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GENERALIZED RIEMANN PROBLEM
ON THE DECAY OF A DISCONTINUITY
WITH ADDITIONAL CONDITIONS AT THE BOUNDARY
AND ITS APPLICATION FOR CONSTRUCTING
COMPUTATIONAL ALGORITHMS

Yu. I. Skalko and S. Yu. Gridnev UDC 517.95

Abstract. We construct an approximation of the fundamental solution of a problem for a hyperbolic
system of first-order linear differential equations with constant coefficients. We propose an algorithm
for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under
additional conditions at the boundaries, which allows one to reduce the problem of finding the values
of variables on both sides of the discontinuity surface of the initial data to the solution of a system
of algebraic equations. We construct a computational algorithm for an approximate solution of the
initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The
algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some
applied problems associated with oil production.
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elastic dynamics.

AMS Subject Classification: 35L40, 35L67, 35L45, 35L50

1. Statement of the problem. This work is devoted to the study of the generalized Riemann
problem on the decay of a discontinuity with additional conditions on the boundary. This mathematical
problem arose from attempts to solve a specific applied problem discussed below.

Numerous industrial experiments in oil fields show that the installation of a vibration source on the
surface and its prolonged operation for several months leads to a significant increase in oil recovery of
the oil reservoir; in some cases the effect reaches 40%. The mechanisms and processes leading to such
an increase in oil recovery remain unclear today. In particular, it is not clear how the energy of elastic
waves generated by a vibration source reaches significant depths (1 km or more) avoiding significant
scattering. A vibration source with a characteristic power of 30 kW and a contact patch with the
rock of the order of 1 m2 generates an elastic wave. If the rock is homogeneous, then the energy of
the vibration source is scattered over the hemisphere and at depths of the order of 1 km the energy
density of elastic waves decreases 106 times even in the absence of absorption in the rock. It is doubtful
that an elastic wave of such a low energy density will cause any significant processes in the oil-bearing
reservoir. Since the effect of increased oil recovery as a result of long-term operation of the surface
vibration source has been repeatedly recorded, it follows that under definite conditions, elastic waves
propagate in the geological formation avoiding significant scattering. We tried to use mathematical
methods to investigate the question of whether the presence of fractures in the geological rock, in which
the contacting parts can move relative to each other, lead to the fact that the elastic wave generated
by the vibration source does not scatter over the hemisphere, but propagates as a sufficiently narrow
beam so that even at significant depths its energy density remains significant in order to cause certain
physicochemical processes.
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The state of the geological rock, in which the elastic wave propagates, is described by the vector
field of displacement velocity and the stress tensor. Since the fracture may displace parts of the rock
relative to each other, when crossing the boundary, the components of the displacement velocity vector
and the stress tensor may have discontinuities. Of course, these discontinuities cannot be arbitrary,
but must satisfy certain conditions reflecting the physical conditions at the boundary of the contacting
media. Since parts of the geological rock can be displaced relative to each other only along the fracture,
the components of the displacement velocity vector directed along the normal to the boundary must
be continuous when crossing the boundary. Also, by Newton’s third law, the force acting from one
part of the rock to the other is equal and oppositely directed to the force acting from the second part
of the rock to the first; thus, the normal components of the stress tensor on both sides of the boundary
must be equal. If slipping is frictionless, then the tangential components of the stress tensor on both
sides of the boundary should be zero.

On the other hand, everywhere, except for the crack dividing parts of the rock, the geological
formation is continuous. Therefore, the displacement vector must be continuous everywhere (except
for the fracture). Also, Newton’s third law in any section leads to the continuity of the stress tensor.
Thus, everywhere, except for a fracture, the displacement vector and the stress tensor are continuous.

Based on the above, we consider the following setting of the Riemann problem on the decay of
a discontinuity. Find a solution of the Cauchy problem for the following system of first-order linear
differential equations with constant coefficients:

∂u(t,x)

∂t
+

N∑

i=1

Ai
∂u(t,x)

∂xi
= 0, x ∈ R

N ; (1)

the initial data

u(t = 0,x) = u0(x), (2)

are continuous everywhere except for the hyperplane Γ : x1 = 0. A solution must be continuous
everywhere except for the hyperplane Γ. Moreover, the following relations must be fulfilled:

Lu
(
t, x1 = −0, x2, . . . , xN

)
+ Pu

(
t, x1 = +0, x2, . . . , xN

)
= 0. (3)

These formulas are the so-called conjugation conditions, which relate the values of the variables on
both sides of the hyperplane Γ.

