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NUMERICAL-ANALYTIC DETERMINATION OF THE STATIC THERMOELASTIC 
STATE OF PLANE MULTILAYER THERMOSENSITIVE STRUCTURES  

R. М. Kushnir,  І. М. Makhorkin,  and  М. І. Makhorkin  UDC 539.3 

We propose a numerical-analytic method for the determination of one-dimensional static thermoelastic 
states of plane multilayer structures with arbitrary types of temperature dependences of the physical and 
mechanical characteristics of the materials of their components.  The proposed method is based on the 
use of the theory of generalized functions, approximation of temperature dependences of the physical 
and mechanical characteristics of materials by piecewise-constant functions, and introduction of an ana-
log of the Kirchhoff function.  The method is verified by analyzing the static thermoelastic states of two- 
and three-layer plates. 

Keywords: multilayer plate, temperature-dependent characteristics, numerical-analytic solution, ther-
moelastic state. 

Introduction 

As a rule, structural elements of contemporary commercial equipment operate under the conditions of in-
tense thermal and force loads and can be most often regarded as inhomogeneous functionally graded plane bod-
ies or their fragments.  It is clear that the adequacy of theoretical investigations of the thermoelastic behavior of 
these structural elements is strongly affected by neglecting inhomogeneities, including, in particular, their func-
tionally graded nature (the presence of layers in elements) and the temperature dependences (thermal sensitivity) 
of physicomechanical characteristics (PMC) of materials.  The analysis of the state of investigations of the ther-
momechanical behavior of bodies of this kind shows that taking into account the entire collection of important 
factors (including the geometry of body, inhomogeneity of its structure, thermal sensitivity of the PMC of mate-
rials, and thermal and force actions) leads to mathematical problems whose solution, even with the help of nu-
merical methods, is connected with significant difficulties and requires specially developed algorithms or sub-
stantial adaptation of the existing procedures [2, 4, 5, 12, 13, 15].  However, in the engineering practice, it is 
preferable to use relatively simple numerical-analytic relations and algorithms, which enable one to study the 
thermomechanical behavior of the object with predicted reliability.  

The methods aimed at finding one-dimensional stationary temperature fields and stresses caused by these 
fields in layered bodies for linear, quadratic, and cubic temperature dependences of the thermal conductivities of 
the materials of layers were proposed in [3, 6, 10, 13].  Depending on the conditions of heat exchange, for any 
number of layers and any given form of temperature dependences of their thermal conductivities, these methods 
reduce the analyzed problem by means of the Kirchhoff transformation (change) [4] to the solution either of a 
single equation or of a system of two nonlinear algebraic equations.  It is recommended to find the solutions of 
these equations by using numerical methods (of successive approximations, perturbations, etc.).  In this case, the 
                                                        
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine; e-
mail: mahorkin@ukr.net. 

 
Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 4, pp. 131–140, October–December, 2019.  Original 
article submitted October 21, 2019. 

498  1072-3374/22/2653–0498      ©  2022    Springer Nature Switzerland AG  

DOI 10.1007/s10958-022-06067-5



NUMERICAL-ANALYTIC DETERMINATION OF THE STATIC THERMOELASTIC STATE  499 

choice of the initial approximation and the analysis of the problem of existence and uniqueness of the solution 
require additional investigations.  An integral representation of the solution of a one-dimensional stationary 
problem of heat conduction that does not impose restrictions on the character of temperature dependences of the 
thermal conductivities was proposed in the appendix of [10] for a special case of heating of multilayer bodies of 
simple geometric shapes whose inner surface is subjected to the action of a heat flux  q0 = const   and the outer 
surface is kept at a temperature  t0 = const .   

In the present paper, by using an example of plane multilayer plate, we illustrate the application of the pro-
cedure of numerical-analytic solution of problems of this kind.  The procedure is based on the use of the theory 
of generalized functions, approximation of the temperature dependences of the PMC of materials by piecewise-
constant functions, and introduction of an analog of the Kirchhoff function.  The application of this procedure 
enables one to investigate the thermal state of layered bodies (and the thermal stressed state caused by this state) 
for any type of temperature dependences of the PMC of materials of their components and any conditions of 
heat exchange without clarifying whether the solution of the nonlinear problem of heat conduction exists and is 
unique.  

