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GOODNESS-OF-FIT TEST BASED ON AN UNBIASED

ESTIMATOR OF THE DISTRIBUTION FUNCTION IN

THE CASE OF EXPONENTIAL DISTRIBUTION

V.V. Chichagov1

For exponential distribution, a modification of the Kolmogorov goodness-of-fit test is considered. This
modification consists in the replacement of the empirical distribution function by the optimal unbiased
estimator of the distribution function. Properties of the modified test statistics are described that
make it possible to calculate its distribution. The power of the modified test is compared with that
of the Kolmogorov test for various values of input parameters.

1. Introduction

Let
−→
Xn = (X1, . . . ,Xn) be a repeated sample of size n from the population ξ. The sample elements

are assumed to be independent random variables with one and the same known distribution function
F (x; θ) with the unknown parameter θ ∈ Θ. Consider the problem of testing the simple hypothesis
H0 : F (x; θ) = F0(x), where F0(x) = F (x; θ0), θ0 is a value of θ.

There are many goodness-of-fit tests for solving this problem, including the Kolmogorov test K based
on the statistic

Dn = sup
x∈R

|Fn(x)− F0(x)| ,

where Fn(x) is the empirical distribution function constructed from the sample
−→
Xn.

It is well known that the empirical distribution function is an unbiased estimator of the corresponding
theoretical distribution function. In some cases (for example, if the distribution of ξ belongs to the
exponential family), there exists an unbiased estimator of the distribution function that is a function
of a sufficient statistic whose dimensionality is less than n. The variance of this unbiased estimator is
less than that of the empirical distribution function. So, one can expect that the test K̂ based on the
statistic

D̂n = sup
x∈R

∣∣∣F̂ (x|Sn)− F0(x)
∣∣∣

may be more powerful than the Kolmogorov test, where F̂ (x|Sn) is an unbiased estimator of the distri-
bution function of the random variable ξ, Sn is a sufficient statistic for the parameter θ.

Define the test K̂ in a way similar to the Kolmogorov test: if D̂n < cα,n, then the null hypothesis is
accepted. Here, as usual, cα,n is the critical value of the test statistic correponding to the significance
level α and sample size n.

As a result, the following problems need to be solved: the calculation of the critical value cα,n;

the calculation of the power function of the test K̂. In the present paper the solution of both of these
problems is presented under the assumption that the random variable ξ has the exponential distribution
with the distribution function

F (x, θ) = 1− e−x/θ, θ > 0, x > 0. (1)
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2. Main theoretical results

Lemma 1. If
−→
Xn is a repeated sample of size n > 2 from the population ξ having exponential

distribution (1), then:
1) the test statistic of K̂ has the form

D̂n = D̂n (Sn) = sup
t>0

∣∣∣∣∣e
−t −

(
1− t θ0

Sn

)n−1

+

∣∣∣∣∣ , (2)

where Sn = X1 + . . .+Xn, (x)+ = max{0, x};
2) the value of the power function W

(
k|K̂

)
of the test K̂ corresponding to the value θ = θ1 = kθ0

of the parameter is determined by the relation

W
(
k|K̂

)
= P

(
sup
t>0

∣∣∣∣∣e
−t −

(
1− t

k S∗
n

)n−1

+

∣∣∣∣∣ > cα,n

)
, k > 0, (3)

where S∗

n is a random variable with the Erlang distribution with shape parameter n and scale parameter 1
defined by the density

fS∗

n
(s) =

sn−1

Γ(n)
e−s, s > 0.

Moreover, W
(
1|K̂

)
= α.

Proof. With the account of the fact that an unbiased estimator of distribution function (1) being a
function of the sufficient statistic Sn = X1 + . . . +Xn has the form (e.g., see [1])

F (x|Sn) = 1−
(
1− x

Sn

)n−1

+

,

make simple transformations

D̂n (Sn) = sup
x>0

∣∣∣∣∣∣

[
1−

(
1− x

Sn

)n−1

+

]
−


1− e

−

x

θ0



+

∣∣∣∣∣∣
=

=sup
t>0

∣∣∣∣∣∣
e
−

t

θ0 −
(
1− t

Sn

)n−1

+

∣∣∣∣∣∣
= sup

t>0

∣∣∣∣∣e
−t −

(
1− t θ0

Sn

)n−1

+

∣∣∣∣∣ ,

W
(
k|K̂

)
= P

(
D̂n (Sn) > cα,n

)
= P


 sup

kS+
n >x>0

∣∣∣∣∣∣
e
−

x

θ0 −
(
1− x/θ0

k Sn/θ1

)n−1
∣∣∣∣∣∣
> cα,n


 .

