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WEIGHT-VIBRATION PARETO OPTIMIZATION OF A DUAL MASS FLYWHEEL 

V. Berbyuk  UDC 531.8+62–50 

By using the methodology of the multiobjective optimal design of engineering systems, we consider the 
problem of weight-vibration Pareto optimization of a dual mass flywheel with an aim to study the feasi-
bility of its application in heavy-duty truck powertrains.  The results obtained show the following: the 
solution of the considered optimization problem does exist; the mass inertia, stiffness, and damping pa-
rameters of the absorber optimized in an operating engine speed range of 600–2000 rpm exist and pro-
vide the best attenuation of the torque oscillation at the transmission input shaft.  Finally, the obtained 
results show the feasibility evidence for the application of weight-vibration optimized dual mass fly-
wheels in heavy-duty truck drivetrain systems. 

Keywords:  torsional vibration absorber, dual mass flywheel, drivetrain system of a heavy-duty truck, 
global sensitivity analysis, weight-vibration Pareto optimization. 

Introduction 

An engineering system must meet numerous requirements, e.g., system’s quickness and accuracy, safety 
and user friendliness, noiseless and low level of vibrations, environmental friendliness, and cost efficiency.  
These are some of constraints to be satisfied in the process of design of modern engineering products, which 
make the design of engineering systems very complicated. 

In the present paper, the methodology of multiobjective optimal design of engineering systems is presented.  
This methodology is based on the global sensitivity analysis (GSA) and Pareto optimization techniques.  It was 
implemented in the SAMO computer toolbox developed at the Mechanical Systems, Division of Dynamics, 
Chalmers University of Technology [4].  The methodology and SAMO toolbox were successfully used for the 
optimal design of engineering systems with different applications [5–7].  In what follows, we apply the method-
ology to solve the problem of weight-vibration Pareto optimization of the design of dual mass flywheels intend-
ed for application in torsional vibration attenuation in heavy-duty truck powertrains.  A dual mass flywheel 
(DMF) is a well-known design of torsional vibration absorbers.  It was a subject for extensive research [1, 3, 8–
10].  The research is ongoing to understand whether this concept of absorber is suitable for the attenuation of 
torsional vibrations in the powertrains of heavy-duty trucks [1, 9, 10]. 

The outline of the paper is as follows:  In Section 1, the global sensitivity analysis and Pareto optimization 
problems are formulated for the mathematical model of a generic engineering system.  The formulations of    
these problems, together with the outline of the algorithm of GSA and the structure of the SAMO toolbox, con-
stitute the basis of the methodology aimed at designing optimal engineering products.  The results of weight-
vibration Pareto optimal design of torsional vibration absorbers intended for application in heavy-duty truck 
powertrains are presented in Sections 2 and 3.  The paper is finalized with conclusions and the outline of future 
research. 
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Some results of the paper were presented at the 10th International Conference on the Mathematical Prob-
lems of Mechanics of Nonhomogeneous Structures, September 17–20, 2019, Lviv, Ukraine [2].   

1.  Sensitivity Analysis and Pareto Optimization 

Consider an engineering system that consists of a number of functional components representing mass iner-
tia, stiffness, and damping characteristics of the system.  Let     q = [q1,q2 ,…,qn ]⊤   be a vector of generalized co-
ordinates,     T = [T1,T2 ,…,Tm ]⊤   be the vector of external loads, e.g.,  forces or/and torques acting  upon the sys-
tem, and     d = [d1,d2 ,…,dk ]⊤  be the vector of design parameters representing the mass inertia, stiffness, and 
damping characteristics of all functional components of the system. 

The following expression is used to represent the set of operational scenarios  (OSs )  of the analyzed gener-
ic engineering system: 

  OSs = {T(t ), q(t ), d, t ∈[t0 ,t f ], d ∈Ω}. (1) 

In expression (1),  t0   and  t f   are the initial and final instants of time and  Ω   is the domain of feasible values 
for the vector of design parameters.  

