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ON ONE CLASS OF SINGULAR NOWHERE MONOTONE FUNCTIONS

M. V. Pratsiovytyi1;2, Ya. V. Goncharenko3,
I. M. Lysenko4, and O. V. Svynchuk5 UDC 517.5+511.72

We construct a continuous nowhere monotone function that depends on infinitely many parameters such
that the derivative of this function is equal to zero almost everywhere (in a sense of the Lebesgue mea-
sure). It is shown that this function is well-defined and nowhere monotone. Its differential properties are
analyzed, the massiveness of the level sets is studied, and the set of maxima and minima of the function
and its structural and variational properties are determined.

1. Introduction

It is known that each function of real variable of bounded variation is either a jump function, or an abso-
lutely continuous function (improper integral of its derivative), or a singular function (whose derivative is equal
to zero almost everywhere in a sense of Lebesgue measure), or a linear combination of the indicated functions (a
composition of functions of the first three types).

Singular functions form a family of poorly studied functions of pure Lebesgue type [1, 2]. Significant interest
in the investigation of these functions (more precisely, monotone singular functions) appeared in the probability
theory [3], namely, in the distribution theory, despite the fact that just these function were completely ignored by
these theories in the past [4]. In this field, singular functions are regarded as probability distribution functions [3].

The theory of fractals and the ideas of scaling (generalizations of self-similarity and self-affinity) simulated
the creation of efficient methods for the theoretical (analytic) development of the theory of singular functions
(statement, analysis, interpretation, and applications). Another class of poorly studied functions is formed by
continuous nowhere monotone functions [5, 6]. The fact of existence of singular nowhere monotone functions is
a nontrivial result and, moreover, the determination of massiveness of this class of functions in different spaces
requires special investigations. The structure of functions from this class was determined in [7]. Later, it was
discovered that several works dealing with these functions have been published earlier [8]. In the present paper, we
construct a continual family of these functions and study their properties.

2. Basic Notions and Facts

In what follows, 2 < s is a fixed natural number, A
s

⌘ f0; 1; : : : ; s � 1g is an alphabet (collection of digits),
and L ⌘ A ⇥ A ⇥ A ⇥ : : : is the space of sequences of elements of the alphabet.
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In order to define the main object of our investigations, we use an s-symbol polybase Q

⇤
s

-representation
specified by an infinite stochastic matrixQ⇤

s

D kq
ik

k; where i D 0; s � 1; k 2 N; with the following properties:

(i) q

ik

> 0; q

0k

C q

1k

C : : :C q

s�1;k

D 1; k 2 N I

(ii)
Y1

kD1

max
i

fq
ik

g D 0:

It is based on the following statement:

Theorem 1 [9]. For any x 2 Œ0I 1ç; there exist at most two sequences .˛
n

/ from the space L such that the
equality

x D ˇ

˛11
C

1X

kD2

0

@
ˇ

˛kk

k�1Y

jD1

q

˛j j

1

A ⌘ Å

Q

⇤
s

˛1˛2:::˛k :::

holds for ˇ
ik

⌘ q

0k

C : : :C q

i�1;k

:

The last symbolic notationÅQ

⇤
s

˛1˛2:::˛k :::
is called theQ⇤

s

-representation of a number x:Moreover, ˛
n

D ˛

n

.x/

is called the nth digit of this representation.
The properties of Q⇤

s

-representation of numbers and its geometry were well studied in [10]. A countable set
of numbers has, in addition, two periodic representations

Å

Q

⇤
s

c1:::cm.0/

and Å

Q

⇤
s

c1:::cm�1Œcm�1ç.s�1/

:

These numbers are calledQ⇤
s

-binary, whereas the other numbers admit a uniqueQ⇤
s

-representation and are called
Q

⇤
s

-unary.
AQ

⇤
s

-cylinder of rank m with base c
1

c

2

:::c

m

is defined as the set ÅQ

⇤
s

c1c2:::cm
of all numbers from the segment

Œ0I 1ç whoseQ⇤
s

-representations are such that ˛
k

.x/ D c

k

; k D 1;m:

A Q

⇤
s

-cylinder ÅQ

⇤
s

c1c2:::cm
is a segment with the ends ÅQ

⇤
s

c1:::cm.0/

and Å

Q

⇤
s

c1:::cm.s�1/

whose length is given by
the formula

ˇ̌
ˇÅQ

⇤
s

c1c2:::cm

ˇ̌
ˇ D

mY

iD1

q

ci i
:

It is clear that ÅQ

⇤
s

c1:::cmc

⇢ Å

Q

⇤
s

c1:::cm
:

For any sequence .c
n

/ 2 L; the following equality is true:

1\

mD1

Å

Q

⇤
s

c1c2:::cm
D Å

Q

⇤
s

c1c2:::cm:::

:

If q
ik

D q

i

D const for any k 2 N; i 2 A

s

; then a Q⇤
s

-representation is called a Q
s

-representation. For

q

i

D 1

s

; i D 0; s � 1;

aQ
s

-representation turns into the classical s-ary representation of numbers.
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It is known [11] that the setE D EŒQ

s

I q
0

; : : : ; q

s�1

ç of numbers x 2 Œ0I 1ç such that all digits of the alphabet
A

s

are used in theirQ
s

-representations and, moreover, the digit i is encountered with a frequency

⌫

i

.x/ ⌘ lim
k!1

N

i

.x; k/

k

D q

i

;

where N
i

.x; k/ is the number of digits i among ˛

1

.x/; ˛

2

.x/; : : : ; ˛

k

.x/; is a set of full Lebesgue measure.

3. Object of Investigations

Assume that a given matrix G⇤
s

⌘ kg
ik

k; i 2 A

s

; k 2 N; has the following properties:

(i) jg
ik

j < 1; g

0k

C g

1

C : : :C g

Œs�1çk

D 1;

(ii) ı

0k

⌘ 0; 0 < ı

ik

⌘
X

i�1

jD0

g

jk

< 1; i D 1; s � 1; ı

sk

⌘ 1;

(iii)
Y1

kD1

g

ikk
D 0 for any sequence .i

k

/ 2 L:

Conditions (i)–(iii) imposed on the matrix G⇤
s

D kg
ik

k are called initial.
Note that, for any m 2 N; the matrix G

⇤
s

.m/ ⌘ kg
ik

k; where 0  i < s; m  k 2 N; satisfies all initial
conditions.

Lemma 1. For any i 2 A

s

nf0g and m 2 N; the equality

ı

i�1;m

C g

i�1;m

2

4
ı

s�1;mC1

C
1X

kD2

0

@
ı

s�1;mCk

k�1Y

jD1

g

s�1;mCj

1

A

3

5 D ı

i;m

(1)

is true.

Proof. We now show that the difference between the right- and left-hand sides of equality (1) is equal to 0: To
this end, we note that 1� ı

s�1;mCj

D g

s�1;mCj

and consider the differences obtained as a result of term-by-term
transfer of the left-hand side into the right-hand side:

ı

i;m

� ı

i�1;m

D g

i�1;m

;

g

i�1;m

� ı

s�1;mC1

g

i�1;m

D g

i�1;m

.1 � ı

s�1;mC1

/ D g

i�1;m

g

s�1;mC1

;

g

i�1;m

g

s�1;mC1

� ı

s�1;mC2

g

i�1;m

g

s�1;mC1

D g

i�1;m

q

s�1;mC1

q

s�1;mC2

;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

g

i�1;m

k�1Y

jD1

q

s�1;mCj

� ı

s�1;mCkC1

q

i�1;m

k�1Y

jD1

g

s�1;mCj

D g

i�1;m

kY

jD1

g

s�1;mCj

:

In view of the fact that the last product tends to 0 as k ! 1 (this is one of the initial conditions for the matrix
kg

ik

k), we can prove equality (1).
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Corollary 1. The equality

ı

s�1;mC1

C
1X

kD2

0

@
ı

s�1;mCk

k�1Y

jD1

g

s�1;mCj

1

A D 1

is true.

Definition 1. The function f is defined by the equality

f

⇣
x D Å

Q

⇤
s

˛1˛2:::˛n:::

⌘
⌘ ı

˛11
C

1X

kD2

0

@
ı

˛kk

k�1Y

jD1

g

˛j j

1

A ⌘ Å

G

⇤
s

˛1˛2:::˛n:::
: (2)

Remark 1. A similar function was considered in [12] but under the additional condition for the matrix kg
ik

k;
which yields property (ii). The elimination of this condition requires the revision of the main steps of substantiation
of the well-posedness of definition of the functions, etc.