Hence, the statement of the lemma immediately follows.
Now note that for θ = θ1 formulas (2)–(3) can be rewritten in another way

D̂n (Sn) = sup
z∈[0, kS∗

n
]
|Υ0(z;S

∗

n, k)| , S∗

n =
Sn

θ1
, (4)

W
(
k|K̂

)
= P

(
sup

z∈[0, kS∗

n
]
|Υ0(z;S

∗

n, k)| > cα,n

)
, (5)
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using the function

Υ0(z; s, k) ≡ Υ(z; ks) = e−z −
(
1− z

ks

)n−1
, 0 6 z 6 ks. (6)

The following statement determines basic properties of the function Υ(z;x), where x = ks, making
it possible to construct an algorithm of numeric solution of the problems posed above.

Theorem. I. If n = 2, then for x 6 1, the function Υ(z;x) increases in the argument z, z 6 x, from
0 to e−x; for x > 1, on the interval (0, lnx) the function Υ(z;x) decreases from 0 to 1+lnx

x − 1, and on

the interval (lnx, x) it increases from 1+lnx
x − 1 to e−x.

II. If n > 3, then:

1) for x 6 n − 1, the equation Υ′

z(z;x) = 0 has one root z1 = z1(x) on the interval (0, x), and for

x > n − 1 it has two roots z1(x) and z2(x) such that z1(x) belongs to the interval (x − n + 2, x) and

z2(x) belongs to the interval (0, x− n+ 2);

2) the function Υ1(x) = Υ (z1(x);x) decreases on the interval (0, +∞) from 1 to 0;

3) the function Υ2(x) = −Υ(z2(x);x) increases on the interval (n− 1, +∞) from 0 to 1;

4) there exists a unique value of x such that Υ1(x) = Υ2(x); moreover, this value belongs to the

interval (n− 1, x), x > n− 1.

Proof. Let n = 2. Then, Υ(z;x) = e−z −
(
1− z

x

)
and Υ′

z(z;x) = −e−z + 1
x , if z 6 x. Therefore, for

0 6 x 6 1 the function Υ(z;x) is increasing in z ∈ [0, x), since Υ′

z(z;x) > 0 for any z > 0. Moreover,
Υ(0;x) = 0, Υ(x;x) = e−x.

If x > 1, then, since the equation −e−z + 1
x = 0 has a solution z = lnx, on the interval (0, lnx) the

function decreases in z to the value Υ(lnx;x) = 1+lnx
x − 1, whereas on the interval (ln x, x) it increases

to the value e−x. This reasoning implies statement I of the theorem.
Now consider the case n > 3. Making account of the relation

Υ′

z(z;x) = −e−z +
n− 1

x

(
1− z

x

)n−2
, 0 < z < x,

define the function

Ψ(z) = ln
n−1
x

(
1− z

x

)n−2

e−z
= ln

n− 1

x
+ (n− 2) ln

(
1− z

x

)
+ z, 0 6 z < x,

that does not change signs on the same intervals with respect to z as the function Υ′

z(z;x).

The following properties of Ψ(z) and Ψ′(z) are obvious in their domains:

Ψ(0) = ln
n− 1

x
, Ψ(x− 0) = −∞, Ψ′(z) decreases,

Ψ′(0) > 0 for x > n− 2, Ψ′(0) < 0 for x < n− 2,

Ψ′(0) = 0 for x = n− 2, Ψ′′(z) = − n− 2

(x− z)2
< 0 for 0 6 z < x.

Let 0 6 x 6 n− 1. Then, since in this case Ψ(0) > 0 and Ψ′(z) decreases, the equation Ψ(z) = 0 has
one root z1 = z1(x) on the interval [0, x). Moreover, on the interval [0, z1] the function Υ(z;x) increases
from 0 to Υ1(x), and on the interval [z1, x] it decreases from Υ1(x) to e−x.

Let n− 1 < x. Then, since in this case Ψ(0) < 0 and Ψ′(x− n+ 2) = 0, the function Ψ(z) increases
on the interval [0, x− n+ 2] and decreases on the interval [x− n+ 2, x). Moreover, Ψ(x− n+ 2) > 0,
since otherwise Ψ(z) 6 0 for 0 6 z < x, which is impossible because Υ(0;x) = 0 and Υ(x;x) = e−x > 0.

