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ANALYTIC DETECTION IN HOMOTOPY GROUPS
OF SMOOTH MANIFOLDS

I. S. Zubov UDC 517.925+512.77

Abstract. In this paper, for the mapping of a sphere into a compact orientable manifold Sn → M,
n ≥ 1, we solve the problem of determining whether it represents a nontrivial element in the homotopy
group of the manifold πn(M). For this purpose, we consistently use the theory of iterated integrals de-
veloped by Chen. It should be noted that the iterated integrals as repeated integration were previously
meaningfully used by Lappo-Danilevsky to represent solutions of systems of linear differential equations
and by Whitehead for the analytical description of the Hopf invariant for mappings f : S2n−1 → Sn,
n ≥ 2.

We give a brief description of Chen’s theory representing Whitehead’s and Haefliger’s formulas for
the Hopf invariant and generalized Hopf invariant. Examples of calculating these invariants using the
technique of iterated integrals are given. Further, it is shown how one can detect any element of the
fundamental group of a Riemann surface using iterated integrals of holomorphic forms. This required
to prove that the intersection of the terms of the lower central series of the fundamental group of a
Riemann surface is a unit group.
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1. Introduction

In [14], the iterated integrating of differential forms for determining homotopy classes of maps is
used for the first time; multidimensional spheres are mapped. Further, in the beginning of 1950s, Chen
interprets the Whitehead relation in the framework of his theory of iterated integrals. For the first time,
this theory is developed for mappings of circles into manifolds (see [3, 4]). The Whitehead methods
provide a possibility to convert Hopf topological constructions into a differential-analytical form; in
the beginning of 1930s, he constructs a homotopically nontrivial map (i.e., a map nonhomotopic to
a constant map) S3 in S2 such that its Hopf invariant is equal to 1. In [3, 4], iterated integrals are
provided such that their values on a given mapping of a surface provide a possibility to find whether
this map is homotopically nontrivial. It is shown that for almost each mapping of a circle by means
of iterated integrals, its homotopic nontriviality can be determined.

During last 10 to 15 years, these methods are applied in the algebraic geometry study in the
number theory. In [11], a generalized Dedekind symbol is defined as an iterated integral along paths
determined by geodesics in the upper complex half-plane. In Marin papers (see, e.g., [12]), braids and
their central lower series are studied. To obtain his results, one can use methods of iterated integrals
as well (see [10]). In [6, 7], this method is used to describe fundamental properties of spaces of modules
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of algebraic curves and to resolve the generalized Riemann–Hilbert problem on complex manifolds.
In [9], the method of repeated integrals, equivalent to the method of iterated integrals, is used in the
analytic theory of differential equations.

In the present paper, we briefly describe the Chen theory. In the framework of this theory, we
present the Whitehead and Haefliger relations (see [14] and [5], respectively) for the Hopf invariant
and generalized Hopf invariant. We provide examples of the computation of these invariants by means
of the technique of iterated integrals (see [3, 5]). Further, we show how to detect each element of the
fundamental group of a Riemannian surface using iterated integrals of holomorphic forms (see [15]).
This requires to prove that the intersection of terms of the lower central row of the fundamental group
of each Riemannian surface is a unit group.

2. Iterated Integrals and Their Properties

Let X be a differential space (see [3, 4]). A differential form on such a differential space is a family
of forms ωU on convex sets {U} contained in R

n (for all n ≥ 0 in the general case) together with maps

ϕU : U → X

such that the relation

θ∗ωV = ωU

is satisfied and the map θ : U → V makes the diagram

U
ϕU−→ X

θ ↓ ‖
V

ϕV−→ X

commutative provided that the sets U and V are convex.
Further, for the differential space, we take

Px0(M) = {γ : I = [0, 1] → M, γ(0) = x0 ∈ M},
i.e., the space of piecewise smooth paths on a smooth manifold M starting at a point x0 (see [3, 4]).