1.  Statement of the Problem 

Consider a multilayer plate (Fig. 1) referred to a Cartesian coordinate system  x,  y,  z.  On the conjugation 
surfaces  z = zi = const ,   i = 1,…, n −1,  of the layers, we impose the conditions of perfect thermomechanical 
contact.  It is assumed that the thermal state caused by a thermal load acting upon the boundary surfaces  z = zi ,  
i = 0, n ,  free of force loads is characterized by a one-dimensional stationary temperature field  t(z) .  We also 
suppose that, in the absence of bulk forces, the end surfaces of the plate are thermally insulated and loaded by a 
system of forces whose resultant vector and moment are equal to zero.  

2.  Determination of the Thermal State 

According to the theory of nonlinear heat conduction of inhomogeneous bodies [4, 7, 9], the mathematical 
model of thermal behavior of these structures has the form of a nonlinear boundary-value problem of stationary 
heat conduction aimed at finding the temperature field  t(z)   from the heat-conduction equation  

 d
dz

λt (t, z)
dt
dz

⎛
⎝

⎞
⎠ = −wt (z), (1) 

with conditions of perfect thermal contact on the interfaces of materials of the layers 

 t zi−0
= t zi+0

,  

   (2) 

 λt (t, z)
dt
dz

⎛
⎝

⎞
⎠ zi−0

= λt (t, z)
dt
dz

⎛
⎝

⎞
⎠ zi+0

, 

under certain boundary conditions simulating the external thermal load: 
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Fig. 1 

 ai (t)
dt
dz

+ bi (t)
⎛
⎝

⎞
⎠ zi

= 0 ,    i = 0, n . (3) 

Here, the functions  ai (t)  and  bi (t)  are chosen according to the procedure of heating and  wt (z)  is the intensi-
ty of internal heat sources (sinks).  The temperature-and-coordinate dependence of the thermal conductivity  
λt (t, z)   is chosen in the form 

 λt (t, z) = λt
(1)(t) + λt

(i+1)(t)− λt
(i)(t)( ) S+ (z − zi )

i=1

n−1

∑ , (4) 

where  λt
(i)(t)  is the temperature-dependent thermal conductivity of the material of the i th layer. 

3.  Procedure of Numerical-Analytic Determination of the Thermal State 

The numerical-analytic solution of the boundary-value problem (1)–(3) is reduced to the approximation of 
the temperature dependences of thermal conductivities of the materials of layers  λt

(i)(t)   by piecewise-constant 
functions of temperature of the form [8] 

 λt
(i)(t) ≈ Λ(i)(t) = Λ1

(i) + Λ j+1
(i) − Λ j

(i)( ) S+ (t − t j )
j=1

m

∑ ,  

   (5) 
 

 
tp = t0 < t1 < t2 < … < tm < tm+1 = tk , 

with introduction of the following analog of the Kirchhoff function [14]:  
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 ϑ(t, z) = Λ(i)(ξ)Ni (z)
i=1

n

∑ dξ
0

t

∫ , (6) 

where  Ni (z) = S+ (z − zi−1)− S+ (z − zi ),   i = 0,…, n;  S+ (z − z0 ) = 1;  [tp, tk ]  is the joint interval of evaluation 

of  λt
(i)(t),   i = 1,…, n;  t j   are the nodes of approximation;  Λ j

(i)  are the approximating coefficients whose nu-

merical values correspond (with required accuracy) to the values of  λt
(i)(t)  in the temperature ranges  

t j−1 < t < t j ;  z0 ,  zn   are the coordinates of the boundary surfaces;  zi ,   i = 1,…, n −1,  are the coordinates of the 
conjugation (contact) surfaces of the i th and  (i +1)th layers, and   

 S+ (ζ −ζi ) =
1, ζ > ζi,

0, ζ ≤ ζi.
⎧
⎨
⎪

⎩⎪
  

As a result, the problem of determination of the stationary thermal state of a multilayer plate is reduced to 
finding the temperature field  t(z)   from the relation 

 ϑ(z) = t Λ(i)(t)Ni (z)
i=1

n

∑ − Λ j+1
(i) − Λ j

(i)( ) t j S+(t − t j )
j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑  (7) 

according to the solution of the partially degenerate differential equation 

 d
dz

dϑ
dz

− Ki ϑ zi
+Qi( )δ+ (z − zi )

i=1

n−1

∑⎡

⎣
⎢

⎤

⎦
⎥ = −wt (z) , (8) 

obtained from the heat-conduction equation (1) with the help of generalized functions by means of statement of 
the corresponding generalized problem of conjugation [1, 9, 11, 12].  Here,   d/dz   is a generalized derivative,  