This means that for x > n − 1 the equation Ψ(z) = 0 has two roots on the interval [0, x), one
belonging to the interval (0, x− n + 2), the other belonging to the interval (x − n + 2, x). Denote the
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second root z1 = z1(x) (which corresponds to the notation introduced in the case x 6 n − 1), since it
corresponds to the maximum value of the function Υ(z;x). The first root will be denoted z2 = z2(x).

Note that to the value z1(x) there corresponds the maximum value of the function Υ(z;x) for x > 0,
which is equal to Υ1(x), whereas to the value z2(x) there corresponds the minimum value of the function
Υ(z;x) for x > n− 1, which is equal to −Υ2(x).

Now study the behavior of the functions Υi(x), i = 1, 2, in their domains. For this purpose calculate
the derivatives

Υ′

i(x) =(−1)i−1

[
−e−zi(x)z′i(x) + (n− 1)

(
1− zi(x)

x

)n−2 z′i(x) · x− zi(x)

x2

]
=

=(−1)i
(n− 1)zi(x)

x2

(
1− zi(x)

x

)n−2

, i = 1, 2,

with the account of that z′i(x) = 0 in any internal point of their domain. This immediately implies that
Υ′

1(x) < 0 for x > 0 and Υ′

2(x) > 0 for x > n− 1. Therefore, the function Υ1(x) decreases on (0, +∞)
and the function Υ2(x) increases on (n− 1, +∞).

To complete the proof it suffices to find the limit values of the functions Υi(x), i = 1, 2, on the
boundaries of their domains.

First make sure that the behavior of the roots z1(x) and z2(x) on the boundaries of their domains is
determined by the relations

z1(x) ∼ x

[
1−

(
x

n− 1

)1/(n−2)
]

for x → +0, (7)

z1(x) ∼ x

[
1− exp

{
− 1

n− 2

(
x+ ln

n− 1

x

)}]
for x → +∞, (8)

z2(x) ∼ x− n+ 1 for x → n− 1 + 0, (9)

z2(x) ∼ ln
x

n− 1
for x → +∞. (10)

We write u1(x) ∼ u2(x) for the asymptotic equivalence of u1(x) and u2(x).
It is easy to see that the values (7)–(10) so defined satisfy the inequalities determining the intervals

in which the roots z1(x) and z2(x) fall:

0 < z1(x) < x for 0 < x 6 n− 1, x− n+ 2 < z1(x) < x for x > n− 1; (11)

0 < z2(x) < x− n+ 2 for x > n− 1. (12)

Make sure that the limit values (7)–(10) of the roots satisfy the equation Ψ(z) = 0 :

lim
x→+0

Ψ(z1(x)) = lim
x→+0

[
ln

n− 1

x
+ ln

(
x

n− 1

)
+ x

[
1− x

n− 1

]1/(n−2)
]
= 0, (13)

lim
x→+∞

Ψ(z1(x)) = lim
x→+∞

[
ln

n− 1

x
−

(
x+ ln

n− 1

x

)
+

+ x

[
1− exp

{
− 1

n− 2

(
x+ ln

n− 1

x

)}]]
= (14)

=− lim
x→+∞

x exp

{
− 1

n− 2

(
x+ ln

n− 1

x

)}
= 0,

lim
x→n−1+0

Ψ(z2(x)) = lim
x→n−1+0

[
ln

n− 1

x
+ (n− 2) ln

(
1− x− n+ 1

x

)
+ x− n+ 1

]
= 0, (15)
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lim
x→+∞

Ψ(z2(x)) = lim
x→+∞

[
ln

n− 1

x
+ (n− 2) ln

(
1− ln

ln x
n−1

x

)
+ ln

x

n− 1

]
= 0. (16)

Using (7)–(10), we can describe the behavior of the functions Υ1(x) and Υ2(x) on the boundaries of
their domains:

lim
x→+0

Υ1(x) = lim
x→+0


exp




−x


1−

(
x

n− 1

) 1

n− 2








−
(

x

n− 1

)n− 1

n− 2


 = 1,

lim
x→+∞

Υ1(x) = lim
x→+∞

[
exp

{
−x

[
1− exp

(
−x+ ln n−1

x

n− 2

)]}
−− exp

{
−n− 1

n− 2

(
x+ ln

n− 1

x

)}]
= 0,

lim
x→n−1+0

[−Υ2(x)] = lim
x→n−1+0

[
e−(x−n+1) −

(
1− x− n+ 1

x

)n−1
]
= 0,

lim
x→+∞

[−Υ2(x)] = lim
x→+∞


e

−ln
x

n− 1 −


1−

ln
x

n− 1
x




n−1
 = −1,

which completes the proof of the theorem.