For any feasible vector of design parameters     d = [d1,d2 ,…,dk ]⊤ ∈Ω   and given external loads  

   T = [T1,T2 ,…,Tm ]⊤ ,  the vector of generalized coordinates     q = [q1,q2 ,…,qn ]⊤  satisfies the equation 

   L[q(t ), !q(t ), !!q(t ),T(t ),d] = 0 , (2) 

where  L   is an operator that, together with a given initial state of the system 

  q(0) = q0 , !q(0) = !q0 , (3) 

determine the system performance (response), i.e., the vector    q[t,t0 ,q
0 , !q0 ,T(t ),d]  for all  t ∈[t0 ,t f ]. 

Equation (2) and the initial state (3) form the mathematical model of a generic engineering system and al-
low us to obtain all its feasible operational scenarios.   

As an example of mathematical model (2), (3), we can consider a matrix equation 

   M!!q +C !q +Kq = U[t,T(t )]. (4) 

Together with the initial state (3), this equation governs the motion of an n -degree-of-freedom mechanical sys-
tem with linear stiffness and damping functional components.  Here,  M,  C ,  and  K   are, respectively, the 
mass inertia, damping, and stiffness matrices and U  is the vector of generalized forces. 

1.1.  Global Sensitivity Analysis and the Formulations of Pareto Optimization Problems.  As the first step 
in the optimal design of an engineering system, it is important to study the sensitivity of the system response to 
the variation of its design parameters.  The analysis of sensitivity of an engineering system to the varying pa-
rameter  di   can be carried out either locally or globally.  In the local sensitivity analysis, the effects of design 
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input  di   on the system response is approximated by the partial derivative of an objective function used as the 
measure of system response to the design parameter  di ,  which is taken around a fixed point  di

0 .  This approach 
only considers the variations of an objective function with respect to a single design parameter at a time.  Fur-
thermore, the domain of input design variables might not be appropriately scanned by the local method. 

The global sensitivity analysis is one of the most prominent approaches in the design of engineering sys-
tems that can provide informative insight into the design process.  To determine global sensitivity indices, it is 
necessary to evaluate multilayer integrals.  This process demands heavy computational efforts.  In what follows, 
the multiplicative dimensional reduction method proposed in [11] is briefly described.  This method is used in 
the SAMO computer toolbox [4] and can approximate global sensitivity indices in the efficient and accurate 
manner. 

An objective function can be expressed as a function of the set of independent random variables, i.e., the 
design parameters   

    d = [d1,d2 ,…,dk ]⊤ ∈Ω ,   

through the respective deterministic functional relationship  F = F(d) .  It is proposed to approximate the func-
tion  F   as follows: 

 
  
F(d) ≈ [F(c)]1−k F(di ,c− i )

i=1

k

∏ , (5) 

where  F(c)  is a constant and   F(di ,c− i )  denotes the value of the function in the case where all inputs except 
di  are fixed at their respective cut point coordinates      c = [c1,…,ck ]⊤ .  Expression (5) is capable to approximate 
the function  F   with a satisfactory level of accuracy and is particularly useful for approximating the integrals 
required to compute sensitivity indices [11].  By using this approach, primary and higher-order sensitivity indi-
ces can be approximated as follows: 
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The coefficients  α j   and  β j   are defined as the mean and mean square of the j th univariate function, respec-
tively, and can be represented as 

 
  
α j ≈ wjℓF(d jℓ ,c− jℓ )

ℓ=1

N

∑ , β j ≈ wjℓF
2 (d jℓ ,c− jℓ )

ℓ=1

N

∑ . (7) 

Here,  N   is the total number of integration points,   d jℓ   and   wjℓ   are the  ℓ th Gaussian integration abscissas and 
the corresponding weight, respectively. 

Finally, the total sensitivity index corresponding to the parameter  di   can be expressed as 
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It should be noted that the total number of objective function evaluations required to compute the sensitivity 
indices by using this method is only  k × N ,  where  k   is the number of design parameters. 

To accomplish the sensitivity analysis of the system output, a suitable cut point must be chosen together 
with a probability distribution.  Equations (6)–(8) are then utilized to attain sensitivity indices.  More details on 
the multiplicative dimensional reduction method for the global sensitivity analysis can be found in [11]. 