Theorem 2. The definition of the function f by equality (2) is well-posed, the function is continuous on the
segment Œ0I 1ç; and its range coincides with the segment Œ0I 1ç:

Proof. To check the well-posedness of the definition of a function, it is sufficient to show that the expression
specifying the function gives identical values for different representations of Q⇤

s

-binary numbers, i.e.,

f

⇣
Å

Q

⇤
s

c1:::cm.0/

⌘
D f

⇣
Å

Q

⇤
s

c1:::cm�1Œcm�1ç.s�1/

⌘
;

which is a consequence of the previous lemma and the assertion that series (2) is convergent for any sequence
.˛

n

/ 2 L:

It is clear that

f .0/ D f

⇣
Å

Q

⇤
s

.0/

⌘
D 0 and f .1/ D

⇣
Å

Q

⇤
s

.s�1/

⌘
D 1:

We represent the function f .x/ in the form

f .x/ D S

m

.x/C

0

@
mY

jD1

g

˛j .x/j

1

A

0

@
ı

˛mC1.x/ŒmC1ç

C
1X

kDmC2

0

@
ı

˛k.x/k

k�1Y

jDmC1

g

˛j .x/j

1

A

1

A
;

where

S

m

.x/ D ı

˛1.x/1
C

mX

kD1

0

@
ı

˛k.x/k

k�1Y

jD1

g

˛j .x/j

1

A

is a partial sum of series (2). By induction, we can prove that 0  S

m

< 1 for anym 2 N and a collection of digits
.˛

1

; ˛

2

; : : : ; ˛

m

/:

For m D 1; it is clear that S
1

D ı

˛11
2 Œ0; 1/ according to the conditions imposed on the matrix kg

ik

kI
moreover, S

1

D 0 only in the case where ˛
1

D 0:
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Consider S
2

D ı

˛11
C ı

˛22
g

˛11
: If ˛

1

D 0; then

S

2

D ı

01

C ı

˛22
g

01

D ı

˛22
g

01

and

0 < S

2

D ı

˛22
g

01

< ı

˛22
< 1:

Let ˛
1

> 0: If g
˛11

> 0; then

0  ı

˛11
< S

2

D ı

˛11
C ı

˛22
g

˛11
< ı

˛11
C g

˛11
D ı

Œ˛1C1ç1

< 1:

Further, if g
˛11

< 0; then

0  ı

Œ˛1C1ç1

D ı

˛11
C g

˛11
< S

2

D ı

˛11
C ı

˛22
g

˛11
< ı

˛11
< 1:

Thus, 0  S

2

< 1:

We now assume that 0  S

k

< 1 for any sequence .˛
k

/ 2 L and consider S
kC1

S

kC1

D ı

˛11
C g

˛11

0

@
S

0
k�1

C ı

˛kC1ŒkC1ç

kY

jD2

g

˛j j

1

A D ı

˛11
C g

˛11
S

00
k

;

where S 0
k

and S 00
k

are partial sums of series (2). Since, by assumption, 0  S

00
k

< 1; we conclude that

0  ı

˛11
< S

kC1

< ı

˛11
C g

˛11
D ı

Œ˛1C1ç1

< 1

for g
˛1

> 0 and

0  ı

Œ˛1C1ç1

D ı

˛11
C g

˛11
< S

kC1

< ı

˛11
< 1

for g
˛1

< 0:

Hence, 0  S

kC1

< 1 for any sequence .˛
n

/:

Thus, for any x 2 Œ0; 1ç and natural m; we get 0  S

m

< 1 and, therefore,

0  f .x/ D lim
m!1S

m

 1:

We now prove the continuity of the function. Let x
0

be an arbitrary Q

⇤
2

-unary point of the interval .0I 1/: If
x ¤ x

0

; then there exists m 2 N such that ˛
m

.x/ ¤ ˛

n

.x

0

/ but ˛
i

.x/ ¤ ˛

i

.x

0

/ for i < m: Moreover, the fact
that x ! x

0

is equivalent to m ! 1: Consider the modulus of the difference

jf .x/ � f .x

0

/j D
ˇ̌
ˇ̌
ˇ

m�1Y

iD1

g

˛i .x0/i

ˇ̌
ˇ̌
ˇ jM j;