 
 

Kℓ = Λ(ℓ+1)(ϑ)
Λ(ℓ)(ϑ)

−1
⎛
⎝⎜

⎞
⎠⎟ zℓ

,      and      
 

Qℓ = Λ(ℓ+1)(ϑ)
Λ(ℓ)(ϑ)

Fℓ (ϑ)− Fℓ+1(ϑ)
⎛
⎝⎜

⎞
⎠⎟ zℓ

.  

 According to relation (6), there exists a one-to-one correspondence between  ϑ   and  t   for  zk < α < zk+1,  
k  =  0,…, n .  Therefore, 

 S+ (t − ti ) = S+ (ϑ − ϑi ) , (9) 

and, hence,  Λ(i)(t) = Λ(i)(ϑ) .  As a result, relation (7) takes the form 

 ϑ(z) = t Λ(i)(ϑ)Ni (z)
i=1

n

∑ − Λ j+1
(i) − Λ j

(i)( ) t jS+ (ϑ − ϑ j )
j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑ .  
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This yields  

 t =
ϑ + Fi (ϑ)Ni (z)i=1

n∑
Λ(i)(ϑ)Ni (z)i=1

n∑
, (10) 

where 

 Fi (ϑ) = Λ j+1
(i) − Λ j

(i)( ) t j S+ (ϑ − ϑ j )
j=1

m

∑ ,  

 
 

ϑℓ = ϑℓ (z) = tℓΛ
(i)(tℓ ) − Λ j+1

(i) − Λ j
(i)( ) t j S+ (tℓ − t j )

j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑ .  

As a result, the solution  ϑ ≡ ϑ(z)   of Eq. (8) is represented in the form 

 ϑ = C1z + C2 + Ki ϑ zi
+Qi( ) S+(z − zi )

i=1

n−1

∑ − Wt (z), (11) 

where   

 Wt (z) = wt (ζ) dζ
0

η

∫ dη
0

z

∫ .   

We now express  ϑ zi
  in the form   

 
 
ϑ zi

= !K1
(i)C1 + !K2

(i)C2 + !K3
(i) .  

As a result, from (11), we obtain the following recurrence relations for 
 
!K j

(i),  j = 1, 2, 3: 

 
 

!K1
(i) = zi + K j !K1

( j )

j=1

i−1

∑ ,  

 
 

!K2
(i) = 1 + K j !K2

( j )

j=1

i−1

∑ ,  (12) 

 
 

!K3
(i) = K j !K3

( j ) +Qj( )
j=1

i−1

∑ − W (zi ). 

In view of (12), expression (11) for  ϑ   takes the form  
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ϑ = C1 z + K j !K1
( j )S+ (z − z j )

j=1

n−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

  + 
 

C2 1 + K j !K2
( j )S+ (z − z j )

j=1

n−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

  – 
 

Wt (z) − K j !K3
(i) +Qj( ) S+ (z − z j )

j=1

n−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. (13) 

In the general case, the integration constants  C1  and  C2   are determined from the system of two nonlinear 
algebraic equations obtained as a result of the substitution of expression (10), with regard for (13), in the bound-
ary conditions (3).  Note that, in the case where the conditions of heat exchange of the first or second kind are 
imposed on one of the boundary surfaces  z = zi ,  i = 0, n ,  the procedure of determination of  C1  and  C2  is 
reduced to the solution of a single nonlinear algebraic equation.  It is convenient to seek the solutions of the in-
dicated nonlinear algebraic equations by the method of simple iterations (successive approximations).  Moreo-
ver, as the initial approximation, it is reasonable to take the values of these solutions obtained for the case of 
constant thermal conductivities. 

In the case where the conditions of heat transfer of the first kind are given on the surface  z = z0  and condi-
tions of the second kind are specified on the surface  z = zn,  we obtain a closed analytic solution.  

4.  Determination of the Thermal Stressed State 

The thermal stressed state of the analyzed structure under a given thermal and force load is described by the 
relations [4, 10]  

 
 
σ.. = σyy = σ0(z),       σzz = σxz = σyz = σxy = 0.  