Let the following functionals be chosen to measure the quality of performance of the engineering system in 
question: 

   F1[q(t ),d],…, FnF [q(t ),d] . (9) 

The following problem of the global sensitivity analysis for a generic engineering system is formulated: 

Problem GSA.  Let      d = [d1,d2 ,…,dk ]⊤   be the vector of design parameters of the generic engineering sys-
tem in question.  It is required for a given feasible operational scenario 

  O !S ∈OSs  (10) 

to determine, by using equation (8), the total sensitivity indices 

  Si
T(Fj ), i = 1,…,k, j = 1,…,nF , (11) 

of functionals (9) for all varying design parameters  di   satisfying equation (2), the initial state (3) and the re-
striction 

    d = [d1,d2 ,…,dk ]⊤ ∈Ω . (12) 

The solution of the problem GSA provides mapping between the values of the total sensitivity indices (11) 
and the design parameters (12) of the generic engineering system. 

As a result of the solution of the problem GSA, we identify the vector of the most important design parame-
ters  

      ds = [ds1,ds2 ,…,dsk ]⊤ ∈Ω, 1 ≤ sk ≤ k , (13) 

and the most sensitive functionals   Fj [q(t ),d] ,  1 ≤ j ≤ nF1 ≤ nF .  Thus, the Pareto optimization problem can be 
now stated as follows: 

Problem PO.  For given feasible operational scenario (10), it is required to determine the design parame-
ters 
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Fig. 1.  Sketch of a generic drivetrain system equipped with a dual mass flywheel. 

     ds = ds
∗ = [ds1

∗ ,ds2
∗ ,…,dsk

∗ ]⊤ , sk ∈[1,…,k ], 

and the vector of generalized coordinates  q(t ) = q∗(t )  that completely satisfy the system of variational equa-
tions 

 
   
min
ds∈Ω

(Fj [q(t ),ds ]) = Fj [q
∗(t ),ds

∗ ], j = 1,…,nF1 , 

subject to the mathematical model (2)–(3) and restriction (13).  

In [4], the SAMO computer code developed at Chalmers University of Technology was presented as an ef-
ficient toolbox for the optimal design of engineering systems.  In this stage, the SAMO toolbox includes two 
modules: SAMO-GSA and SAMO-PO.  The SAMO-GSA module is based on the multiplicative version of the 
dimensional reduction method [11] aimed at solving the above-formulated problem GSA.  In the SAMO-GSA 
module, an efficient approximation is used to simplify the computation of variance-based sensitivity indices as-
sociated with a general function of n -random varying parameters.  Then the results of solution of the problem 
GSA might be used as an input of the SAMO-PO module for multiobjective optimization (the above-formulated 
problem PO).  The operation of the SAMO-PO module is based on the genetic algorithm (GA).  The GA settings 
include lower and upper bounds for the variations of the design parameters, population size, number of genera-
tions, elite count, and Pareto fraction settings.  The results of the SAMO-PO module are presented in terms of 
the Pareto fronts and the corresponding Pareto sets for the subsequent analysis and decision-making by the user.  
More details on the SAMO toolbox and the link to the corresponding computer codes for different examples can 
be found in [4]. 

2.  Weight-Vibration Pareto Optimization of a Dual Mass Flywheel  

In this section, we apply the methodology presented in Section 1 to solve the problem of weight-vibration 
Pareto optimization of the design of a dual mass flywheel intended for application to torsional vibration attenua-
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tion in heavy-duty truck powertrains.  

2.1.  Drivetrain System Equipped with a Dual Mass Flywheel.  Consider a system depicted in Fig. 1.  The 
system comprises an engine (E), a torsional vibration absorber, (DMF), and a load transmission system (LTS).  
Assume that the vibration absorber (Fig. 1) consists of two rigid bodies called the primary flywheel (PFW) and 
the secondary flywheel (SFW).  These wheels are connected by a massless linear torsional spring and a massless 
linear torsional viscous damper.  The engine output shaft AB and the transmission input shaft CD are assumed to 
be rigid and rigidly connected to the PFW and to the SFW, respectively.  The torque  Te (t )  rotates the primary 
flywheel about the shaft AB.    

In Fig. 1,  ϕ p   and  ϕs   are the absolute angles of rotation of the PFW and the SFW, respectively,  J p   and  
Js   are the torsional moments of inertia of the PFW and the SFW, respectively, and  k1  and  c1   are, respective-
ly, the coefficients of torsional stiffness and torsional damping. 

