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ON SOME CUBIC EXPONENTIAL SUMS

N. V. Proskurin∗ UDC 511, 512.624

By numerical experiments, some unexpected structures in the distribution of cubic additive expo-
nential sums in finite fields are discovered. A preliminary classification and some conjectures are
presented. Bibliography: 2 titles.

1. Preliminaries

Consider the field Fp = Z/pZ of prime order p, its additive character

x �→ ep(x) = exp(2πix/p), x ∈ Fp,

a polynomial f over Fp, and the related [1, 2] exponential sum of additive type
∑

x∈Fp
ep
(
f(x)

)
. (1)

The fundamental inequality
∣∣∣
∑

x∈Fp
ep
(
f(x)

) ∣∣∣ ≤ (deg f − 1)
√
p (2)

holds for all such sums whenever p � deg f . In connection with the reciprocity law, Gauss
was able to evaluate the quadratic sums, i.e., those with f of degree 2. Many authors have
studied, numerically and analytically, the Kummer and Birch sums. These are the sums with
f(x) = x3 and f(x) = x3 + cx, c being a coefficient in Fp. These sums are located in the
interval [−2

√
p, 2

√
p ] ⊂ R.

2. Set up

Let f be a one-variable polynomial over Z. Reducing its coefficients modulo p, we may
regard f as a polynomial over an arbitrary field Fp. We are interested in the distribution of
the points

Ep(f) =
1

(deg f − 1)
√
p

∑

x∈Fp
ep
(
f(x)

)
(3)

in the disk D =
{
z ∈ C

∣∣ |z | ≤ 1
}
. For any fixed f , we consider the points (3) for all primes

p. By (2), the points are located in the unit disk D (except for the case where p | deg f). One
may expect that limit formulas of the form

lim
x→∞

1

π(x)
�
{
p ≤ x

∣∣∣ Ep(f) ∈ Ω
}
=

∫

Ω

P (z) dz, with Ω ⊂ D, (4)

are valid. Here, the probability density P depends on f only, and π(x) denotes the number of
all primes p ≤ x. One may also expect that similar formulas can be found for the limits

lim
x→∞

1

π(x)
�
{
p ≤ x

∣∣∣ Φ(Ep(f)) ∈ Ω
}

(5)

with Φ(z) = |z | and Ω ⊂ [0, 1] or Φ(z) = arg z and Ω ⊂ (−π, π].
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In order to make an idea of a possible distribution of the points Ep(f), we have evaluated
them numerically in a wide range1 of cubic polynomials f and prime numbers p. Given a
polynomial f and a large integer X, we have plotted the points Ep(f) for all primes p ≤ X.
The points form a certain configuration

E(f,X) =
{
Ep(f)

∣∣ p is prime ≤ X
} ⊂ C,

which may serve as an instructive visualization for the distribution problem.
In this paper, we report on our quite unexpected observations concerning the configurations

E(f,X) with cubic polynomials f . The configurations E(f,X) split into two classes. One of
them splits further into a series of subclasses, as we will explain below. Also, we advance a
conjecture (see (7)) on the distribution of the points |Ep(f)|, which is similar to the Sato–Tate
conjecture concerning the Kloosterman sums2.

3. Radial distribution

Given a cubic polynomial f , consider the distribution of the points |Ep(f)| in the interval
[0, 1]. Turn to (5) with Φ(z) = |z | and Ω ⊂ [0, 1] . The limit in (5) is approximated by

1

π(X)
�
{
p ≤ X

∣∣∣ |Ep(f)| ∈ Ω
}

(6)

with a large X. We may take Ω = [0, z] with z ∈ [0, 1] and treat (6) as a function of z. We have
numerically confirmed (for many different f and X) a very good agreement of the function (6)
with the function

z �→ 4

π

z∫

0

√
1− x2 dx.

Based on this observation, we conjecture that

lim
x→∞

1

π(x)
�
{
p ≤ x

∣∣∣ |Ep(f)| ∈ Ω
}
=

4

π

∫

Ω

√
1− x2 dx (7)

for all cubic polynomials f and all intervals Ω ⊂ [0, 1]. The density on the right-hand side of
(7) is known in connection with the distribution of the numbers of points on elliptic curves
and with the distribution of the Kloosterman sums.

4. Clusters

In Fig. 1 below, we have plotted the real coordinate axis, the imaginary coordinate axis, the
unit disk D ⊂ C, and the points Ep(f) ∈ D for the polynomial f(x) = 5x3 + x2 − 4x and all
primes p ≤ X with X = 150000. The set E(f,X) looks like a globular cluster. We see similar
clusters E(f,X) for many other polynomials f . In particular, for the polynomials

f(x) = ax3 + bx2 + cx+ d

with the coefficients

a = 3, 5, 6, 7, b = 1, 2, 4, c = −4, . . . , 4,

and an arbitrary d ∈ Z. In seems probable that the cluster E(f,X) remains a cluster for
arbitrary values of the coefficient c.