Following [5], we call this problem the generalized Riemann problem on the decay of a discontinuity
with conjugation conditions on the boundaries. The difference between the generalized and classical
Riemann problems is as follows: in the classical problem, the initial data are assumed to be constant
on both sides of the hyperplane, whereas in the generalized problem, the initial data can be arbitrary
smooth functions satisfying the conjugation conditions.

In the case of one spatial variable, many authors proposed various methods for solving the Riemann
problem (see [5–8]). In fact, all these methods are associated with the presence of characteristics
of hyperbolic systems. In the case of several spatial variables, methods based on the presence of
characteristics no longer work, and the Riemann problem is most often solved under the assumption
that near the discontinuity the solution is a plane wave moving along the normal to the discontinuity
surface (see [4–6]). It is clear that such an approach is not justified in all cases.

In this paper, we discuss the generalized Riemann problem on the decay of a discontinuity with
conjugation conditions on the boundaries for hyperbolic systems of first-order linear differential equa-
tions with an arbitrary number of spatial variables and propose an algorithm for constructing its
solution. This algorithm is based on the fundamental solution of the operator determining the prob-
lem. Therefore, in the following sections, we recall the basic concepts of the theory of generalized
vector-valued functions and construct an approximation of the fundamental solution of the operator
of the problem. The solution of the generalized Riemann problem constructed according to the method
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proposed serves as a basis of a computational algorithm for finding an approximate solution to the
initial-boundary-value problems examined in this paper.

2. Generalized vector-valued functions. In the further presentation, we will use the concepts
and statements of the theory of generalized functions (see, e.g., [1–3, 9]).

Introduce the space of test vector-valued functions S(RN ). Elements of this space areM -dimensional
vector-valued functions ϕ =

(
ϕ1, . . . , ϕM

)
whose components ϕ1(y), . . . , ϕM (y) belong to the space

S(RN ) consisting of functions of the class C∞(RN ) that decrease together with all their derivatives
faster than any degree of |y|−1 as |y| → ∞.

Definition 2.1. Generalized vector-valued functions f =
(
f1, . . . , fM

) ∈ S′(RN ) are linear continu-

ous functionals on the vector space of test functions S(RN ). A functional f acts on a test vector-valued
function ϕ =

(
ϕ1, . . . , ϕM

)
by the formula

(
f ,ϕ

)
=

(
f1, ϕ1

)
+ · · ·+ (

fM , ϕM

)
.

Definition 2.2. A generalized solution of the system of equations

∂u(t,x)

∂t
+

N∑

i=1

Ai
∂u(t,x)

∂xi
= f(t,x) (4)

is a generalized function u(t,x) ∈ S′(RN+1) satisfying this equation in the generalized sense: for an
arbitrary test function ϕ(t,x) ∈ S(RN+1), the following equality holds:

(
∂u

∂t
,ϕ

)
+

N∑

i=1

(
Ai

∂u

∂xi
,ϕ

)
= (f ,ϕ) ;

here Ai are the (M ×M)-matrices of the coefficients of the system (4).

In what follows, we assume that each of the all matrices Ai has a complete set of left eigenvectors
and, therefore, can be represented in the form

Ai = RiΛiΩi, (5)

where Λi is the diagonal matrix whose diagonal elements are the eigenvalues of the matrix Ai ar-
ranged in the nondescending order, Ωi is the matrix whose rows are left eigenvectors of the matrix Ai

corresponding to the eigenvalues Λi, and Ri = Ω−1
i is the matrix whose columns are right eigenvectors

of the matrix Ai.

Definition 2.3. A fundamental solution of the operator of the problem (4), or the Green matrix-
function is a generalized matrix-valued function G(t,x) ∈ S′(RN+1) satisfying the equation

∂G

∂t
+

N∑

i=1

Ai
∂G

∂xi
= Iδ(t,x), (6)

where I is the identity (M ×M)-matrix.

Definition 2.4. The convolution G ∗ f of a generalized matrix-valued function G = Gij ∈ S′ and a
generalized vector-valued function f = fj ∈ S′ is a generalized vector-valued function u = ui ∈ S′
such that

ui =
M∑

j=1

Gi,j ∗ fj,

where Gi,j ∗ fj is the convolution of Gi,j and fj considered as generalized functions from S′.
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Lemm 2.1. Let f(t,x) ∈ S′ be such that the convolution G ∗ f exists in S′. Then there exists a
solution of Eq. (4) in S′; it can be represented by the formula

u = G ∗ f . (7)

This solution is unique in the class of functions from S′ for which the convolution with G exists.