M D ı

˛m.x/m

� ı

˛m.x0/m
C

1X

kDmC1

0

@
ı

˛k.x/k

k�1Y

jDmC1

g

˛j .x/j

1

A �
1X

kDmC1

0

@
ı

˛k.x0/k

k�1Y

jDmC1

g

˛j .x0/j

1

A
:
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Since jM j is the number that does not exceed 1 (as the modulus of the difference of numbers from Œ0I 1ç/ and the
first factor approaches zero as m ! 1; we conclude that

jf .x/ � f .x

0

/j ! 0 .x ! x

0

/:

This implies that the function f is continuous at the point x
0

:

To prove the continuity of the function at the Q⇤
s

-binary point x
0

; we can use the same reasoning. However,
in order to establish the left continuity of the function, it suffices to consider the representation of the number x

0

with period .s � 1/: At the same time, to prove the right continuity of the function, it is sufficient to consider the
representation of the number x

0

with period .0/:
Theorem 2 is proved.

4. Properties of Monotonicity and Extrema of the Function

Lemma 2. The increment

�

f

⇣
Å

Q

⇤
s

c1c2:::cm

⌘
⌘ f

⇣
Å

Q

⇤
s

c1c2:::cm.s�1/

⌘
� f

⇣
Å

Q

⇤
s

c1c2:::cm.0/

⌘

of the function f on the cylinder ÅQ

⇤
s

c1c2:::cm
is given by the formula

�

f

⇣
Å

Q

⇤
s

c1c2:::cm

⌘
D

mY

iD1

g

ci i
: (3)

Proof. We represent this increment in the form

�

f

⇣
Å

Q

⇤
s

c1c2:::cm

⌘
D
 

mY

iD1

g

ci i

!2

4
ı

s�1;mC1

C
1X

kD2

0

@
ı

s�1;mCk

k�1Y

jD1

g

s�1;mCj

1

A

3

5
:

By Lemma 1, the expression in the square brackets has the form

ı

s;m

� ı

s�1;m

g

s�1;m

D 1 � ı

s�1;m

g

s�1;m

D 1:

Hence, equality (3) is true.

Theorem 3. The function f is:

(i) constant on the cylinder ÅQ

⇤
s

c1c2:::cm
if and only if there exists g

ckk
D 0 for some k 6 mI

(ii) nondecreasing if the matrix kg
ik

k does not have negative elements and, moreover, strictly increasing if
all elements of the matrix are positive;

(iii) nowhere monotone if the matrix kg
ik

k does not have zeros and there are negative numbers in the infinite
number of columns.
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Proof. (i) If g
ckk

D 0; where k  m; then

mY

iD1

g

ci i
D 0:

Hence, for any x 2 Å

Q

⇤
s

c1c2:::cm
; we find

f .x/ D ı

c11
C

k�1X

iD1

0

@
ı

ci i

i�1Y

jD1

g

cj j

1

A
:

Now let f .x/ D const for any x 2 Å

Q

⇤
s

c1c2:::cm
: Then the equality

f

⇣
Å

Q

⇤
s

c1c2:::cm1.0/

⌘
D f

⇣
Å

Q

⇤
s

c1c2:::cm.0/

⌘

is true and, therefore,

g

0;mC1

mY

iD1

g

ci i
D 0;

i.e., g
ckk

D 0 for some k  m because g
0;mC1

¤ 0: Assertion (i) of the theorem is proved.

(ii) Let g
ik

> 0 for all i 2 A

s

; k 2 N: Then the expression for the value of the function is a polybase s-
symbolic representation generated by the matrix G

⇤
s

: Hence, in this case, Assertion (ii) of the theorem is evident.
In other words, it follows from Assertion (i) and the previous lemma because the increments of the function on all
cylinders are nonnegative.