Let ω1, ω2, . . . , ωr be differential forms on the manifold M of powers p1, p2, . . . , pr, respectively.
The iterated integral

∫
ω1ω2 · · ·ωr is the differential form on the differential space Px0(M) defined as

follows. Let U ⊂ R
n be a convex set contained in R

n. Let ϕU : U → Px0(M). Define the superstructure
S(ϕU ) : U × I → M as follows:

S(ϕU )(ξ, t) = ϕU (ξ)(t) ∈ M,

where ξ ∈ U ⊂ R
n and t ∈ I = [0, 1]. By the form collection ω1, ω2, . . . , ωr, define the differential form∫

ω1ω2 · · ·ωr on U. Considering induced forms on the product U × I, we obtain

(S(ϕU ))
∗ω1, (S(ϕU ))

∗ω2, . . . , (S(ϕU ))
∗ωr.

Represent each form (S(ϕU ))
∗ωi as follows:

(S(ϕU ))
∗ωi = fi(ξ, ti)dti ∧ ω′

i + ω′′
i ,

where ω′
i and ω′′

i contain no differential dti inside. Omit ω′′
i and consider the product

(f1(ξ, t1)dt1 ∧ ω′
1) ∧ (f2(ξ, t2)dt2 ∧ ω′

2) ∧ · · · ∧ (fr(ξ, tr)dtr ∧ ω′
r).

Integrate this product over the simplex Δr:

(∫
ω1ω2 · · ·ωr

)

U

=

⎛

⎝
∫

Δr

r∏

i=1

f(ti)dt1 ∧ · · · ∧ dtr

⎞

⎠ω′
1 ∧ ω′

2 ∧ · · · ∧ ω′
r,

where

Δr = {(t1, t2, . . . , tr) ∈ R
r| 0 ≤ t1 ≤ t2 ≤ · · · ≤ tr ≤ 1}.
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Thus, we define the differential form of degree p1 + p2 + · · · + pr − r on U. In particular, if all forms
ω1, . . . , ωr have degree one, then the iterated integral is a function on U, i.e., a form of degree zero.

In [3, 4], it is shown that the coordination condition

θ∗
(∫

ω1 · · ·ωr

)

V

=

(∫
ω1 · · ·ωr

)

U

is satisfied provided that U and V are different convex sets and θ : U → V. Thus, the differential form∫
ω1 · · ·ωr is defined on the differential space Px0(M) of paths. This form is called the iterated integral

of the differential forms ω1, . . . , ωr on the manifold M.
For each map f : Nm → Px0(M) and each manifold of dimension p1 + · · ·+ pr − r, the integration〈∫
ω1 · · ·ωr, N

m
〉
of the form

∫
ω1 · · ·ωr can be defined (see [3]). In this case, the relation

〈∫
ω,Np−1

〉

=

∫

S(f)

ω,

where S(f) is the superstructure over the map f defined above, is satisfied for the 1-iterated integral
of the form of degree p. Note that the right-hand side of the relation is the classical integral of a
p-degree differential form over a p-dimensional manifold.

In particular, if m = 0, then Nm is a point. Denote it by pt. Then, for differential 1-forms, the
value

〈∫
ω1 · · ·ωr, pt

〉
is a number. Usually, it is denoted by

∫

γ=f(pt)

ω1 · · ·ωr.

2.1. Properties of iterated integrals of differential 1-forms. Consider properties of iterated
integrals of differential 1-forms (Properties 1–6 provided below are contained in [2]).

Property 1.

Theorem. The product of iterated integrals of orders k and l is equal to the following sum of (k+ l)-
order iterated integrals:

∫

γ

ω1 · · ·ωk ·
∫

γ

ωk+1 · · ·ωk+l =
∑

σ∈Sk,l

∫

γ

ωσ(1) · · ·ωσ(k+l),

where the sum is taken over all shuffles (k, l) in the permutation group Sn+k.

Property 2. Consider differential forms ω1, . . . , ωr defined on Mn and a path γ : [0, 1] → Mn.
Introduce the notation γ′(τ) = γ(t(τ)), where t(τ) : [0, 1] → [0, 1] is a change of the variable.