The equations of torsional vibration dynamics of the drivetrain system equipped with a DMF can be repre-
sented in the matrix form (4) with 

    q = [ϕ p ,ϕs ]⊤ , !q = [ !ϕ p , !ϕs ]⊤ , !!q = [!!ϕ p , !!ϕs ]⊤ , 

   U[t,T(t )] = [Te (t ),−Tg (t )]⊤ , (14) 

 M =
J p 0
0 Js

⎛
⎝⎜

⎞
⎠⎟
, C =

c1 −c1
−c1 c1

⎛
⎝⎜

⎞
⎠⎟
, K =

k1 −k1
−k1 k1

⎛
⎝⎜

⎞
⎠⎟

. 

Equations (4) and (14), together with the following initial state 

  ϕ p (t0 ) = ϕ p
0 , ϕs (t0 ) = ϕs

0 , !ϕ p (t0 ) = !ϕ p
0 , !ϕs (t0 ) = !ϕs

0 , (15) 

constitute a mathematical model of drivetrain system equipped with a DMF. 

2.2.  Global Sensitivity Analysis of a Drivetrain System Equipped with a DMF.  The set of operational 
scenarios (1) for the system in question is described by the following expressions:   

    OSs = {T(t ) = [Te (t ),−Tg (t )]⊤ , q(t ) = [ϕ p (t ),ϕs (t )]
⊤, 

   (16) 
   d = [J p , Js ,k1,c1 ]T, t ∈[t0 ,t f ], d ∈Ω}, 

where 

 Te (t ) = Tm + ae sin(ωn0
t ), ωn0

= n0ω, ω =
2πne
60 , (17) 

  Tg (t ) = kv (ϕs − ϕv )+ cv ( !ϕs − !ϕv ), ϕv (t ) = ωvt . (18) 
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Here, in expressions (17), the engine input torque  Te (t )   is modeled by a constant torque  Tm   plus a harmonic 
function,  ωn0

  is the n0 -order engine vibration frequency, i.e.,  n0   times the angular velocity  ω ,  and  ne   is 
the engine speed (in rpm).  The torque at the transmission input shaft  Tg (t )   is modeled by expressions (18),  kv   
and  cv   are, respectively, the equivalent torsional stiffness and damping coefficients of the load transmission 
system, and  ϕv ,  ωv   are, respectively the absolute angle of rotation and the angular velocity of the transmission 
input shaft. 

Consider a vector 

    d = [d1,d2 ,d3,d4 ]⊤ = [J p , Js ,k1,c1 ]⊤ ∈Ω  (19) 

and the following functionals: 

 
  
F1(d) = std(Tg [q(t ),d,ne ])dne

600

2000

∫ , (20) 

 F2 (d) = J p + Js , (21) 

 
  
F3(d) = std(T f [q(t ),d,ne ])dne

600

2000

∫  (22) 

as the vector of design parameters and the quality measures of the performance of drivetrain system equipped 
with a DMF.  Here, the function  T f   represents the friction torque in the stiffness-damping interface of the DMF 
and is defined as follows:  

  T f = k1(ϕ p − ϕs )+ c1( !ϕ p − !ϕs ) . (23) 

The functionals  F1(d)  and  F3(d)  characterize the oscillations of torque at the transmission input shaft 
and the energy dissipating in the DMF within the operating engine speed range  600 rpm ≤ ne ≤ 2000  rpm,  re-
spectively.  The functional  F2 (d)   characterizes the mass inertia properties of the DMF and is well relevant for 
estimating the total weight of the absorber.   

The problem of global sensitivity analysis formulated in Section 1 was solved for the drivetrain system 
equipped with a DMF by using the differential equation of motion (4) with (14), the initial state (15), the vector 
of the design parameters (19), and the functionals (20)–(22).  The feasible operational scenario (10) was given 
by the torques  Te (t )  and  Tg (t )   determined by expressions (17), (18).  