In this case, the equilibrium equations are satisfied identically, while the equations of compatibility of strains in 
stresses are true under the condition 

 ∂2

∂z2
1− ν(t, z)
E(t, z)

σ0 +Φ(t, z)⎡
⎣⎢

⎤
⎦⎥
= 0 , (14) 

where   

 
  
{ν(t, z), E(t, z), αt (t, z),Φ(t, z)} ∼ F(t, z) = Fi (t)Ni (z)

i=1

n

∑ ,   

 {νi (t), Ei (t), αti (t)} ∼ Fi (t), νi (t),  Ei (t),  αti (t)  are, respectively, the temperature-dependent Poisson’s ratio, 
modulus of elasticity, and the temperature coefficient of linear expansion of the i th layer, and   
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 Φi (t) = αti (ζ) dζ
0

t

∫    

is pure thermal deformation. 
The general integral of Eq. (14) has the form 

 σ0 = E(t, z)
1− ν(t, z)

A1 + zA2 −Φ(t, z)[ ]. (15) 

Under the condition that the resultant vector and resultant moment of stresses  σxx ,  σyy   are equal to zero: 

 σxx dz
0

zn

∫ = σyy dz
0

zn

∫ = 0 ,      z σxx dz
0

zn

∫ = z σyy dz
0

zn

∫ = 0,  

we determine the constants of integration  A1   and  A2   by the formulas 

 A1 = b1a22 − b2a12
a11a22 − a12

2 ,      A2 = b2a11 − b1a12
a11a22 − a12

2 ,  

where 

 a11 = Ei (t)
1− νi (t)

dz
zi−1

zi

∫
i=1

n

∑ ,      a12 = zEi (t)
1− νi (t)

dz
zi−1

zi

∫
i=1

n

∑ ,  

 a22 = z2Ei (t)
1− νi (t)

dz
zi−1

zi

∫
i=1

n

∑ ,  (16) 

 b1 = Ei (t)Φi (t)
1− νi (t)

dz
zi−1

zi

∫
i=1

n

∑ ,      b2 = zEi (t)Φi (t)
1− νi (t)

dz
zi−1

zi

∫
i=1

n

∑ . 

Approximating the temperature dependences of the PMC of materials of the components by piecewise-
constant functions of temperature of the form (5) and taking into account relation (4) and the one-to-one corre-
spondence between  ϑ   and  t   (9), we can represent the temperature-coordinate dependences of the PMC for a 
stack of layers regarded as a single whole in the following form: 

  {λt , E, ν,αt} ~ p(t, z)   

  ≈  
 

!p(ϑ, z) = !pi1 + ( !pij+1 − !pij )S+ (ϑ − ϑij )
j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑ , (17) 
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where   

 
  
ϑij = λti (ζ) dξ

0

t j

∫ ≈ t j !λti (t j ) − !λti
(ℓ+1) − !λti

(ℓ)( ) t jS+ (t j − tℓ )
ℓ=1

m−1

∑⎡

⎣
⎢

⎤

⎦
⎥ Ni (z)

i=1

n

∑ ,  

 
tp = t0 < t1 < t2 < … < tm < tm+1 = tk   are the joint nodes of approximation,  

 
!pij   are the approximating coef-

ficients of the temperature dependence  pi (t)  for the corresponding PMC of the i th layer equal (with required 
accuracy) to their values within temperature ranges  t j−1 < t < t j .  In this case, according to [9], their algebraic 
combinations have the same form (17) and relations (15) and (16) can be represented in the following way: 

  σ0 = !L(ϑ, z) A1 + zA2 − !Φ(ϑ, z)⎡⎣ ⎤⎦ , (18) 

 
 
a11 = !L(ϑ, z) dz

0

zn

∫ ,      
 
a12 = z !L(ϑ, z) dz

0

zn

∫ ,      
 
a22 = z2 !L(ϑ, z) dz

0

zn

∫ ,  

   (19) 

 
 
b1 = !L(ϑ, z) !Φ(ϑ, z) dz

0

zn

∫ ,      
 
b2 = z !L(ϑ, z) !Φ(ϑ, z) dz

0

zn

∫ . 