(iii) To prove the nowhere monotonicity of the function under the imposed conditions, it suffices to show that
it is not monotone on any cylinder. To this end, we consider an arbitrary Q

⇤
s

-cylinder ÅQ

⇤
s

c1:::cm
:

Since the matrix kg
ik

k has infinitely many columns with negative elements, we consider its .mCk/th column
that contains a negative element g

i;mCk

and the corresponding two cylinders:

�

f

0

B@ÅQ

⇤
s

c1c2:::cm 0 : : : 0„ƒ‚…
k�1

0

1

CA�

f

0

B@ÅQ

⇤
s

c1c2:::cm 0 : : : 0„ƒ‚…
k�1

i

1

CA D

0

@
mY

jD1

g

cj j

1

A
2

0

@
m0Ck�1Y

jD1Cm0

g

0j

1

A
2

g

0;mCk

g

i;mCk

:

Since g
0;mCk

> 0; we get

g

0;mCk

g

i;mCk

< 0

and, hence, the function has a positive increment on one of the cylinders
�
Å

Q

⇤
s

c1c2:::cm 0 : : : 0„ƒ‚…
k�1

0

or ÅQ

⇤
s

c1c2:::cm 0 : : : 0„ƒ‚…
k�1

i

�

and a negative increment on the other cylinder. Thus, the increments of the function on the indicated cylinders
contained in the cylinder ÅQ

⇤
s

c1:::cm
have different signs. Therefore, the function f is not monotone on the cylinder

Å

Q

⇤
s

c1:::cm
: Thus, it is nowhere monotone.
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Theorem 4. (i) If g
i;mC1

g

iC1;mC1

< 0 for some i; then a Q

⇤
s

-binary point of the form Å

Q

⇤
s

c1c2:::cmi.0/

is a
point of extremum of the function f and, moreover,

(i.1) a point of maximum forD
m

g

i;mC1

> 0I

(i.2) a point of minimum forD
m

g

i;mC1

< 0I
where

D

m

D
mY

kD1

g

ckk
¤ 0

is the increment of the function on the cylinder ÅQ

⇤
s

c1c2:::cm
:

(ii) if g
i;mC1

g

iC1;mC1

� 0; then any point of the form Å

Q

⇤
s

c1c2:::cmi.0/

is not a point of extremum of the func-
tion f:

Proof. (i). Let

D

m

D
mY

kD1

g

ckk
¤ 0:

We consider all possible cases.

(i.1). LetD
m

> 0: If g
iC1;mC1

> 0; then the function has a positive increment on the cylinderÅQ

⇤
s

c1c2:::cmŒiC1ç

and a negative increment on the cylinder ÅQ

⇤
s

c1c2:::cmi

lying to the left. Hence, the point x
i

⌘ Å

Q

⇤
s

c1c2:::cmi.0/

; which
is the common end of these cylinders, is a point of maximum.

If g
iC1;mC1

< 0; then the function has a negative increment on the cylinder ÅQ

⇤
s

c1c2:::cmŒiC1ç

and a positive

increment on the cylinder ÅQ

⇤
s

c1c2:::cmi

: Therefore, the point x
i

is a point of minimum.

(i.2). LetD
m

< 0: If g
iC1;mC1

> 0; then the function has a negative increment on the cylinderÅQ

⇤
s

c1c2:::cmŒiC1ç

and a positive increment on the cylinder ÅQ

⇤
s

c1c2:::cmi

: Hence, the point x
i

is a point of minimum.

If g
iC1;mC1

< 0; then the function has a positive increment on the cylinder ÅQ

⇤
s

c1c2:::cmŒiC1ç

and a negative

increment on the cylinder ÅQ

⇤
s

c1c2:::cmi

: Thus, the point x
i

is a point of maximum.

(ii). If g
i;mC1

g

iC1;mC1

D 0; then, by Theorem 3, the function is constant on at least one of the cylinders
Å

Q

⇤
s

c1c2:::cmi

or ÅQ

⇤
s

c1c2:::cmŒiC1ç

and, therefore, the point x
i

is not a point of extremum.

If g
i;mC1

g

iC1;mC1

> 0; then the function f has increments of the same sign on both cylinders and, hence,
the point x

i

is not a point of extremum because it is a point of maximum for one cylinder and a point of minimum
for the other cylinder.