If the function t(τ) monotonously increases, then the equivalence class of paths (up to such a change)
is called an oriented curve. The following invariance property takes place if the change is differentiable
and monotonously increasing: ∫

γ′

ω1 · · ·ωr =

∫

γ

ω1 · · ·ωr.

Property 3.

Definition. Recall the definition of the product α · β : [0, 1] → Mn of two paths. Let two paths such
that the end of the first one coincides with the beginning of the second one be given:

α : [0, 1] → Mn is the first path,

β : [0, 1] → Mn is the second path,

and
α(1) = β(0).
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The product is defined by the relations

(α · β)(t) = α(2t), 0 ≤ t ≤ 1

2
,

and

(α · β)(t) = β(2t− 1),
1

2
≤ t ≤ 1.

Note that if the product of paths is defined, then the multiplication on equivalence classes of paths
is an associative operation.

Theorem. Let α and β be paths such that the product γ = α · β : [0, 1] → Mn is defined for them.
The following relation for the value of the iterated integral on the product of the paths is valid:

∫

γ=α·β
ω1 · · ·ωr =

∫

α

ω1 · · ·ωr +

r−1∑

k=1

∫

α

ω1 · · ·ωk

∫

β

ωk+1 · · ·ωr +

∫

β

ω1 · · ·ωr.

Property 4.

Definition. The path γ−1 is defined as follows:

γ−1(t) = γ(1− t), t ∈ [0, 1].

Theorem. The following relation for the value of the r-iterated integral on the inverse path, general-
izing Property 2, holds:

∫

γ−1

ω1 · · ·ωr = (−1)r
∫

γ

ωr · · ·ω1.

Property 5.

Definition. Each path of the kind α = γγ−1 is called a spike. A spike insertion is the presentation
of a path by a product α = β1γγ

−1β2. A spike deletion is the elimination of a factor γγ−1.

Theorem. No iterated integral depends on insertions or deletions of spikes.

Property 6.

Definition. Each path such that its beginning and end coincide with each other, γ(0) = γ(1), is
called a loop.

Let Ωx0(M) denote the space of paths beginning from the point x0. If loops are considered up to
spike insertions or deletions, then it is easy to realize that we deal with the equivalence relation on
the space of loops.

The set of equivalence classes is a topological space with respect to the quotient topology of the
original compact-open topology on the space of loops. Denote the obtained quotient space by Ωx0(M).

This space is a topological group with respect to the operation corresponding to the product of
loops in the original space of loops.

The connected component of the unit in the group Ωx0(M) is a normal subgroup in it. The

quotient group of the group Ωx0(M) with respect to this normal subgroup is a group isomorphic to
the fundamental group of the manifold Mn.

Property 5 shows that iterated integrals are continuous functions on the group Ωx0(M). Moreover,
they are differentiable and belong to the same smoothness class as the considered space of differential
1-forms and the space of loops.
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Property 7. We provide and prove the relation for the value of the 2-iterated integral of closed
differential 1-forms on commutators of loops. This relation is generalized for values of 2-iterated
integrals of forms of degrees exceeding one on Whitehead products in homotopy groups (see Sec. 4).

Proposition. The value of the 2-iterated integral
∫
ω1ω2 on the commutator [α, β] = αβα−1β−1 of

two loops α and β is computed by means of 1-iterated integrals as follows:

∫

[α,β]

ω1ω2 =

∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2 =

∣
∣
∣
∣
∣
∣

∫

α1

ω1

∫

α1

ω2

∫

β1

ω1

∫

β1

ω2

∣
∣
∣
∣
∣
∣
.

Proof. To prove this proposition, place brackets in the commutator of the loops α and β as follows:

[α, β] = (αβ)(α−1β−1) = (αβ)((βα)−1).