Here,  

 
 

!L(ϑ, z) =
!Ei1

1− !νi1
+

!Eij+1

1− !νij+1
−
!Eij

1− !νij

⎛

⎝⎜
⎞

⎠⎟
S+ (ϑ − ϑij )

j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑ ,  

 
 

!Φ(ϑ, z) =
!αti
(1)

!λti
(1) ϑ +

!αti
( j1)

!λti
( j+1) −

!αti
( j )

!λti
( j )

⎛
⎝⎜

⎞
⎠⎟
(ϑ − ϑij ) S+ (ϑ − ϑij )

j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

n

∑ .  

Relations (18) and (19) enable one to directly study the thermoelastic behavior of a plane layered stack ac-
cording to the solution of the corresponding boundary-value problem for Eq. (8) by determining a function of 
the Kirchhoff type (6) and avoiding the necessity of establishing the unique solvability of the corresponding 
nonlinear heat-conduction problem. 

5.  Results of Numerical Verification 

The verification of the proposed numerical-analytic approach is carried by using an example of numerical 
analysis of the stationary thermal state of a three-layer plate and the static thermoelastic state caused by this 
thermal state.  The boundary surface of the plate  z0 = 0   is kept at a constant temperature  t0,  while the bound-
ary surface  z3 = h3  is exposed to a heat flux  q .   

The temperature field of the analyzed three-layer structure, according to relations (10) and (13), is deter-
mined as follows:  
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 t = ϑ + F1(ϑ) S− (h1 − z)+ F2(ϑ)N2(z)+ F3(ϑ) S+ (z − h2 )
Λ(1)(ϑ) S− (h1 − z)+ Λ(2)(ϑ)N2(z)+ Λ

(3)(ϑ) S+ (z − h2 )
, (20) 

where  

 ϑ = C1 z + K1h1S+ (z − h1)+ (h2 + h1K1)K2S+ (z − h2 )[ ]  

  + C2 1+ K1S+ (z − h1)+ (1+ K1)K2S+ (z − h2 )[ ]  

  + Q1S+ (z − h1) + (Q1K2 +Q2 ) S+ (z − h2 ),  

 Kk = Λ(k+1)(ϑ)
Λ(k )(ϑ)

−1
⎛
⎝⎜

⎞
⎠⎟ hk

,      Qk = Λ(k+1)(ϑ)
Λ(k )(ϑ)

Fk − Fk+1(ϑ)
⎛
⎝⎜

⎞
⎠⎟ hk

,    k = 1, 2,  

 S− (h1 − z) = 1 − S+ (z − h1) ,  

 Fk (ϑ) = Λ j+1
(k ) − Λ j

(k )( ) t jS+ (ϑ − ϑ j )
j=1

m

∑ ,  

 
  

ϑℓ = ϑℓ (z) = tℓΛ
i( )(tℓ )− Λ j+1

i( ) − Λ j
i( )( ) t jS+ (tℓ − t j )

j=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ni (z)

i=1

3

∑ .  

The integration  constants  C1  and  C2  are determined from the boundary conditions as follows:  

 C1 = q      and     C2 = ϑ(t0, z0 ) = λt1(ξ) dξ
0

t0

∫ .  

If we assume that the PMC of materials of the specific neighboring layers are identical, then relations (15), 
(18), and (20) describe the thermal stressed state of a homogeneous or two-layer thermosensitive plate. 

In order to verify our numerical results, we find the static thermoelastic state caused by the temperature field 
(20) by using both relation (15) and relation (18). 

Our numerical analyses were carried out for plates made of aluminum oxide (engineering ceramics) and Ti-
6Al-4V titanium alloy.  The temperature dependences of the PMC within the temperature range of their defini-
tion  [tp = 273°K , tk  = 873°K] were chosen in the form 

 – for aluminum oxide (engineering ceramics) [4, 16]: 

 λt (t) = 1.5828 ⋅104 t−1 −14.087 + 8.772 ⋅10−2 t( )  [W/(m ⋅К)], 
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 E(t) = 3.4955 ⋅1011 −1.3468 ⋅108 t +1.4076 ⋅105 t2( ) [Pa], 

   (21) 
 αt (t) = 6.8269 ⋅10−6 +1.2548 ⋅10−9 t( ) [К–1],  

 ν(t) = 236.283⋅10−3 − 31.7412 ⋅10−6 t + 71.2602 ⋅10−9 t2 ; 

 – for Ti-6Al-4V titanium alloy [16]: 

 λt (t) = 1+1.704 ⋅10−2 t( ) [W/(m ⋅К)], 

 E(t) = 122.56 ⋅109 − 56.206 ⋅109 t( ) [Pa], 

   (22) 
 αt (t) = 7.5788 ⋅10−6 + 5.03081⋅10−9 t − 23.8505 ⋅10−12 t2( ) [К–1], 

 ν(t) = 288.4 ⋅10−3 + 32.3296 ⋅10−6 t . 