5. Variational Properties

Theorem 5 [12]. For the cylinderÅQ

⇤
s

c1c2:::cm
D ŒuI vç; the function f takes its maximum and minimum values

at the ends. Moreover, if

D

m

⌘
mY

iD1

g

ci i
¤ 0; y

m

D ı

c11
C

mX

kD2

0

@
ı

ckk

k�1Y

iD1

g

ci i

1

A
;
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then max f .x/ D f .v/ D y

m

CD

m

and min f .x/ D f .u/ D y

m

for D
m

> 0 or max f .x/ D f .u/ D y

m

and
min f .x/ D f .v/ D y

m

CD

m

forD
m

< 0:

Theorem 6. The variation of the function f .x/ is given by the formula

V

1

0

.f / D
1Y

nD1

 
s�1X

iD0

jg
in

j
!
: (4)

Proof. In view of the fact that, on each cylinder, the function f takes its maximum and minimum values at
the ends, we consider the sums of oscillations of the function on cylinders of the first rank:

V

1

D
s�1X

iD0

ˇ̌
ˇf

⇣
Å

Q

⇤
s

iC1;.0/

⌘
� f

⇣
Å

Q

⇤
s

i.0/

⌘ˇ̌
ˇ D

s�1X

iD0

jg
i1

j;

of the second rank

V

2

D
s�1X

jD0

jg
i11

j
s�1X

iD1

ˇ̌
ˇf

⇣
Å

Q

⇤
s

i1;i2C1;.0/

⌘
� f

⇣
Å

Q

⇤
s

i1;i2.0/

⌘ˇ̌
ˇ D

0

@
s�1X

jD0

jg
i11

j

1

A
 
s�1X

iD0

jg
i22

j
!
;

and of the nth rank

V

n

D

0

@
s�1X

i1D0

jg
i11

j

1

A

0

@
s�1X

i2D0

jg
i22

j

1

A
: : :

0

@
s�1X

inD0

jg
inn

j

1

A D
nY

kD1

0

@
s�1X

ikD0

jg
ikk

j

1

A
:

Thus, for any natural n;

V

n

 V

1

0

.f /  lim sup
n!1

V

n

:

Since the sequence .V
n

/ is monotone, we get

V

1

0

.f / D lim
n!1V

n

D
1Y

nD1

 
s�1X

iD0

jg
in

j
!
:

We represent the variation in the form

V

1

0

.f / D
1Y

nD1

 
1 �

 
1 �

s�1X

iD0

jg
in

j
!!

:

Corollary 2. The function f .x/ is a function of bounded variation if and only if

W ⌘
1X

nD1

 
s�1X

iD0

jg
in

j � 1

!
< 1: (5)
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Corollary 3. In order that f be a function of unbounded variation, it is necessary and sufficient thatW D 1:

In particular, if

u

n

D
s�1X

iD0

jg
in

j π 1; n ! 1;

then V 1

0

.f / D 1:

If all columns of the matrix G⇤
s

are identical and, moreover, contain negative elements, then f is a function of
unbounded variation.

6. Differential Properties of the Function

Lemma 3. If the function f has a finite derivative f 0
.x

0

/ at the point x
0

; then it is given by the formula

f

0
.x

0

/ D
1Y

kD1

g

˛k.x0/k

q

˛k.x0/k

: (6)

Proof. It is known that if the function f has a finite derivative, then it is equal to the cylindrical derivative

f

0
⇣
x

0

D Å

Q

⇤
s

˛1˛2:::˛n:::

⌘
D lim

n!1

f

⇣
Å

Q

⇤
s

˛1:::˛n.s�1/

⌘
� f

⇣
Å

Q

⇤
s

˛1:::˛n.0/

⌘

ˇ̌
ˇÅQ

⇤
s

˛1:::˛n

ˇ̌
ˇ

D lim
n!1

Y
n

iD1

g

˛i i

Y
n

iD1

q

˛i i

D lim
n!1

nY

iD1

g

˛i i

q

˛i i

;

i.e., equality (6) is true.

Theorem 7. If the function f has a finite variation, i.e., condition (5) is satisfied and, for all possible x 2
Œ0I 1ç; the limit of the sequence

✓
g

˛k.x0/k

q

˛k.x0/k

◆
either does not exist or differs from 1, then f is a singular function

(its derivative is equal to zero almost everywhere in a sense of Lebesgue measure).