Earlier, we note that no iterated integral depends on the bracket locations in products of loops. We
prove the required relation directly, using the considered properties of iterated integrals:

∫

[α,β]

ω1ω2 =

∫

(αβ)((βα)−1)

ω1ω2 =

∫

αβ

ω1ω2 +

∫

(βα)−1

ω1ω2 +

∫

αβ

ω1

∫

(βα)−1

ω2

=

∫

α

ω1ω2 +

∫

β

ω1ω2 +

∫

α

ω1

∫

β

ω2 +

∫

βα

ω2ω1

−
(∫

α

ω1 +

∫

β

ω1

)(∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1ω2 +

∫

β

ω1ω2 +

∫

α

ω1

∫

β

ω2 +

∫

β

ω2ω1

+

∫

α

ω2ω1 +

∫

α

ω1

∫

β

ω2 −
(∫

α

ω1 +

∫

β

ω1

)(∫

α

ω2 +

∫

β

ω2

)

=

(∫

α

ω1ω2 +

∫

α

ω2ω1

)

+

(∫

β

ω1ω2 +

∫

β

ω2ω1

)

+

∫

α

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2 −
(∫

α

ω1 +

∫

β

ω1

)(∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1

∫

α

ω2 +

∫

β

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2 +

∫

α

ω1

∫

β

ω2

−
(∫

α

ω1 +

∫

β

ω1

)(∫

α

ω2 +

∫

β

ω2

)

=

∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2.

This completes the proof of the property.

Property 8. The value of the 2-iterated integral
∫
ω1ω2 for the product

γ =

m∏

i=1

[αi, βi]

545



of several loops is equal to the sum of values of the 2-iterated integrals on commutator factors, i.e.,
∫

m∏

i=1
[αi,βi]

ω1ω2 =

m∑

i=1

∫

[αi,βi]

ω1ω2.

Using the previous property, we can obtain that the 2-iterated integral is equal to a sum of commu-
tator-type expressions:

∫

m∏

i=1
[αi,βi]

ω1ω2 =

m∑

i=1

(∫

α

ω1

∫

β

ω2 −
∫

β

ω1

∫

α

ω2

)

.

Property 9. A very important property of iterated integrals is related to the differentiation. Iterated
integrals and their differentials obey the Stokes relation playing an important role in the proof of the
homotopic invariance of iterated integrals. Iterated integrals of 1-forms are functions on the space
Ωx0(M

n) of loops, where the initial point x0 is given on the manifold Mn. In other words, they are
differential 0-forms on Ωx0(M

n). Thus, the following assertion is valid.

Proposition. Iterated integrals of 1-forms on the space Ωx0M = P x0
x0

(M) of loops satisfy the differ-
entiating relation

d

∫
ω1 · · ·ωq = −

q∑

i=1

∫
ω1 · · ·ωi−1dωiωi+1 . . . ωq

−
q−1∑

i=1

(−1)i
∫

ω1 · · ·ωi−1(ωi ∧ ωi+1)ωi+2 · · ·ωq (∗)

(see [3, 7]) and the Stokes relation

∫

C

(

d

∫
ω1 · · ·ωq

)

=

∫

∂C

(∫
ω1 · · ·ωq

)

=

∫

C(1)

ω1 · · ·ωq −
∫

C(0)

ω1 · · ·ωq,

where the path C : [0; 1] → P x1
x0

(M) is a singular simplex in the space P x1
x0

(M). This simplex defines
a homotopy between the paths γ1 and γ2. In the space P x1

x0
(Xn) of paths, the relations C(0) = γ1 and

C(1) = γ2 are valid.

Definition. If the differential of a linear combination of iterated integrals is equal to zero, then this
combination is called a homotopic period.