The third-order engine vibration harmonic is in the focus of analysis as one of the most significant contribu-
tions to the oscillatory response [1, 9], i.e.,  in all simulations, the engine order vibration frequency  n0   is cho-
sen to be equal to 3.   The remaining values of the parameters for the torque  Te (t )  are as follows:  the mean 
value of the engine input torque  Tm = 300  Nm;  the amplitude of the engine torque harmonic excitation  
ae = 500  Nm,  and the engine speed  ne   was chosen within the range  600−2000  rpm.  The values of the pa-
rameters of the torque  Tg (t )   at the transmission input shaft are:  kv = 10

5  Nm/rad,  cv = 0.1 Nms/rad,  and  
ωv = ωn0

/3 .  
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Fig. 2. Sensitivity indices of the objective functions  F1(d) ,  F2 (d) ,  and F3(d)   for the DMF within the operating engine speed range  
600 rpm ≤ ne ≤ 2000  rpm.   

 

Fig. 3. Pareto front of weight-vibration Pareto optimization for the DMF within the operating speed range  600 rpm ≤ ne ≤ 2000  rpm;  
Tm = 300  Nm,  Jmax = 4.05kgm2 . 

Table 1.  Settings for the GSA and Pareto Optimization of a Drivetrain System with DMF 

Design parameter,  d  J p ,  kgm2  Js ,  kgm2
 k1,  Nm/rad c1,  Nms/rad 

Nominal values,  d  1.8 0.9 12,732 30 

Lower bounds,  d  0.2 0.1 2000 0 

Upper bounds,  d  2.4 1.2 26,242 150 
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The results of the GSA of drivetrain systems with respect to variations of the design parameters (19) have 
been obtained for engine speeds within the range of  600 − 2000rpm  by using the SAMO computer code with 
settings given in Table 1.  Here, the nominal values of the design parameters of the DMF are chosen to be feasi-
ble for application in heavy-duty truck drivetrain systems.  The analysis was performed for the normal distribu-
tion of varying parameters and the coefficient of variation equal to  0.15 .  

The solution of the global sensitivity problem for engine speeds within the range  600−2000  rpm  is depict-
ed in Fig. 2.  This solution is presented by means of a mapping between the design parameters 

 d1 = J p ,    d2 = Js ,    d3 = k1,    d4 = c1,  

and the values of total sensitivity indices of the objective functions (20)–(22).   

2.3.  Pareto Optimization of the Drivetrain System Equipped with a DMF.  The multi-objective optimiza-
tion problem formulated in Section 1 is now considered for the drivetrain system equipped with a DMF.  The 
problem is stated as follows: for the feasible operational scenario given by expressions (16)–(18), it is required 
to determine the vector of design parameters of the DMF   

    d = [J p
∗ ,  Js

∗,k1
∗,  c1

∗ ]⊤ = d* ∈Ω  

and the torsional vibration dynamics  q(t ) = q∗(t ) satisfying the variational equations 

 
  
min
d∈Ω

std(Tg [q(t ),d,ne ])dne
600

2000

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= std(Tg [q

∗(t ),d∗,ne ])dne
600

2000

∫ , 

 
 
min
d∈Ω

{J p + Js} = J p
∗ + Js

∗, 

subject to the differential equation (4) with (14), the initial state (15), and the restrictions imposed on the design 
parameters by the lower and upper bounds in Table 1.   

This problem was solved by using the SAMO computer code for the same operational scenarios as the prob-
lem of global sensitivity analysis.  The corresponding system of differential equations was solved by using a 
MATLAB subroutine ode45 with absolute and relative tolerances equal to 1e − 5 .  The setting of the genetic al-
gorithm was as follows: population size  = 100 ;  number of generations  = 100 ;  elite count  = 4 ;  and Pareto 
fraction  = 1.  

The Pareto front, i.e., the best trade-off relationship between (20) and (21) obtained for engine speeds with-
in the range of  600−2000  rpm,  is shown in Fig. 3. 

Every point of the Pareto front corresponds to the set of values of the design parameters of  DMF.  The val-
ues of the design parameters  J p

∗ ,  Js
∗,  k1

∗ ,  c1
∗   minimizing the objective function (20) are as follows:  

   [J p
∗ , Js

∗,k1
∗,c1

∗ ]⊤ = [2.34, 0.1, 3938, 30]⊤. (24)  
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Fig. 4. Standard deviation of the torques at the transmission input shaft within the operating engine speed range  600 rpm ≤ 
ne ≤ 2000  rpm  for the DMF with the nominal design parameters (26) (curve 1) and the weight-vibration optimized parameter 
(24) (curve 3), as well as with the energy-vibration optimized parameters (27) for the DMF (curve 2). 