Proof. Using the formula of differentiating convolutions, we obtain

∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi
=

∂(G ∗ f)
∂t

+

N∑

i=1

Ai
∂(G ∗ f)

∂xi
=

(
∂G

∂t
+

N∑

i=1

Ai
∂G

∂xi

)
∗ f = δ(t,x) ∗ f = f .

Therefore, the formula (7) really gives a solution of Eq. (4). Prove the uniqueness of the solution of
Eq. (4) in the class of generalized functions from S′ for which the convolution with G exists in S′. It
suffices to verify that the corresponding homogeneous equation

∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi
= 0

has only trivial (zero) solution in this class. Indeed, we have

u = δ(t,x)I ∗ u =

(
∂G

∂t
+

N∑

i=1

Ai
∂G

∂xi

)
∗ u = G ∗

(
∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi

)
= 0. �

The following two lemmas will be needed below.

Lemm 2.2. Let u(x) be a locally integrable function in R
N . Then

θ(t)δ(x− at) ∗ u(x)δ(t) = θ(t)u(x− at).

Proof. By the definition of the convolution of generalized functions (see [9]), for an arbitrary test func-
tion ϕ(x, t) ∈ S(RN+1) and an arbitrary sequence of functions ηk(x,y, t, τ) ∈ S(R2N+2) converging
to 1 in R

2N+2, the following chain of equalities holds:
(
θ(t)δ(x− at) ∗ u(x)δ(t), ϕ(x, t)

)

def
= lim

k→∞

(
θ(t)δ(x− at)u(y)δ(τ), ηk(x,y, t, τ)ϕ(x + y, t+ τ)

)

= lim
k→∞

(
θ(t)u(y)δ(τ), ηk(at,y, t, τ)ϕ(at+ y, t+ τ)

)

= lim
k→∞

∫

Γ:τ=0

θ(t)u(y)ηk(at,y, t, 0)ϕ(at+ y, t) dΓ =

+∞∫

−∞
θ(t)u(y)ϕ(at+ y, t) dydt

=

+∞∫

−∞
θ(t)u(x− at)ϕ(x, t) dxdt =

(
θ(t)u(x− at), ϕ(x, t)

)
. �

Remark 2.1. Lemma 2.2 implies that the value of the convolution θ(t)δ(x − at) ∗ u(x)δ(t) at a
point (x, t) is equal to the value of the function u(x) at the point of intersection of the straight line
dx/dt = a passing through the point (x, t) with the hyperplane t = 0.

Lemm 2.3. Let v(t,x) be a locally integrable function in R
N+1 and v(t,x) = 0 for t ≤ 0. If a1 �= 0,

then

θ(t)δ(x− at) ∗ v(t,x)δ(x1) = 1

|a1|θ
(
x1
a1

)
v

(
t− x1

a1
, x− x1

a1
a

)
;
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if a1 = 0, then

θ(t)δ(x− at) ∗ v(t,x)δ(x1) = 0.

Proof. If a1 �= 0, then for an arbitrary test function ϕ(x, t) ∈ S(RN+1) and an arbitrary sequence of
functions ηk(x,y, t, τ) ∈ S(R2N+2) converging to 1 in R

2N+2, the following chain of equalities holds:
(
θ(t)δ

(
x− at

) ∗ v(t,x)δ(x1), ϕ(x, t)
)

. . .

def
= lim

k→∞

(
θ(t)δ(x − at)v(τ,y)δ(y1), ηk(x,y, t, τ)ϕ(x + y, t+ τ)

)

= lim
k→∞

(
θ(t)v(τ,y)δ(y1), ηk(at,y, t, τ)ϕ(at+ y, t+ τ)

)

=

∫

Γ:y1=0

θ(t′)v(τ ′,y)ϕ(at′ + y, t′ + τ ′) dy2 . . . dyN dt′ dτ ′

=
1

|a1|

+∞∫

−∞
θ

(
x1
a1

)
v

(
t− x1

a1
, x− x1

a1
a

)
ϕ(x, t) dx dt

=
1

|a1|θ
(
x1
a1

)
v

(
t− x1

a1
, x− x1

a1
a

)
, ϕ(x, t).

Thus, we have prove the lemma for a1 �= 0.
Now let v(t,x) = 0 for t ≤ 0.
If t > 0, x1 < 0, and a1 > 0, then θ(t)δ(x− at) ∗ v(t,x)δ(x1) = 0.
If t > 0, x1 < 0, and x1/t ≤ a1 < 0, then θ(t)δ(x− at) ∗ v(t,x)δ(x1) = 0.
Due to the continuity of the convolution for t > 0 and x1 < 0, we have

θ(t)δ(x1)δ(x2 − a2t) . . . δ(xN − aN t) ∗ v(t,x)δ(x1) = lim
a1→0

(
θ(t)δ(x− at) ∗ v(t,x)δ(x1)

)
= 0.