Proof. It is known that every continuous function of bounded variation is equal to the difference of two
monotone functions and, hence, has a finite derivative almost everywhere in the sense of Lebesgue measure.

Let x
0

be an arbitrary point of the set of full Lebesgue measure in which the derivative exists and is finite.
Hence, by the previous lemma, it is given by relation (6) but, under the conditions of the theorem, the necessary
condition of convergence of the infinite product is not satisfied. Thus, it diverges to zero. Therefore, the function
f is singular.

Corollary 4. If, under the conditions of the theorem, the matrix kg
ik

k does not have zero elements but has
infinitely many negative elements, then the function f is a singular nowhere monotone function.
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7. Special Case

We now consider a simple but interesting special case. Consider the function f under the following restrictions
imposed on the matrix G⇤

s

:

1) s D 2k � 1; 2  k 2 N; 0 < b

1

< 1; 0 < q < 1; b

n

D b

1

q

n�1;

2) the nth column of the matrix is formed by the elements

g

0n

D g

s�1;n

D 1C b

n

2

;

g

1n

D g

3n

D : : : D g

s�2;n

D �b
n

;

g

2n

D g

4n

D : : : D g

s�3;n

D b

n

:

In this case, we have ı

0n

D 0; ı

1n

D ı

3n

D ı

2k�1;n

D 1C b

n

2

; ı

2n

D ı

4n

D ı

2k;n

D 1 � b

n

2

; and

u

n

⌘
X

s�1

iD0

jg
in

j � 1 D 2.k � 1/b

n

: Then

1X

nD1

u

n

D 2.k � 1/b

1

1 � q

< 1;

Thus, according to Corollary 2, the function f has a bounded variation. Moreover, by Theorem 3, this function
is nowhere monotone and, by Theorem 7, it is singular. We now focus our attention on its fractal properties, namely,
on the properties of the level sets of functions.

Recall that a level set y
0

of the function f is defined as the set fxW f .x/ D y

0

g and denoted by f �1

.y

0

/:

Let

C

⇥
Q

⇤
s

IB
n

⇤
⌘
¸
xW x D Å

Q

⇤
s

˛1.x/˛2.x/:::˛n.x/:::
; ˛

n

.x/ 2 B

n

⇢ A

s

; n 2 N

π
;

V ⌘ A

s

n f0; s � 1g; V

0

⌘ f2; 4; : : : ; s � 2g; V

1

⌘ f1; 3; : : : ; s � 3g:

Lemma 4. A set C
⇥
Q

⇤
s

IV
⇤
completely belongs to the set f �1

✓
1

2

◆
of the level

y

0

D 1

2

:

It is a continual perfect nowhere dense set and, depending on the matrix Q

⇤
s

D kq
ik

k; may have either null or
positive Lebesgue measure, namely, it has a positive Lebesgue measure if and only if the positive series

1X

kD1

q

0k

C q

s�1;k

q

1k

C q

2k

C : : :C q

s�2;k



ON ONE CLASS OF SINGULAR NOWHERE MONOTONE FUNCTIONS 279

is convergent. If the Q⇤
s

-representation is the Q
s

-representation, then the set C
⇥
Q

⇤
s

IV
⇤
is a self-similar Cantor-

type set whose fractal Hausdorff–Besicovitch dimensionality is a solution of the equation

s�2X

iD1

q

x

i

D 1; i.e., x D log
q1;:::;qs�2

1: (7)

Proof. Since the properties of the set C
⇥
Q

⇤
s

; V

⇤
are well known [9, 10], it is necessary to prove solely the

first part of the lemma.