Let Bs(M) denote the vector space of iterated integrals over M such that no their length exceeds s.
Let ηx denote the constant path at the point x on M (i.e., ηx(t) = x for all t). If r ≥ 1, then

〈∫
ω1 . . . ωr, ηx

〉

= 0

for all x ∈ M. Thus, the value on the constant path ηx determines the linear functional

ε : Bs(M) → R,

I → 〈I, ηx〉,
independent of x. If

I = λ+
∑

ai

∫
ωi +

∑
aij

∫
ωiωj + · · · ,
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then ε(I) = λ. Denote the kernel of the map ε by Bε(M). We have iterated integrals of length ≤ s
with the zero constant. The natural inclusion i : R → Bs(M) such that ε ◦ i = id takes place. Thus,
we have the natural expansion of the direct sum:

Bs(M) ∼= R⊕Bs(M).

For loops α, β ∈ P (M) at the point x, one can consider the commutator

[α, β] = αβα−1β−1.

Frequently, the constant loop ηx on x is denoted by 1.
For the paths αηx and ηxα and the iterated integral I, the following relation holds:

I(α) = I(αηx) = I(ηxα).

Recall that the classical line integral satisfies the following conditions:
〈∫

ω, [α, β]

〉

= 0,

where α and β are loops at the point x. The detection is the finding of an iterated integral such
that it does not vanish on the loop presenting a nontrivial element of the fundamental group. This
element is not trivial, i.e., homotopic to a constant loop. The integral of each commutator is equal to
zero. Therefore, one cannot use 1-iterated integrals to detect nontrivial commutators in fundamental
groups. If I is an iterated integral of order r and r < s, then

〈I, [α1[α2[. . . [αs] . . .]]]〉 = 0.

No iterated integral of order r < s detects commutators if their orders are not lower than s.

2.2. Properties of iterated integrals of differential forms of arbitrary degrees. Suppose
that ω1, ω2, . . . , ωr are differential forms of degrees deg ωi = pi on a compact closed manifold Mn.
Then the iterated integral

∫
ω1 · · ·ωr is a differential form of degree p1+ p2+ · · ·+ pr − r on the space

P (M) of paths. If the initial point x0 and the final point x1 are fixed, then the space of paths is
denoted by P x1

x0
(M). If x0 = x1, then we have the space Ωx0(M) of loops, which is a subset of the

space of paths: Ωx0(M) ⊂ P (M).

Proposition. Iterated integrals of differential forms of arbitrary degrees satisfy the following differ-
entiation relation generalizing the differentiation relation for iterated integrals of differential 1-forms:

d

∫
ω1ω2 · · ·ωr =

r∑

i=1

(−1)i
∫

Jω1 · · · Jωi−1dωiωi+1 · · ·ωr −
r−1∑

i=1

Jω1 · · · Jωi−1(Jωi ∧ ωi+1)ωi+2 · · ·ωr,

where

Jωi = (−1)deg ωi · ωi

(see [3, 7]).
In this general case, an analog of the Stokes relation (see [3, 7]) holds for iterated integrals on the

space Ωx0(M) of loops. The Stokes relation is as follows:

< d

∫
ω1ω2 · · ·ωr, C >=<

∫
ω1ω2 · · ·ωr, ∂C >,

where C = Nm is a manifold with boundary and m = p1 + p2 + · · ·+ pr − r + 1.
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3. Whitehead Relations for Hopf Invariants

In this section, the Whitehead relation for the Hopf invariant is presented in terms of iterated
integrals defined in the previous section. To do that, we pass from the space Px0(M) of paths to the
space

Ωx0(M) = P x0
x0

(M) ⊂ Px0(M)

of loops. Let M be a smooth oriented n-dimensional manifold,

f : S2n−1 → Mn

be a smooth map, and ωn is the highest-degree form determining the orientation on the manifold.
Then the Whitehead relation for the Hopf invariant of the map f has the following form (see [14]):

h(f) =

∫

S2n−1

f∗ωn ∧ ψ,

where dψ = ωn.

Theorem. In terms of iterated integrals, the right-hand side of the Whitehead relation for the Hopf
invariant can be represented as

〈∫
ωnωn, S2n−2

〉

=

∫

S2n−1

f∗ωn ∧ ψ,

where the left-hand side is defined by means of the map g : S2n−2 → Ωx0M
n. Its superstructure S(g)

coincides with f, i.e., S(g) = f. Hence, the Hopf invariant is determined by the value of the iterated
integral

h(f) =

〈∫
ωnωn, S2n−2

〉

.