Similarly, for t > 0 and x1 > 0 we have

θ(t)δ(x1)δ(x2 − a2t) . . . δ(xN − aN t) ∗ v(t,x)δ(x1) = lim
a1→0

(
θ(t)δ(x− at) ∗ v(t,x)δ(x1)

)
= 0.

This implies the assertion for arbitrary a. �

Remark 2.2. We draw a straight line dx/dt = a through the point (t,x), t > 0. This line intersects
the hyperplane x1 = 0 at the time moment t∗ = t − x1/a1. If this moment lies outside the interval
0 ≤ t∗ ≤ t, then at the point (t,x) we have

θ(t)δ(x− at) ∗ θ(t)v(t,x)δ(x1) = 0.

3. Fundamental solution. Now we construct the fundamental solution of the operator of the
problem (4). Denote by V (t, ξ) = Fx[G] the Fourier transform G(t,x) with respect to the spatial
variables. We perform the Fourier transform of Eqs. (6) with respect to the spatial variable. Taking
into account the fact that Fx[G] = −iξjFx[G], for the generalized function V (t, ξ) we obtain the
equation

∂V

∂t
− i

N∑

j=1

ξjAjV = I δ(t). (8)

The solution of Eq. (8) has the form

V (t, ξ) = θ(t) exp

⎛

⎝i

N∑

j=1

ξjAjt

⎞

⎠ ,
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where θ(t) is the Heaviside function:

θ(t) =

{
1 for x > 0,

0 for x ≤ 0.

By the definition of the matrix exponent,

exp

⎛

⎝i

N∑

j=1

ξjAjt

⎞

⎠ =

N∏

j=1

exp
(
iξjAjt

)
+

∑

|α|≥2

t|α|Bα

N∏

j=1

(− iξj
)αj .

Here α =
(
α1, α2, . . . , αN

)
is an integer-valued vector with nonnegative components αj (multi-index),

|α| = α1+· · ·+αN , Bα are (M×M)-matrices, which are polynomials of the matrices Aj of degree |α|.
Taking into account (5), we obtain

exp
(
iξjAjt

)
= Rj exp

(
iξjΛjt

)
Ωj.

Therefore,

exp

⎛

⎝i

N∑

j=1

ξjAjt

⎞

⎠ =

N∏

j=1

Rj exp (iξjΛjt)Ωj +
∑

|α|≥2

t|α|Bα

N∏

j=1

(− iξj
)αj .

Performing the inverse Fourier transform, we obtain the Green matrix-function:

G(t,x) = θ(t)

⎛

⎝
N∏

j=1

Rjδ
(
Ixj −Λjt

)
Ωj +

∑

|α|≥2

t|α|BαD
αδ(x)

⎞

⎠ ;

here δ(Ixj −Λjt) are diagonal matrices whose kth rows contain the generalized function δ(xj − λk
j t),

λk
j is the kth eigenvalue of the matrix Aj, D

α =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαN
N

is the differentiation operator

with respect to the spatial variables.
Consider the factor Rjδ(Ixj − Λjt)Ωj . Denote by Dk the square (M × M)-matrix all of whose

elements are equal to 0 except for the kth element of the principal diagonal, which is equal to 1. Then

Rjδ(Ixj −Λjt)Ωj =

M∑

k=1

RjD
kΩjδ(xj − λk

j t) =

M∑

k=1

Ck
j δ(xj − λk

j t).

Therefore,

N∏

j=1

Rjδ(Ixj−Λjt)Ωj =
M∑

k1=1

M∑

k2=1

· · ·
M∑

kN=1

Ck1
1 Ck2

2 . . .CkN
N δ(x1−λk1

1 t)δ(x2−λk2
2 t) . . . δ(xN−λkN

N t).

Consider the multi-index k = (k1, k2, . . . , kN ) with integer-valued components kj = 1, . . . ,M and

introduce the notation Ck = Ck1
1 Ck2

2 . . .CkN
N and λk =

(
λk1
1 , λk2

2 , . . . , λkN
N

)
. We have

N∏

j=1

Rjδ(Ixj −Λjt)Ωj =
∑

k

Ckδ(x− λkt);

then

G(t,x) = θ(t)
∑

k

Ckδ
(
x− λkt

)
+O(t2).