Corollary 1. Under the conditions of the theorem, the statistic D̂n(Sn) has the following properties.

I. D̂2(x) = e−x for 0 6 x 6 w1, D̂2(x) = 1 − 1+lnx
x for x > w1, where w1 is the solution of the

equation

1− 1 + lnw

w
= e−w, w > 1. (17)

II. If n > 3, then D̂n(x) = Υ1(x) for 0 6 x 6 w2, D̂n(x) = Υ2(x) for x > w2, where w2 is the

solution of the equation

Υ1(w) = Υ2(w), w > n− 1. (18)

3. Comparison of the Kolmogorov test and its modification

The Kolmogorov test was compared with its modification in the case of exponential distribution (1).
The computation of the modified test K̂ in the problem of testing the simple hypothesis H0 : F (x; θ) =
= 1 − e−x/θ0 , x > 0, was conducted with the use of the theorem and corollary presented in Section 1.
Table 1 presents the critical values of the modified test for significance levels α = 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, 0.1, 0.05, 0.01 and sample sizes n = 3, 5, 10, 50, 100, 200, 500, 1000.

Table 2 contains normalized critical values
√
n cα,n. As is seen from this table, for each given signif-

icance level, as the sample size increases, the convergence of the sequence of normalized critical values
to some limit value is observed. This effect agrees with the asymptotic normality of the sequence of
random variables

√
n D̂n established in [2]. Tables 3–6 contain the values of power functions of the tests

K̂ and K depending on significance level α with different sample sizes n for the alternatives of the form
H1 : F (x; θ) = 1− e−x/(k θ0), k = 1, 1.2, 1.4, . . . , 5.

Figure 1 demonstrates the results of the comparison of the test power functions for the significance
level α = 0.05 and sample size n = 20 with k varying from 0.2 to 3.7.
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Table 1. Critical values cα,n depending on confidence level 1− α and sample size n

Sample size n
1− α 3 5 10 20 50 100 200 500 1000

0.1 0.0901 0.0478 0.0245 0.0141 0.0076 0.0050 0.0034 0.0021 0.0015

0.2 0.1129 0.0650 0.0370 0.0234 0.0138 0.0095 0.0067 0.0042 0.0030

0.3 0.1383 0.0846 0.0514 0.0339 0.0206 0.0144 0.0101 0.0064 0.0045

0.4 0.1667 0.1066 0.0672 0.0452 0.0278 0.0195 0.0137 0.0086 0.0061

0.5 0.1984 0.1312 0.0846 0.0575 0.0356 0.0250 0.0176 0.0111 0.0079

0.6 0.2345 0.1590 0.1042 0.0713 0.0443 0.0311 0.0220 0.0139 0.0098

0.7 0.2772 0.1916 0.1271 0.0874 0.0545 0.0383 0.0270 0.0171 0.0121

0.8 0.3312 0.2328 0.1559 0.1077 0.0672 0.0473 0.0334 0.0211 0.0149

0.9 0.4137 0.2941 0.1986 0.1377 0.0862 0.0607 0.0429 0.0271 0.0191

0.95 0.4920 0.3494 0.2363 0.1640 0.1026 0.0723 0.0511 0.0323 0.0228

0.99 0.6687 0.4729 0.3148 0.2169 0.1352 0.0952 0.0672 0.0424 0.0300

Table 2. Critical values
√
n cα,n depending on confidence level 1− α and sample size n

Sample size n
1− α 3 5 10 20 50 100 200 500 1000

0.1 0.156 0.107 0.077 0.063 0.053 0.050 0.048 0.047 0.047

0.2 0.196 0.145 0.117 0.105 0.098 0.095 0.094 0.094 0.093

0.3 0.240 0.189 0.162 0.151 0.145 0.144 0.143 0.142 0.142

0.4 0.289 0.238 0.212 0.202 0.196 0.195 0.194 0.193 0.193

0.5 0.344 0.293 0.268 0.257 0.252 0.250 0.249 0.248 0.248

0.6 0.406 0.356 0.330 0.319 0.313 0.311 0.311 0.310 0.310

0.7 0.480 0.429 0.402 0.391 0.385 0.383 0.382 0.382 0.382

0.8 0.574 0.521 0.493 0.482 0.475 0.473 0.473 0.472 0.472

0.9 0.716 0.658 0.628 0.616 0.609 0.607 0.606 0.605 0.605

0.95 0.852 0.781 0.747 0.733 0.726 0.723 0.722 0.721 0.721

0.99 1.158 1.058 0.996 0.970 0.956 0.952 0.950 0.948 0.948
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Table 3. The values of power functions of the tests K̂ and K depending on the significance level α for the sample
size n = 3