1We will consider polynomials f with zero constant term only because the limits we are interested in (4),
(5) are independent of the constant term of a polynomial f .

2For the Kloosterman sums (instead of (1)) and the interval [−1, 1] (instead of D), it is conjectured that the

limit formula (4) holds with P (z) = (2/π)
√
1− z2.
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Fig. 1. The set E(f,X) with f(x) = 5x3 + x2 − 4x and X = 150000.

Consider the arguments of the points Ep(f). One may expect that the points argEp(f) are
uniformly distributed in (−π, π], i.e.,

lim
x→∞

1

π(x)
�
{
p ≤ x

∣∣∣ argEp(f) ∈ Ω
}
=

1

2π
Λ(Ω),

where Λ(Ω) denotes the length of the interval Ω ⊂ (−π, π]. However, upon performing com-
putations with all primes p ≤ 250000, we have some doubts about this formula.

5. Asters

Consider the set E(f,X) of all points Ep(f) with prime numbers p ≤ X, f(x) = 6x3+3x2+
4x, and X = 100000. The plot is presented in Fig. 2. It is seen that the points Ep(f) are
concentrated along 6 lines passing through the point 0. The counterclockwise angles between
the lines and the real axis are equal to πm/3 + πn/9 with m = 0, 1, 2 and n = 1, 2. We say
that the polynomial f and the set E(f,X) belong to the class aster-6 or aster-6-2, where the
index 2 indicates that the set of 6 lines splits into pairs of lines with a common m.

Fig. 2. The set E(f,X) with f(x) = 6x3 + 3x2 + 4x and X = 100000.

The points distributed sporadically are those few points Ep(f) that are located far away
from the limit lines.

Consider yet another example. Let f(x) = 5x3 + 6x2 + 4x, X = 100000. The plot is
presented in Fig. 3. In this case, the points Ep(f) are concentrated along 20 lines passing
through the point 0. The counterclockwise angles between the lines and the real axis are equal
to πm/5 + πn/25 with m = 0, . . . , 4 and n = 1, . . . , 4. We say that the polynomial f and the
set E(f,X) are of the type aster-20 or aster-20-4, where the index 4 indicates that the set of
20 lines splits into 4-line bundles with a common m.

185



Fig. 3. The set E(f,X) with f(x) = 5x3 + 6x2 − 3x and X = 100000.

It is worth emphasizing once again that the points Ep(f) are concentrated along the limit
lines rather than lie on them.

Turning to formula (4), we see that for the aster classes, the right-hand side should be
replaced with

∑

L

∫

Ω∩L
PL(z) dz,

where the sum is taken over the limit lines L, and PL are some density functions.
Our computations performed for the polynomials f(x) = ax3+bx2+cx with positive a ≤ 7,

b ≤ 3a/2, c satisfying the condition |c| ≤ 4, and X = 100000, lead to the following 8 classes:

Fig. 4. E(f,X) for f(x) = 2x3 + 3x2 − 4x; the points are concentrated along
the real axis; aster-1.

Fig. 5. E(f,X) for f(x) = 4x3 + 3x2; aster-2.
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Fig. 6. E(f,X) for f(x) = 3x3 + 3x2 + x; aster-3.

Fig. 7. E(f,X) for f(x) = 3x3 + 3x2 + 3x; aster-6-2.

Fig. 8. E(f,X) for f(x) = 2x3 + 2x2 + 3x; aster-18-2.

Fig. 9. E(f,X) for f(x) = 5x3 + 3x2 + 3x; aster-20-4.
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Fig. 10. E(f,X) for f(x) = 4x3 + x2 − 3x; aster-36-2.

Fig. 11. E(f,X) for f(x) = 7x3 + 9x2; aster-42-6.

All the polynomials f(x) = ax3 + bx2 + cx+ d with an arbitrary d ∈ Z and a, b, c in the list
below fall into aster classes. Of course, this list is not exhaustive.

◦ Let a = 2, b = 3, or a = 4, b = 6, or a = 6, b = 9. The polynomials f with c = −4, . . . , 4
fall into the class aster-1. Also, all the polynomials f with b = 0 fall into this class.

◦ If a = 4, b = 3, c = −3, . . . , 3, then f falls into the class aster-2.
◦ Let a = b = 3, or a = b = 6, or a = 6, b = 3. The polynomials f with c = −3, . . . , 3 fall
into the class aster-6-2, except for those with a = b = 3, c = 1 and a = b = 6, c = 2,
which fall into the class aster-3.

◦ Let a = b = 1, 2, 4, 5, 7, or a = 2, b = 1, or a = 4, b = 2. The polynomials f with
c = −4, . . . , 4 fall into the class aster-18-2.

◦ If a = 5, b = 3, 6, c = −3, . . . , 3, then f falls into the class aster-20-4.
◦ If a = 4, b = 1, 5, c = −3, . . . , 3, then f falls into the class aster-36-2.
◦ If a = 7, b = 3, 6, 9, c = −3, . . . , 3, then f falls into the class aster-42-6.

Translated by the author.
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