In the case of two spatial variables

G(t,x) = θ(t)
∑

k

Ck1
1 Ck2

2 δ(x− λkt) +
θ(t)

2
t2
(
A2A1 −A1A2

) ∂2δ(x)

∂x1∂x2
+O(t3). (9)
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Changing the notation of the spatial variables, we obtain

G(t,x) = θ(t)
∑

k

Ck2
2 Ck1

1 δ(x− λkt)− θ(t)

2
t2
(
A2A1 −A1A2

) ∂2δ(x)

∂x1∂x2
+O(t3). (10)

Comparing (9) and (10), we have

G(t,x) = θ(t)
∑

k

C̄
k
δ(x− λkt) +O(t3);

here we used the notation

C̄
k
=

1

2

(
Ck1

1 Ck2
2 +Ck2

2 Ck1
1

)
.

Note that
M∑

kj=1

Ckj = Rj

⎛

⎝
M∑

kj=1

Dkj

⎞

⎠Ωj = RjIΩj = I (11)

since Ckj = RjD
kjΩj .

4. Riemann problem. Let u(t,x) be a solution of the Riemann problem (1)–(3). Introduce the
notation

v(t,x) = θ(t)
(
u
(
t, x1 = +0, x2, . . . , xN

)− u
(
t, x1 = −0, x2, . . . , xN

))
.

We show that the function u(t,x) considered as a generalized function from S′ satisfies the equation

∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi
= u0δ(t) +A1vδ(x1). (12)

Indeed, for all ϕ(t,x) ∈ S we have the following chain of equalities:

(
∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi
, ϕ

)
= −

∫ (
∂ϕT

∂t
u+

N∑

i=1

∂ϕT

∂xi
Aiu

)
dt dx

= · · · =
∫ (

ϕT

(
∂u

∂t
+

N∑

i=1

Ai
∂u

∂xi

))
dt dx+

∫ (
ϕT (0,x)u(0,x)

)
dx+

∫

Γ

(
ϕTA1v

)
dt dΓ,

which implies Eq. (12).
A solution of Eq. (12) can be represented in the convolution form

u = G ∗ u0δ(t) +G ∗A1vδ(x1).

Due to Lemmas 2.2 and 2.3, for points x = (x1, x2, . . . , xN ) lying in the left half-plane (x1 ≤ 0), we
have with accuracy O(t2)

u(t, x1, x2, . . . , xN ) =
∑

k

Cku0(x− λkt)−
∑

k: x1>λ
k1
− t

CkA1

λk1
v
(
t− x1

λk1
, x− x1

λk1
λk

)
. (13)

Passing in (13) to the limit as x1 → −0, we obtain

u(t, x1 = −0, x2, . . . , xN ) =
∑

k

Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
−

∑

k: λk1<0

CkA1

λk1
v. (14)

Taking into account (11), we have
∑

k: λk1<0

1

λk1
CkA1 =

∑

k1: λk1<0

1

λk1
Ck1A1.
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Since A1 = R1Λ1Ω1 and Ck1 = R1D
k1Ω1, we have (1/λk1)Ck1A1 = Ck1 . Equality (14) takes the

form

u(t, x1 = −0, x2, . . . , xN ) =
∑

k

Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
−

∑

k1: λk1<0

Ck1v. (15)

Similarly, for points x = (x1, x2, . . . , xN ) lying in the right half-plane (x1 ≥ 0), we have with accu-
racy O(t2)

u(t, x1, x2, . . . , xN ) =
∑

k

Cku0(x− λkt) +
∑

k: x1<λ
k1
− t

CkA1

λk1
v
(
t− x1

λk1
, x− x1

λk1
λk

)
. (16)

Similarly to (15), passing in (16) to the limit as x1 → +0, we obtain

u(t, x1 = +0, x2, . . . , xN ) =
∑

k

Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
+

∑

k1: λk1>0

Ck1v. (17)

Substituting the expressions (15) and (17) into the conjugation conditions (3), we obtain a system for
the jump of the variables of v(t,x) when passing through the hyperplane Γ defined by the equation
x1 = 0: ∑

k1: λk1>0

PCk1v −
∑

k1: λk1<0

LCk1v = bk. (18)

Here

bk = −
∑

k

PCku0

(
+ 0− λk1t, x2 − λk2t, . . . , xN − λkN t

)

−
∑

k

LCku0

(
− 0− λk1t, x2 − λk2t, . . . , xN − λkN t

)
.