α = 0.2 α = 0.1 α = 0.05 α = 0.01

k K̂ K K̂ K K̂ K K̂ K

1 0.200 0.200 0.100 0.100 0.050 0.050 0.010 0.010

1.2 0.224 0.226 0.105 0.117 0.044 0.062 0.006 0.015

1.4 0.276 0.268 0.136 0.147 0.054 0.082 0.004 0.025

1.6 0.339 0.316 0.184 0.184 0.078 0.107 0.003 0.038

1.8 0.405 0.365 0.239 0.224 0.113 0.134 0.004 0.054

2 0.468 0.413 0.298 0.265 0.155 0.162 0.006 0.071

2.2 0.526 0.457 0.356 0.305 0.200 0.190 0.010 0.091

2.4 0.578 0.498 0.412 0.345 0.248 0.217 0.017 0.110

2.6 0.624 0.536 0.464 0.382 0.296 0.244 0.027 0.131

2.8 0.665 0.571 0.512 0.418 0.344 0.269 0.039 0.151

3 0.701 0.602 0.555 0.451 0.389 0.294 0.053 0.171

3.2 0.732 0.630 0.595 0.482 0.432 0.317 0.070 0.191

3.4 0.760 0.656 0.631 0.511 0.472 0.339 0.089 0.211

3.6 0.784 0.679 0.663 0.538 0.510 0.360 0.110 0.230

3.8 0.805 0.701 0.692 0.564 0.545 0.379 0.132 0.248

4 0.823 0.720 0.718 0.587 0.577 0.398 0.156 0.266

4.2 0.840 0.737 0.741 0.609 0.607 0.416 0.180 0.283

4.4 0.854 0.753 0.762 0.629 0.634 0.433 0.205 0.300

4.6 0.867 0.768 0.781 0.648 0.659 0.449 0.230 0.316

4.8 0.879 0.782 0.798 0.666 0.682 0.464 0.255 0.332

5 0.889 0.794 0.814 0.682 0.704 0.478 0.280 0.347

Fig. 1. The test power functions depending on k
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Table 4. The values of power functions of the tests K̂ and K depending on the significance level α for the sample
size n = 10

α = 0.2 α = 0.1 α = 0.05 α = 0.01

k K̂ K K̂ K K̂ K K̂ K

1 0.200 0.200 0.100 0.100 0.050 0.050 0.010 0.010

1.2 0.286 0.253 0.158 0.140 0.082 0.077 0.013 0.020

1.4 0.441 0.355 0.291 0.223 0.181 0.139 0.042 0.045

1.6 0.596 0.468 0.447 0.324 0.317 0.220 0.106 0.085

1.8 0.721 0.573 0.590 0.427 0.461 0.311 0.201 0.137

2 0.812 0.663 0.706 0.524 0.590 0.402 0.313 0.198

2.2 0.875 0.737 0.793 0.609 0.696 0.487 0.429 0.264

2.4 0.917 0.795 0.856 0.681 0.778 0.564 0.537 0.332

2.6 0.945 0.841 0.900 0.741 0.839 0.632 0.632 0.397

2.8 0.963 0.876 0.931 0.790 0.884 0.690 0.711 0.460

3 0.975 0.903 0.952 0.830 0.917 0.739 0.776 0.518

3.2 0.983 0.924 0.966 0.862 0.940 0.780 0.827 0.572

3.4 0.988 0.940 0.976 0.888 0.957 0.815 0.867 0.620

3.6 0.992 0.953 0.983 0.909 0.968 0.844 0.897 0.663

3.8 0.994 0.962 0.988 0.925 0.977 0.869 0.921 0.702

4 0.996 0.970 0.991 0.939 0.983 0.889 0.939 0.736

4.2 0.997 0.976 0.994 0.950 0.987 0.906 0.953 0.767

4.4 0.998 0.980 0.995 0.959 0.991 0.920 0.964 0.793

4.6 0.999 0.984 0.997 0.966 0.993 0.931 0.972 0.817

4.8 0.999 0.987 0.997 0.971 0.995 0.941 0.978 0.838

5 0.999 0.989 0.998 0.976 0.996 0.950 0.983 0.856
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Table 5. The values of power functions of the tests K̂ and K depending on the significance level α for the sample
size n = 20