The map g is a delooping of the map f, i.e., for x ∈ S2n−2, the value of the loop g(x)(t) at the
point t is determined by the relation g(x)(t) = f(x, t). Thus, g(x) ∈ Ωx0M

n.

4. Whitehead Product and Haefliger Theorem

Define the Whitehead product. Let Dn be a collection of vectors in R
n such that the length of each

one does not exceed one. The disk boundary is a sphere of dimension n− 1 : ∂Dn = Sn−1. Let X be
a topological space with a marked point x0.

Definition. Take two continuous maps

fi : (D
pi , ∂Dpi) → (X,x0), i = 1, 2.

The Whitehead product of the maps f1 and f2 is the map [f1, f2] of the boundary of the product
∂(Dp1 ×Dp2) of disks into the topological space X as follows:

[f1, f2](x1, x2) =

{
[f1, f2](x1, x2) = f1(x1) as x2 ∈ ∂Dp2 ,

[f1, f2](x1, x2) = f2(x2) as x1 ∈ ∂Dp1 .

The maps fi represent elements ϕi of the homotopy groups πpi(M,x0). Note that the homotopy
class

[ϕ1, ϕ2] ∈ πp1+p2−1(M,x0)[f1, f2]

depends only on ϕ1 and ϕ2 and is called the Whitehead product of ϕ1 and ϕ2. If the spheres are
one-dimensional, then the maps f1 and f2 are elements ϕ1 and ϕ2 in the fundamental group of the
manifold. In this case, the Whitehead product [ϕ1, ϕ2] treated as a homotopic class of the manifold
coincides with the commutator of these elements in the fundamental group:

[ϕ1, ϕ2] = ϕ1ϕ2ϕ
−1
1 ϕ−1

2 .
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Differential forms can be used to detect the Whitehead product. Let ω1 and ω2 be forms on a
differentiable manifold M, their degrees be equal to p1 and p2, respectively, and each one be greater
than one. Assume that dω1 = dω2 = 0 and ω1 ∧ ω2 = 0.

If f : Sp1+p2−1 → M is a smooth map and a form f∗ω1 has degree p1 < p1 + p2 − 1, then there
exists a form α1 such that dα1 = f∗ω1.

Define the generalized Hopf invariant for the sphere Sp1+p2−1 into the smooth manifold M :

hf (ω1, ω2) =

∫

Sp1+p2−1

α1 ∧ f∗ω2 =

〈∫
ω1ω2, S

p1+p2−2

〉

.

The last expression represents the generalized Hopf invariant hf (ω1, ω2) in terms of 2-iterated Chen
integrals. Note that the generalized Hopf invariant does not depend on the choice of the differential
form α1 converting ω1 into an exact form; it depends only on the homotopy class of the map f. This
number determines the homomorphism of πp1+p2−1(M) into R.

If hf (ω1, ω2) �= 0, then the map f represents a nonzero element of the homotopy group πp1+p2−1(M).
Below, the Haefliger theorem about the value of the generalized Hopf invariant on the Whitehead

product of two spheres (see [5]) is formulated in terms of iterated integrals.
Let f = [f1, f2] be the Whitehead product of two maps of the spheres Spi , pi > 1, i = 1, 2.

Theorem. Let ω1 and ω2 be closed differential forms on a smooth manifold M and ω1 ∧ ω2 = 0. Let
fi : (S

pi , yi) → (M,x0) be smooth maps of spheres of dimensions p1 and p2 representing elements of
homotopy groups πpi(M,x0), i = 1, 2.

Then, for the Whitehead product f = [f1, f2], the generalized Hopf invariant is computed as follows:

hf (ω1, ω2) = ω1(f1)ω2(f2) + (−1)p1p2ω1(f2)ω2(f1),

where

ωi(fj) =

〈∫
ωi, S

pj−1

〉

.