Subtracting Eq. (15) from Eq. (17), we obtain the following system for the jump of the variables
v(t,x): ∑

k1: λk1=0

Ck1v =
∑

k: λk1=0

Ckdk. (19)

Here

dk = u0

(
+ 0, x2 − λk2t, . . . , xN − λkN t

)
− u0

(
− 0, x2 − λk2t, . . . , xN − λkN t

)
.

The number of linearly independent equations in the system (19) is equal to the multiplicity of the
zero eigenvalue of the matrix A1. We multiply Eq. (19) by left eigenvectors (rows) of the matrix A1

corresponding to the zero eigenvalue:

lk1v =
∑

k: λk1=0

lk1Ckdk, k1 : λ
k1 = 0. (20)

Combining Eqs. (18) and (20), we obtain a system of linear algebraic equations for the jump of the
variables v(t,x) when passing through the hyperplane Γ : x1 = 0:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k1: λk1>0

PCk1v −
∑

k1: λk1<0

LCk1v = bk,

lk1v =
∑

k: λk1=0

lk1Ckdk, k1 : λ
k1 = 0.

(21)

A solution of the generalized Riemann problem on the decay of the discontinuity with the conjugation
condition on the boundary is simple-valued if and only if the system (21) has a unique solution. Solving
the system (21), we find v(t,x).

505



The formulas (13) and (16) together with the formulas for v(t,x) give a complete solution of the
generalized Riemann problem on the decay of the discontinuity in the case of several spatial variables.

The approximate solution of the generalized Riemann problem with additional conjugation condi-
tions on the discontinuity constructed above is an exact solution in the case of one spatial variable.
Also, this solution is exact in the case of several spatial variables if the initial data are linear on both
sides of the hyperplane Γ : x1 = 0.

5. Boundary conditions. Now we consider another problem, which will be used below for con-
structing a calculational algorithm: In the half-space x1 ≤ 0, find a solution of the initial-boundary-
value problem for the system of first-order linear differential equations with constant coefficients (1)
with the initial data (2). A solution must be continuous in the half-space x1 ≤ 0 and satisfy the
following boundary conditions on the hyperplane Γ : x1 = 0:

Lu
(
t, x1 = −0, x2, . . . , xN

)
= 0. (22)

We assume that the initial data satisfy the boundary conditions. This problem is called the generalized
Riemann problem with boundary conditions.

Let u(t,x) be a solution of this problem. We assume that the function u(t,x) is equal to zero
for t < 0 and t ≥ 0 and x1 > 0. Also, we set u0(x) = 0 for x1 > 0. Introduce the notation
v(t,x) = −θ(t)u

(
t, x1 = −0, x2, . . . , xN

)
.

As was shown above, the function u(t,x) considered as a generalized function from S′ satisfies
Eq. (12). A solution of this equation is defined by the formula (13). The vector v(t,x) satisfies Eqs. (15)
with accuracy O(t2). We can rewrite Eqs. (15) as follows:

−
∑

k1: λk1≥0

Ck1v =
∑

k: λk1≥0

Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
. (23)

The number of linearly independent equations in the system (23) is equal ti the number of linearly
independent eigenvectors of the matrix A1 corresponding to nonnegative eigenvalues. We multiply
Eq. (23) by left row eigenvectors of the matrix A1 corresponding to nonnegative eigenvalues:

−lk1v =
∑

k: λk1≥0

lk1Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
, k1 : λ

k1 ≥ 0. (24)

Combining Eqs. (24) and (22), we obtain the following system of linear algebraic equations for the
values of the solution of the problem on the boundary Γ:

⎧
⎪⎨

⎪⎩

−lk1v =
∑

k: λk1≥0

lk1Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
, k1 : λ

k1 ≥ 0,

Lv = 0.

(25)

We solve the system (25) and define the value of v(t,x) for t > 0 on the hyperplane x1 = 0. The
formulas (13) together with the formulas for v(t,x) yield a complete solution of the generalized Rie-
mann problem with boundary conditions for the case of several spatial variables with accuracy O(t2).
Again, if the initial data u0(x) are linear functions, then the solution obtained is an exact solution of
the problem.

In particular, if the boundary conditions have the form
∑

k: λ−
k1

<0

Ckv = 0

(this means that all waves pass through the boundary without reflection), then these conditions are
said to be “transparent.” In this case, premultiplying the boundary conditions by left row eigenvectors
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of the matrix A1, we arrive at the following form of the system (25):
⎧
⎪⎨

⎪⎩

−lk1v =
∑

k: λk1≥0

lk1Cku0

(
− λk1t, x2 − λk2t, . . . , xN − λkN t

)
, k1 : λ

k1 ≥ 0,

lk1v = 0, k1 : λ
k1 < 0.