α = 0.2 α = 0.1 α = 0.05 α = 0.01

k K̂ K K̂ K K̂ K K̂ K

1 0,200 0.200 0.100 0.100 0.050 0.050 0.010 0.010

1.2 0.352 0.294 0.215 0.173 0.126 0.101 0.030 0.028

1.4 0.602 0.471 0.455 0.327 0.329 0.221 0.127 0.084

1.6 0.793 0.643 0.680 0.500 0.561 0.376 0.305 0.178

1.8 0.903 0.775 0.832 0.653 0.746 0.532 0.509 0.298

2 0.957 0.865 0.918 0.770 0.864 0.665 0.685 0.428

2.2 0.981 0.920 0.961 0.852 0.931 0.768 0.812 0.550

2.4 0.992 0.954 0.982 0.907 0.966 0.843 0.893 0.656

2.6 0.996 0.973 0.992 0.942 0.983 0.896 0.941 0.742

2.8 0.998 0.985 0.996 0.964 0.992 0.931 0.968 0.810

3 0.999 0.991 0.998 0.978 0.996 0.955 0.983 0.861

3.2 1.000 0.995 0.999 0.986 0.998 0.970 0.991 0.900

3.4 1.000 0.997 1.000 0.991 0.999 0.981 0.995 0.927

3.6 1.000 0.998 1.000 0.995 1.000 0.987 0.997 0.948

3.8 1.000 0.999 1.000 0.997 1.000 0.991 0.999 0.962

4 1.000 0.999 1.000 0.998 1.000 0.994 0.999 0.973

4.2 1.000 1.000 1.000 0.999 1.000 0.996 1.000 0.980

4.4 1.000 1.000 1.000 0.999 1.000 0.997 1.000 0.986

4.6 1.000 1.000 1.000 0.999 1.000 0.998 1.000 0.990

4.8 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.992

5 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.994

Table 6. The values of power functions of the tests K̂ and K depending on the significance level α for the sample
size n = 50

α = 0.2 α = 0.1 α = 0.05 α = 0.01

k K̂ K K̂ K K̂ K K̂ K

1 0.200 0.200 0.100 0.100 0.050 0.050 0.010 0.010

1.2 0.518 0.408 0.370 0.268 0.254 0.173 0.093 0.059

1.4 0.861 0.722 0.770 0.586 0.666 0.459 0.421 0.235

1.6 0.975 0.906 0.948 0.827 0.908 0.733 0.768 0.499

1.8 0.997 0.974 0.991 0.942 0.982 0.895 0.936 0.734

2 1.000 0.994 0.999 0.983 0.997 0.965 0.986 0.880

2.2 1.000 0.999 1.000 0.996 1.000 0.989 0.997 0.952

2.4 1.000 1.000 1.000 0.999 1.000 0.997 1.000 0.982

2.6 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.994

2.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

3.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 7. The sample size required for the test K to attain the same power as the test K̂

k 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

n = 20 31 34 34 34 34 33 33 33 33
0.126 0.330 0.563 0.750 0.870 0.937 0.971 0.987 0.994

n = 50 84 83 81 80 78 - - - -
0.254 0.670 0.911 0.986 0.998 - - - -

The presented results of computation demonstrate that, as a rule, the modified test K̂ is more
powerful than K uniformly over the whole range of k. The only exceptions are separate results related
to small sample sizes and k close to 1. The results presented in Table 7 indicate even more vividly the
substantial advantage of the test K̂ over the test K. Table 7 presents the values of the sample size
and power of the test K, corresponding to the given sample size n of the test K̂ at the significance
level α = 0.05 and some values of the coefficient k. As is seen from this table, within the range of
input parameters described above, the Kolmogorov test requires a 1.6–1.7 times greater number of
observations.

In conclusion, it should be noted that the computation of the power of the Kolmogorov test was
conducted by the computer program written by E. A. Kosyanova on the base of [3], which can be treated
as an alternative to the approach proposed in [4].
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