 

Fig. 5. Standard deviation of the torques at the transmission input shaft within the operating engine speed range  50 rpm ≤ 
ne ≤ 2000  rpm  for the DMF with the nominal design parameters (26) (curve 1) and with the weight-vibration optimized pa-
rameter (24) (curve 3), as well as with the energy-vibration optimized parameters (27) for the DMF (curve 2). 

These values correspond to the highest point of the Pareto front.  The DMF with the design parameters (24) 
performs the best attenuation of the torsional oscillation of the torque at the transmission input shaft with the 
value of the objective function (20) equal to  35,250  Nm.  The obtained design of the DMF is characterized by 
the feasible total mass inertia  J p

∗ + Js
∗ = 2.44  kgm2 .    

The values of the design parameters  J p
∗ ,  Js

∗,  k1
∗ ,  c1

∗   minimizing the objective function (21) are 

   [J p
∗ , Js

∗,k1
∗,c1

∗ ]⊤ = [0.23, 0.1, 4010, 14 ]⊤. (25)  
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Fig. 6. The torques at the transmission input shaft for an engine speed of 1200 rpm in the presence of DMF with the nominal design 
parameters (26) (curve 1) and with the weight-vibration optimized parameters (24) (curve 3), as well as with the energy-
vibration optimized parameters (27) for the DMF (curve 2). 

These values correspond to the lowest point of the Pareto front in Fig. 3.  The DMF with the design parameters 
(25) is characterized by lowest feasible total mass inertia  J p

∗ + Js
∗ = 0.33  kgm2 .   However, the attenuation of 

torsional oscillation of the torque at the transmission input shaft with this design of the DMF is much worse than 
in the case of using the design parameters (24).  The value of the objective function (20) for the obtained design 
parameters (25) is about  150,000  Nm. 

3.  Results and Discussion  

The application of the global sensitivity analysis and Pareto optimization provides deep insight into the tor-
sional vibration dynamics of generic drivetrain systems with DMF.  The chosen functionals (20)–(22) are appro-
priate to focus the design process for the vibration absorber on the best attenuation of the oscillation of torque at 
the transmission input shaft in order to minimize its weight as well as to decrease the energy dissipation in the 
stiffness-damping interface of the absorber.   

The results of global sensitivity analysis of the drivetrain system with respect to the design parameters of 
the DMF presented in Section 2 (Fig. 2) make it possible to conclude the following:  For the drivetrain system 
equipped with the DMF in the operating engine speed range  600 rpm ≤ ne ≤ 2000  rpm,  the moment of inertia 
of the primary flywheel  J p ,  as well as the stiffness of the absorber,  k1,  mostly affect the vibration attenuation 
and the energy efficiency of the design of vibration absorber.  The weight of the absorber, as expected, depends 
only on the mass inertia parameters.  

The solution of the Pareto optimization problem presented in Section 2 shows that there exist a clear trade-
off between the measure of the oscillation attenuation of the torque at the transmission input shaft and the total 
mass inertia characteristics (weight) of the optimized DMF of drivetrain system within the operating engine 
speed range  600 rpm ≤ ne ≤ 2000  rpm  (Fig. 3). 

The standard deviations of the torques at the transmission input shaft as a function of the engine speed for 
the DMF with nominal design parameters 



12 V. BERBYUK 

 

Fig. 7. The friction torques at the stiffness-damping interface of the DMF for an engine speed of  1200 rpm  for the nominal design 
parameters (26) (curve 1) and the weight-vibration optimized parameters (24) (curve 3), as well as for the energy-vibration op-
timized parameters (27) in the presence of a DMF (curve 2).   

   [J p , Js ,k1,c1 ]⊤ = [1.8, 0.9, 12732, 30]⊤  (26)  

(curve 1) and for the absorber with the weight-vibration optimized design parameters (24) (curve 3) are depicted 
in Figs. 4 and 5 for different ranges of the engine speeds.  The analysis of Figs. 4, 5 shows that the efficiency of 
attenuation of the oscillation of torque at the transmission input shaft by using the weight-vibration Pareto opti-
mized DMF significantly increases as compared with the performance of the DMF with nominal design parame-
ters.  Thus, for the engine speed  ne = 1200  rpm,  the standard deviation of the torque at the transmission input 
shaft (std[Tg (t )]) of the drivetrain system with nominal design parameters of the DMF is equal to 114 Nm
and decreased down to   std[Tg (t )] = 24  Nm  in the case of using the DMF with obtained weight-vibration opti-
mized parameters (24).  As follows from Figs. 4, 5, both resonance peaks of curves 1 significantly decrease in 
case of using the DMF with weight-vibration optimized parameters.  