(26)

Since the system (1) is hyperbolic and the matrix A1 possesses a complete set of linearly independent
left eigenvectors, the system (26) is solvable, and the generalized Riemann problem with transparent
boundary conditions has a unique solution.

6. Propagation of elastic waves in block-fractured media. We demonstrate the construction
of a calculational algorithm based on the results presented above by the problem on propagation of
elastic waves in an inhomogeneous block-fractured medium.

6.1. Mathematical model. According to [6], we write the system of equations that describe the prop-
agation of elastic waves in the case of two spatial variables as follows:

∂

∂t
σ11 − (λ+ 2μ)

∂

∂x1
v1 − λ

∂

∂x2
v2 = 0,

∂

∂t
σ22 − λ

∂

∂x1
v1 − (λ+ 2μ)

∂

∂x2
v2 = 0,

∂

∂t
σ12 − μ

∂

∂x1
v2 − μ

∂

∂x2
v1 = 0,

ρ
∂

∂t
v1 − ∂

∂x1
σ11 − ∂

∂x2
σ12 = 0,

ρ
∂

∂t
v2 − ∂

∂x1
σ12 − ∂

∂x2
σ22 = 0,

(27)

where λ and μ are the Lamé coefficients, ρ is the mass density of the medium, σ11, σ22, and σ12 are the
components of the stress tensor, and v1 and v2 are the components of the vector of the displacement
rate. Introducing the vector of variables u = (σ11, σ22, σ12, v1, v2)

T and the matrices

A1 =

⎛

⎜⎜⎜⎜⎝

0 0 0 −(λ+ 2μ) 0
0 0 0 −λ 0
0 0 0 0 −μ

−1/ρ 0 0 0 0
0 0 −1/ρ 0 0

⎞

⎟⎟⎟⎟⎠
, A2 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 −λ
0 0 0 0 −(λ+ 2μ)
0 0 0 −μ 0
0 0 0 −1/ρ 0
0 −1/ρ 0 0 0

⎞

⎟⎟⎟⎟⎠
,

we rewrite this system in the form (1).
The system (27) is hyperbolic and the matrices A1 and A2 possess complete sets of linearly inde-

pendent eigenvectors and can be represented in the form (5).
In what follows, all dimensional values are specified SI units. Consider the following problem: In

the domain

Ω =
[
− 30 < x1 < 30, −600 < x2 < 0

]
,

find a solution of the initial-boundary-value problem for the system (27). Equations (27) must be
fulfilled everywhere in Ω except for inner boundaries Γγ , γ = 1, 2, determined by the conditions
Γ1 : x1 = −15 and Γ2 : x1 = 15. On these boundaries, we impose the so-called “conditions of
frictionless slip”: when passing through these boundaries, the normal components of the displacement
vector are continuous, the normal components of the forces from different sides of the boundary have
equal magnitudes and opposite directions, and the tangential components of the forces acting on both
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sides of the boundary are equal to zero:

v1
(
t,x ∈ Γ−

γ

)− v1
(
t,x ∈ Γ+

γ

)
= 0,

σ11
(
t,x ∈ Γ−

γ

)− σ11
(
t,x ∈ Γ+

γ

)
= 0,

σ12
(
t,x ∈ Γ−

γ

)
= 0,

σ12
(
t,x ∈ Γ+

γ

)
= 0.

(28)

On the outer boundaries x1 = −30, x2 = −600, and x1 = 30, the transparent boundary conditions
are imposed.

On the boundary x2 = 0, a source of vibration operates; it acts on the geological medium with force
Fj sinωt, j = 1, 2, which is distributed with the density Pj(x1) sinωt, so that

∫
Pj dx1 = Fj .

Corresponding to third Newton’s law, at all points of this boundary, the following conditions hold:

σ12 = −P1 sinωt, σ22 = −P2 sinωt. (29)

6.2. Numerical algorithm. The domain Ω is split by inner boundaries into the subdomains

Ω1 =
[
− 30 < x1 < −15, −600 < x2 < 0

]
,

Ω2 =
[
− 15 < x1 < 15, −600 < x2 < 0

]
,

Ω3 =
[
15 < x1 < 30, −600 < x2 < 0

]
.

In each of the subdomains, we construct a rectangular grid with sides parallel to the coordinate axes so
that the nodes lying on the inner boundaries coincide for both adjacent subdomains. We use uniform
grids for each of the coordinates; denote by hj , j = 1, 2, the grid steps in the corresponding dimensions.
Let p1, p2, and P3 be the numbers of the grid nodes in the first, second, and third subdomains Ω1,
Ω2, and Ω3, respectively. Below, we use the common notation p if this does not lead to confusion and
assume that this index takes the specific values in each of the subdomains.