Here,
∫
ωi is the 1-iterated integral of the form ωi. It is integrated for the map gj : S

pj−1 → Ωx0(M)
(where gj is the delooping of the map fj).

For the case where p1 = p2 = 1, this relation is valid as well. Since the Whitehead product coincides
with the commutator of loops for the case where p1 = p2 = 1, it follows that, in this case, the relation
from the theorem coincides with the value of the 2-iterated integral on the commutator of loops from
Property 7 of iterated integrals (see Sec. 2).

5. Detection of Nontrivial Elements in Homotopy Groups of Smooth Manifolds

5.1. Examples. The following two examples for mappings of multidimensional spheres can be found
in [5, 13, 14].

Example 1. Let M = Sn and ω be an n-form on Sn such that
∫

Sn

ω = 1. Let f be a smooth 1-degree

map of the disk Dn onto the sphere Sn such that the disk boundary ∂Dn is mapped into a point.
Then

h[f,f ](ω, ω) =

{
0 if n is odd,

2 if n is even.

This result follows from the Haefliger theorem because
∫

Dn

f∗ω =

∫

Sn

ω = 1.
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Example 2. LetM be the complement to the points (1, 0, 0) and (−1, 0, 0) in R
3. ThenM is retracted

to the union of two spheres S+ and S− of radius 1 centered at (1, 0, 0) and (−1, 0, 0), respectively.
Let ω′

+ be a 2-form on S+, its support be contained in a small neighborhood of the point (2, 0, 0),
and ∫

S+

ω′
+ = 1.

Let ω+ can be represented as an induced 2-form ρ∗+ω′
+, where ρ

∗
+ is the radial retraction of M on S+.

Hence, ω+ is a closed 2-form such that its support is contained in the half-plane {x1 > 0}. Using
the symmetry with respect to the plane {x1 = 0}, argue in the same way for ω−. Since the supports
of the forms are disjoint, it follows that ω+ ∧ ω− = 0.

Let i+ and i− be two natural embeddings of S2 into M with images S+ and S−, respectively.
Let us prove that their Whitehead product [i+, i−] is a nontrivial element in the homotopy group
π3(M) = π(S2 ∨ S2).

Since ∫

S+

ω+ =

∫

S−

ω− = 1 and

∫

S+

ω− = 0,

it follows that

h[i+,i−](ω+, ω−) = 1.

Similar examples can be constructed for the mapping of high-dimensional spheres Sp1 and Sp2 ,
pi > 1, into unions (see [5]).

5.2. Detection of nontrivial loops on Riemannian surfaces. In this section, the detection
problem is considered for homotopically nontrivial loops on Riemannian surfaces (see [15]). We use
only Chen iterated integrals of holomorphic or meromorphic 1-forms on Riemannian surfaces that are
homotopic periods.

The homotopic nontriviality of loops on Riemannian surfaces is determined by nonzero values of
homotopic periods on these loops. Recall that homotopic periods are iterated integrals of holomorphic
or meromorphic forms, depending only on the loop homotopy class. Thus, the homotopic period is
well defined on the element of the fundamental group corresponding to the loop. Homotopic periods
determine functions on the fundamental group of a Riemannian surface. Consider Riemannian surfaces
such that the fundamental group of each one is a group with a finite amount of generatrices and a finite
amount of relations (finitely represented groups). We describe several properties of the fundamental
group of such Riemannian surfaces.

Proposition. The intersection of terms of the lower central row of a finitely represented fundamental
group of a Riemannian surface is the unit group.
Proof.

1. If the Riemannian surface C is not compact, then its fundamental group is a free group
π1(C, x0) = Fn, n > 0, with a finite amount of generatrices:

∞⋂

k=1

ΓkFn = {e}.

