
O (Ô) is exactly 3.

Theorem 5.31. The maximal cliques in ΓIm
O (Ô) are of the form Lin∗(A, B), where A and B are orthog-

onal and linearly independent.

Proof. Let Q be a maximal clique of ΓIm
O (Ô), A ∈ Q. By Lemma 5.26, we have dim

(
O

Ô
(A)

)
= 3. Hence

the inclusion Q ⊂ Lin∗(A) fails, and there exists B ∈ Q such that A and B are linearly independent.
Clearly, A ∈ O

Ŝ
(A) and B ∈ O

Ŝ
(B), thus, Lin∗(A, B) ⊂ Q.

Let A, B, C ∈ ZIm(Ô) be linearly independent. Then A, B, and C do not form a 3-cycle in
ΓIm

O (Ô). We assume the contrary. Then for any D ∈ Lin∗(A, B, C), we have Lin(A, B, C) ⊂ O
Ô
(D)

and dim
(
Lin(A, B, C)

)
= dim

(
O

Ô
(D)

)
= 3, and thus O

Ô
(D) = Lin(A, B, C). Therefore, the induced

subgraph of ΓIm
O (Ô) on the vertex set Lin∗(A, B, C) is a connected component. But it follows from The-

orem 5.30 that ΓIm
O (Ô) is connected. However, the inclusion ZIm(Ô) ⊂ Lin(A, B, C) fails for reasons of

dimension. So we have a contradiction.
Therefore, Q = Lin∗(A, B).

5.3.3. Zero divisors.

Theorem 5.32. The diameter of ΓZ(Ô) equals 2.

Proof. First, we show that d
(
ΓZ(Ô)

) ≤ 2. It follows from Lemmas 3.28 and 5.25 that it is sufficient to
prove the following.

(1) Let

A =
(

a v
w b

)
, det(A) = ab − v ·w = 0.

Then d(E11, A) ≤ 2.
• If a �= 0 or w �= 0, then

E11 =
(

1 0
0 0

)
−→ B =

(
0 0
w −a

)
−→ A =

(
a v
w b

)
,

E11B =
(

1 · 0 + 0 ·w 0 + 0 + 0×w
0 + 0− 0× 0 0 · (−a) + 0 · 0

)
= 0,

BA =
(

0 · a + 0 ·w 0 + 0 + w ×w
aw − aw − 0× v (−a) · b + v ·w

)
= 0.

• If a = 0 and w = 0, then either b �= 0 or v �= 0. Let ev ∈ R
3 be such that v = |v|ev and

|ev| = 1. Consider the following path:

E11 =
(

1 0
0 0

)
−→ B =

(
0 0

bev −|v|
)

−→ A =
(

0 v
0 b

)
,

E11B =
(

1 · 0 + 0 · (bev) 0 + 0 + 0× (bev)
0 + 0− 0× 0 0 · (−|v|) + 0 · 0

)
= 0,

BA =
(

0 · 0 + 0 · 0 0 + 0 + (bev) × 0
0 + 0− (bev) × v (−|v|) · b + v · (bev)

)
= 0.

Similarly, d(A, E11) ≤ 2.
• If a �= 0 or v �= 0, then

A =
(

a v
w b

)
−→ B =

(
0 v
0 −a

)
−→ E11 =

(
1 0
0 0

)
.
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• If a = 0 and v = 0, then either b �= 0 or w �= 0. Let ew ∈ R
3 be such that w = |w|ew and

|ew| = 1. The path from A to E11 is as follows:

A =
(

0 0
w b

)
−→ B =

(
0 bew
0 −|w|

)
−→ E11 =

(
1 0
0 0

)
.

(2) Let

A =
(

a v
w b

)
,

det(A) = 0 and tr(A) = 0, i.e., b = −a and ab − v ·w = 0. Then d(E12, A) ≤ 2.
• If a = 0, e1 × v = 0, and e1 ·w = 0, then E12 and A are adjacent:

E12 =
(

0 e1

0 0

)
−→ A =

(
0 v
w 0

)
,

E12A =
(

0 · 0 + e1 ·w 0 + 0 + 0×w
0 + 0− e1 × v 0 · 0 + v · 0

)
= 0.

• Otherwise, there exists the following path of length 2 from E12 to A:

E12 =
(

0 e1

0 0

)
−→ B =

(−e1 ·w a e1

e1 × v 0

)
−→ A =

(
a v
w b

)
,

E12B =
(

0 · (−e1 ·w) + e1 · (e1 × v) 0 + 0 + 0× (e1 × v)
0 + 0− e1 × (ae1) 0 · 0 + (ae1) · 0

)
= 0,

BA =
(

(−e1 ·w) · a + (ae1) ·w (−e1 ·w)v + b(ae1) + (e1 × v) ×w
a(e1 × v) + 0− (ae1) × v 0 · b + v · (e1 × v)

)
= 0,

since by Lemma 5.29 we have

(e1 × v) ×w = −w × (e1 × v) = −(
e1(w · v) − v(w · e1)

)
= v(w · e1) − e1(ab).

Moreover, d
(
ΓZ(Ô)

) ≥ 2, as there exists a pair of vertices that are not adjacent (for example,
E11 �→ E12). Hence d

(
ΓZ(Ô)

)
= 2.
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