We assume that the force generated by the vibration source is directed vertically, i.e., P1(x1) = 0,
and the distribution of P2(x1) is a piecewise, linear function, which vanish at all nodes of the boundary
x2 = 0 except for the node with the coordinates x1 = 0 and x2 = 0. At this node, P1 is equal to F2/h1.

Introduce a uniform grid in time tm = mτ , m = 0 : 1 : M . The grid step τ must satisfy the condition

τ ≤ min

(
min
k

h1

λk
1

, min
k

h2

λk
2

)
. (30)

In each of the subdomains, we construct a system of basic polynomials Hp(x), each of which is equal
to 1 at the node corresponding to the index p, to 0 at all other nodes, and is a bilinear (i.e., linear
with respect to each variable) function in each cell of the grid.

We approximate the solution in each of the subdomains by the linear combination

u(t,x) =
∑

p

Hp(x)u
p(t).

Then the construction of an approximate solution of the initial-boundary problem for the system (27)
with the conditions (28) on the inner boundaries on each temporal layer is reduced to the search for
values at the nodes up(tm+1) if the values on the previous temporal layers up(tm) are known.

For inner nodes of the subdomains, the values on the subsequent temporal layer are defined by the
formulas

u
(
tm+1,x

)
=

∑

k

Cku
(
tm,x− λkτ

)
. (31)
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The right-hand side of the formula (31) does not involves terms related to the conditions on the inner
and outer boundaries. These terms are equal to 0 due to Remark 2.2. Indeed, by the condition (30),

the straight line
dx

dt
= λ passing through the point (tm+1 > 0,x) intersects the inner and outer

boundaries at the moment t∗ < tm.
For nodes lying on the outer boundaries, where the “transparent” boundary conditions are imposed,

the values on the subsequent temporal layer can be calculated as a solution of the Riemann problem
with the “transparent” boundary conditions (26).

For nodes on the outer boundaries, where the “free” boundary conditions are imposed, the values
on the subsequent temporal node can be calculated as a solution of the Riemann problem with the
boundary conditions (25). As conditions on the boundary, we take Eqs. (29).

Based on the above, we constructed a calculational algorithm and implemented it as a MATLAB
software. The results of calculations confirm the high efficiency of this algorithm. Comparing with
other computational algorithms, in particular, with the discontinuous Galerkin method, shows that
for a given required accuracy, the computation time and the necessary memory requirements are
significantly less. Since the solution on the subsequent temporal layer is calculated independently at
each grid node, this algorithm admits parallelization.

The results of calculations confirm the hypothesis that the presence of fractures in the geological
rock, where the contacting parts move relative to each other, can lead to the fact that elastic waves
generated by a vibration source does not scatter over the hemisphere, but propagates as a narrow
beam so that at significant depths, its energy density remains significant in order to cause various
physicochemical processes. Inner boundaries (fractures) serves as walls of waveguides. Elastic waves
practically does not pass through them, and the perturbation reaches considerable depths without
scattering. These and other results of computational experiments will be described in detail in subse-
quent publications.

7. Conclusion. In this paper, for first-order hyperbolic systems of linear differential equations with
constant coefficients, we constructed an approximate solution of the generalized Riemann problem
with conjugation conditions on the discontinuities. Also, we obtained an approximate solution of the
generalized Riemann problem with boundary conditions. For this purpose, a fundamental solution of
the operator involved in the problem was constructed. This, in turn, made it possible to reduce the
Riemann problem to the solution of a system of algebraic equations whose right-hand side depends
on the values of the variables at the initial moment of time at a finite number of points.

Based on these solutions of the Riemann problem, we constructed and implemented a computa-
tional algorithm for finding a solution to the initial-boundary-value problem for first-order hyperbolic
systems of linear differential equations with constant coefficients. In this case, the statement of the
problem admits the existence of inner boundaries, on which solutions can have discontinuities and
some conditions connecting the values of the variables on both sides of these boundaries must be
fulfilled.

The computational algorithm developed was applied to the study of the propagation of elastic
waves generated by a periodically operating vibration source in block-fractured geological media. The
existence of fractures was taken into account the model as the presence of inner boundaries on which
the “conditions of frictionless slip” are satisfied. Numerical experiments confirmed the high efficiency
of this computational algorithm for the study of practical applied problems.
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