The temperature dependences of the PMC of materials are approximated within the temperature range of 
their definition by expressions of the form (17), where the approximating coefficients  

 
!pij   and the nodes of ap-

proximation  t j   are specified as follows: 

 
  
!pij = pi(t j

∗),      t j = tp + j
tk − tp
m +1

,      t j
∗ = t j −

tk − tp
2(m +1)

, (23) 

and  m   is the number of approximation nodes.  
Typical results of numerical investigations are shown in the form of plots in Figs. 2–7. 
The distributions of temperature   t( !z)  and stresses   σ( !z)  over the thickness    !z = z/h3  for different num-

bers of approximation nodes in a two-layer ceramics–Ti-6Al-4V-alloy plate with   h1/h3 < h2/h3 = 0.8 ,  
t0 = 273°K, and  q = 20  kW/m2  are illustrated in Figs. 2–4.  The results obtained for a three-layer plate made 
of engineering ceramics and reinforced with a layer of Ti-6Al-4V alloy with   h1/h3 = 0 ,   h2/h3 = 0.6 ,  
t0 = 273°K,  and  q = 20  kW/m2  are shown in Figs. 5–7.  

The curves plotted in Figs. 2–7 illustrate the distributions of temperature   t( !z)  and stresses   σ( !z)  computed 
for the approximation of all temperature dependences of the PMC of materials according to relations (23) with  
m = 3, 6, 12  (curves 1–3, respectively) and the mean-integral values   

 pij
∗ = 1

tk − tp
pij (t) dt

tp

tk

∫   

within the interval of their definition (curve 4 ), and solely for the mean-integral values of thermal conductivity 
(curve 5 ).  The dashed curves correspond to the values of temperature   t( !z)  and stresses   σ( !z)  computed by 
using the accepted temperature dependences of the PMC (21) and (22). 
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In Table 1, we illustrate the maximal values of relative error   

 εF = F − F∗

ΔF
 

depending on the number of the nodes of approximation  (F   and  F∗  are, respectively, the exact and approxi-
mate values of the function and  ΔF  = Fmax  – Fmin).  

Table 1 

No. of approximation nodes 

Two-layer plate Three-layer plate 

εt ,  % 

Δt = 800 °К 

εσ ,  % 

Δσ = 1.53 ⋅108  Pa 

εt ,  % 

Δt = 800 °К 

εσ ,  % 

Δσ = 1.53 ⋅108  Pa 

3 3.8 10.7 6.8 3.8 

6 2.1 5.3 3.6 1.6 

12 1.0 2.8 1.8 1.2 

24 0.5 1.5 1.2 0.8 

For the mean-
integral values of 

all PMC 4.7 103.6 7.4 9.7 

only  λt (t)  4.7 18.3 7.4 1.3 

The results obtained in the present work demonstrate that: 

 – the proposed procedure guarantees rapid convergence of the process of numerical determination of the 
thermal state and thermal stressed state (caused by this thermal state): the twofold increase in the 
number of approximation nodes for the analyzed cases leads to an about 1.5–2-fold decrease in the 
maximum value of the reduced relative error; 

 – neglecting the character of temperature dependence of  λt (t)  for the materials of layers leads, as a 
rule, to significant errors in the evaluation of thermal and thermal stressed states of the system (both 
quantitative and qualitative; thus, in the analyzed cases, depending on the structure of the plate, the 
relative error attained  11.9%  for temperature and  32.8%  for stresses);  

 – formal application (in the course of preliminary calculations) of the approximation of temperature de-
pendences of the PMC by constant quantities equal to their mean-integral values would lead, most 
likely, to inadequate estimates of the thermal stressed state of the analyzed object. 
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  CONCLUSIONS 

The proposed numerical-analytic approach to the solution of one-dimensional problems of stationary heat 
conduction and static problems of thermoelasticity of plane layered structures made of thermally sensitive mate-
rials enables one to study the thermal and stressed states for different types of temperature dependences of the 
PMC of the components of these structures.  
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