Note that f
⇣
Å

Q

⇤
s

.i/

⌘
D 1

2

for i D 1; 2; : : : ; s � 2: Indeed, we have

f

⇣
Å

Q

⇤
s

.i/

⌘
D 1 � b

1

2

C
1X

kD2

0

@1 � b

k

2

k�1Y

jD1

b

j

1

A D 1

2

for even i and

f

⇣
Å

Q

⇤
s

.i/

⌘
D 1C b

1

2

C
1X

kD2

0

@1C b

k

2

k�1Y

jD1

.�b
j

/

1

A D 1

2

for odd i:
It is clear that, in the case where the digits i and j have the same parity and differ from 0 and .s � 1/; we have

f

⇣
Å

Q

⇤
2

˛1˛2:::˛k�1i˛kC1:::

⌘
D f

⇣
Å

Q

⇤
s

˛1˛2:::˛k�1j˛kC1˛kC2:::

⌘
:

Hence, the set f �1

✓
1

2

◆
of preimages of the number

1

2

under mapping f includes both sets C
⇥
Q

⇤
s

; V

i

⇤
;

where V
i

is the set of all digits of the alphabet A
s

of the same parity.
Moreover, if ˛

n

2 V; then

f

⇣
x D Å

Q

⇤
s

˛1˛2:::˛n:::

⌘
D 1

2

:

Hence,

f

�1

✓
1

2

◆
� C

⇥
Q

⇤
s

; V

⇤
:

It is known [13] that the Lebesgue measure of the set C
⇥
Q

⇤
s

; B

n

⇤
is given by the formula

�ŒC ç D
1Y

kD1

"
1 � �.F

k

/

�.F

k�1

/

#
;

where F

k

is the inion of cylinders of rank k whose interior points contain points of the set C
⇥
Q

⇤
s

; B

n

⇤
; F

k

⌘
F

k�1

n F
k

; namely:

F

k

D
X

c12B1

: : :

X

ck2Bk

ˇ̌
ˇÅQ

⇤
s

c1:::ck

ˇ̌
ˇ ; F

k

D
X

c12B1

: : :

X

ck�12Bk�1

X

c2AsnBk

ˇ̌
ˇÅQ

⇤
s

c1:::ck

ˇ̌
ˇ :
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For the set C
⇥
Q

⇤
s

; V

⇤
; we get F

k

D q

1k

C : : :Cq

s�2;k

and F
k

D q

0k

Cq

s�1;k

: Thus, according to the theorems
on relationship between the convergences of infinite products and series, we get

�.C / > 0 ,
1X

kD1

q

0k

C q

s�1;k

q

1k

C q

2k

C : : :C q

s�2;k

< 1: (8)

The structure of self-similarity of the set C D C

⇥
Q

⇤
s

; V

⇤
has the form

C

⇥
Q

⇤
s

; V

⇤
D C

1

[ C

2

[ : : : [ C

s�2

;

where the set C is similar to the set C
i

⌘ Å

Q

⇤
s

i

\ C with coefficient q
i

:

Since C satisfies the condition of an open set, its self-similar dimension, which is a solution of Eq. (7),
coincides with its Hausdorff–Besicovitch fractal dimension.

Theorem 8. Every binary rational number y

0

is the image of a continual fractal number set whose Q

⇤
s

-
representation does not contain the digits 0 and .s � 1/ starting from a certain position.

Proof. Let y
0

D Å

2

c1:::cm1.0/

be an arbitrary binary rational number. Every number x D Å

Q

⇤
s

˛1:::˛m:::

; where
˛

j

2 V for j > m and

˛

i

D

8
<

:
0 for c

i

D 0;

1 for c

i

D 1; i D 1;m;

is the preimage of y
0

:

Hence, the set f �1

.y

0

/ of preimages of the number y
0

under the mapping f contains the set C
⇥
Q

⇤
s

; B

n

⇤
;

where

B

n

D

8
<

:
f0g; c

n

D 0;

f1g; c

n

D 1

for n  m and B
mCk

D V:

Then the Hausdorff–Besicovitch fractal dimension of the set f �1

.y

0

/ is not smaller than the dimension of the
set C

⇥
Q

⇤
s

IV
⇤
:

Corollary 5. If the matrixQ⇤
s

D kq
ik

k satisfies condition (8), then all binary rational numbers of the segment
Œ0I 1ç are atoms of the distribution of values of the random variable Y D f .X/; where X is a random variable
with uniform distribution on Œ0I 1ç.

Corollary 6. If theQ⇤
s

-representation is the classical s-ary representation, then

1Z

0

f .x/dx D 1

2

:

Furthermore, if y
0

is an s-ary rational number, then the Hausdorff–Besicovitch fractal dimension of the level set
y

0

is equal to log
s

.s � 2/:
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