In Figs. 6 and 7, we present the time history of the torques at the transmission input shaft (18), as well as the 
time history of the friction torques (23) illustrating how much the DMF with optimized design parameters (24) 
can enhance the attenuation of the oscillations of torques as compared with the DMF with the nominal design 
parameters (26). 

The choice of objective functions is an important step in the design optimization of engineering systems.  
Earlier, in [1], various functionals were proposed for the design optimization of vibration absorbers for heavy-
duty truck drivetrain systems.  As in Section 2.3, the Pareto optimization problem was formulated and solved for 
the drivetrain system equipped with the DMF for the case of minimizing the objective functions (20), (22) satis-
fying the differential equation (4) with (14), the initial state (15), and the restrictions on the design parameters 
provided by the lower and upper bounds in Table 1.  

Functionals (20), (22) characterize the energy of oscillations of the torque at the transmission input shaft 
and the energy dissipating in the DMF within the operating engine speed range 600 rpm ≤ ne ≤ 2000  rpm.  It is 
believed that, by minimizing these functionals at the same time, the obtained design parameters increase the en-
ergy efficiency of the vibration absorber.   

The obtained values of the design parameters of the DMF minimizing the objective function (20) in the Pa-
reto optimization problem (20), (22) are as follows [1]: 
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   [J p
∗ , Js

∗,k1
∗,c1

∗ ]⊤ = [2.7, 0.45, 10967, 41]⊤ . (27)  

These values correspond to the highest point of the obtained Pareto front in the bi-objective optimization 
problem that was solved by using functionals (20) and (22).  The DMF with the design parameters (27) realizes 
the best attenuation of the torsional oscillation of the torque at the transmission input shaft of the drivetrain sys-
tem within the operating engine speed range 600 rpm ≤ ne ≤ 2000  rpm.   

In Figs. 4–7, curve 2 represents the corresponding characteristics obtained by solving the energy-vibration 
Pareto optimization problem (20), (22) for the drivetrain system equipped with the DMF [1].   The analysis of 
Figs. 4–7 shows that, within the framework of considered assumptions, the weight-vibration Pareto optimized 
DMF attenuates the oscillations of torques at the transmission input shaft much better than the operation of the 
DMF with energy-vibration optimized design parameters (27) studied earlier in [1].   

The quantitative analyses of values of the nominal design parameters (26), the weight-vibration optimized 
parameters (24), and the energy-vibration optimized parameters (27) of the DMF show that the solution of the 
weight-vibration Pareto optimization problem results in the lowest total mass inertia of the vibration absorber.  
This can be a significant advantage of the weight-vibration optimized DMF for its implementation in the actual 
drivetrain systems. 

Conclusions and Outlook  

The following concluding remarks can be made: 

 – The methodology of multiobjective optimal design of engineering systems based on the global sensi-
tivity analysis and Pareto optimization is proven to be efficient for the advanced analysis and design-
ing of torsional vibration absorbers for drivetrain systems.  

 – There exists a clear trade-off between the measure of oscillation attenuation of the torque at the trans-
mission input shaft and the measure of total weight in designing the DMF for heavy-duty truck 
drivetrain systems.   

 – For a heavy-duty truck drivetrain system equipped with a DMF, there exists the weight-vibration bi-
objective optimized mass inertia, stiffness, and damping parameters providing the best attenuation of 
oscillation of the torque at the transmission input shaft within the operating engine speed range  
600−2000  rpm,  when the third-order engine vibration harmonic is in focus.    

 – The obtained results reveal the feasibility of application of the weight-vibration optimized dual mass 
flywheels in heavy-duty truck drivetrain systems.   

The verification and validation of the results obtained by using the complete model of drivetrain system of a 
heavy-duty truck [9], as well as the experimental data are important next steps of the study [10].  
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