2. If the Riemannian surface is compact, then its fundamental group is either the trivial group
G = {e} or a group with a finite amount of generatrices and one relation. Delete one point from this
Riemannian surface C, i.e., assign X = C\{x}. The fundamental group of the obtained surface X is
a free F2g, where g is the genus of C. The embedding i : X → C induces the epimorphism

π1(X) → π1(C) → 1

550



of fundamental groups and the epimorphism

Γkπ1(X) → Γkπ1(C) → 1, k = 1, 2, . . .

of their lower central rows. Since
∞⋂

k=1

Γkπ1(X) = {e},

it follows that
∞⋂

k=1

Γkπ1(C) = {e}.

Thus, if the fundamental group of the Riemannian surface π1(C) is finitely represented, then the
intersection of terms of the lower central row is trivial.

Thus, if the Riemannian surface is compact, then the intersection of terms of the lower central row is
trivial for the group π1(C), i.e.,

∞⋂

k=1

Γkπ1(C) = {e}.

Hence, for each nontrivial element g of the fundamental group π1(C) there exists the greatest positive
integer r such that g has a nonzero image in the quotient group Γr(C)/Γr+1(C).

Select a system of canonical loops a1, . . . , ag, b1, . . . , bg on C. Cut C along these loops and convert
this Riemannian surface into a 2g-gon. It is possible to select a canonical system of loops such that
they start at the point x0 ∈ C and represent generatrices in the fundamental group π1(C, x0). Denote
them by the same symbols. Each iterated integral

∫
ω1 · · ·ωr of length r ≥ 1 of holomorphic 1-forms

on the Riemannian surface is a homotopic period. Indeed, let loops γ1, γ2 ∈ Ωx0(C) be homotopic,
i.e., let there exist a map

h : [0, 1] → Ωx0(C), h(0) = γ1, h(1) = γ2.

Then properties of iterated integrals imply the relations
∫

γ2

ω1 · · ·ωr −
∫

γ1

ω1 · · ·ωr =

∫

∂h

ω1 · · ·ωr =

∫

h

d

∫
ω1 · · ·ωr

= −
∫

h

r∑

i=1

∫
ω1 · · · dωi · · ·ωr −

r−1∑

i=1

∫
ω1 · · · (ωi ∧ ωi+1) · · ·ωr = 0.

The last relation follows from the fact that dωi = 0, i = 1, . . . , r, and ωi ∧ ωi+1 = 0, i = 1, . . . , r − 1,
for holomorphic forms on a Riemannian surface. Hence,

∫

γ1

ω1 · · ·ωr =

∫

γ2

ω1 · · ·ωr,

i.e., the iterated integral
∫
ω1 · · ·ωr of holomorphic forms is a homotopic period.

It is well known that there exists a holomorphic 1-form ωi on C such that

Re

∫

ai

ωi = 1, Re

∫

aj

ωi = 0, j �= i, j = 1, . . . , r,

and

Re

∫

bj

ωi = 0, j = 1, . . . , r
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for b-periods. In the same way, there exists a holomorphic form ωj such that

Re

∫

bj

ωj = 1

and other periods of this form are equal to zero. Such 1-form detects the homotopic nontriviality of
the generatrices a1, . . . , ag, b1, . . . , bg.

The Chen theorem establishes an isomorphism between the space of homotopic periods defined
by iterated integrals of real-valued differential forms and the space of homomorphisms of the group
algebra of the fundamental group R[π1(M)] into real numbers (see [3, 4]):

H0(Br, x0) = Hom
(
R[π1(M,x0)]/J

r+1,R
)
,

where H0(Br, x0) are homotopic periods from r-iterated integrals. Applying the Chen theorem to
Riemannian surfaces and using the proposition formulated above, one can prove the homotopic non-
triviality of each element π1(M,x0) by means of iterated integrals of holomorphic or meromorphic
forms because, in our case, the ideal J for Riemannian surfaces is zero.

Now, we can formulate the following theorem.

Theorem. Let M be a compact Riemannian surface of genus g with k deleted points. Then each
element of the fundamental group of this surface is detected by iterated integrals of holomorphic or
meromorphic forms on this Riemannian surface.
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