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CONTACT INTERACTION OF A PRESTRAINED THICK PLATE WITH   
PARABOLIC PUNCH 

H. V. Habrusiev,1, 2  І. Yu. Habrusieva,1  and  B. H. Shelestovskyi1 UDC 539.3 

Within the framework of linearized statement of the problem of elasticity theory, we study the stress-
strain state of a prestrained thick plate modeled by a prestressed half space in the case of its smooth con-
tact interaction with a rigid axisymmetric parabolic punch.  The dual integral equations of this problem 
are solved by representing the required functions in the form of partial sums of series of Bessel functions 
with unknown coefficients.  For their determination, we deduce finite systems of linear algebraic equa-
tions.  We also analyze the influence of initial strains and the shape of the punch on the level and charac-
ter of the contact stresses and vertical displacements of the boundary plane of the plate for the cases of 
compressible and incompressible solids.  The accumulated results are illustrated for a plate with the Bar-
tenev–Khazanovich elastic potential and with the harmonic-type potential. 
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Introduction 

The numerical analysis of the strength of structural elements and mechanisms is one of the important stages 
of their design.  To estimate the strength of contacting bodies, it is necessary to find the contact stresses and 
strains.  The problem of minimization of the errors of these calculations requires the analysis of the maximal 
possible number of factors affecting the contact interaction of the bodies and, in particular, of the presence of 
residual (initial) stresses or strains. 

The influence of initial stresses on the contact interaction of bodies for various specific forms of the elastic 
potential was studied by numerous domestic and foreign researchers.  In general, for the solution of problems of 
this kind, it is necessary to involve the tools of nonlinear elasticity theory.  However, for sufficiently high levels 
of initial strains, it is possible to restrict ourselves to the linearized statement.  In particular, for the linearized 
statement of problems of the elasticity theory, a three-dimensional finite-element model aimed at the investiga-
tion of microstrains in the joints strengthened by isotropic and anisotropic fibers was proposed in [5, 6].  In [1], 
one can find a detailed survey of the literature devoted to the analysis of contact problems for bodies with initial 
stresses or strains.  On the basis of this survey, we can make, in particular, a conclusion that the problem of 
analysis of the interaction of punches of complex shapes with prestressed thick plates has been studied quite 
poorly. 

The aim of the present paper is to propose a procedure for the evaluation of the axisymmetric stress-strain 
state of a preliminary stressed thick plate in its contact interaction with a rigid punch and study the influence of 
initial strains and the shape of the punch on the distribution of contact stresses and vertical displacements in the 
boundary plane of the plate. 
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Fig. 1.  Schematic diagram of contact interaction. 

1.  Statement of the Problem 

Consider a problem of indentation of a rigid punch of complex shape with a constant force  P   into a pre-
strained thick plate modeled by an elastic half space.  We introduce a cylindrical coordinate system  Orθz   such 
that the coordinate plane  Orθ  coincides with the boundary plane of the half space, and the Oz -axis coincides 
with the direction of action of the force  P   (Fig. 1).  It is assumed that the punch is formed by the rotation of the 
line 

 
 

W (r) =
0, 0 ≤ r ≤ ra ,

(r − ra )
2/(2R), ra < r,

⎧
⎨
⎪

⎩⎪
  

about the Oz-axis.  Here,  R  is the focal parameter of parabola and  ra  is the boundary of the plane section of 
the punch footing.   

Suppose that the radius  a ≥ ra   of the contact zone is known.  Then the applied force is determined from the 
condition 

 P = −2π rσzz (r, 0)dr
0

a

∫  (1) 

and the boundary conditions of the problem take the form  

 σrz (r) = 0 ,    0 ≤ r < ∞ , (2) 

 σzz (r) = 0 ,    a < r , (3) 
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 uz (r) = f (r),    0 ≤ r ≤ a. (4) 

 The function  f (r)  corresponds to the shape of boundary surface of the punch.  We choose it in the form  
f (r) = uz (a)+ω(r).  As a result, condition (4) takes the form 

 uz (r) − uz (a) = ω(r),    0 ≤ r ≤ a , (5) 

where  

 

 

ω(r) =
−(ra − a)

2/(2R), 0 ≤ r ≤ ra ,

((ra − r)2 − (ra − a)
2)/(2R), ra < r ≤ a.

⎧
⎨
⎪

⎩⎪
  

2.  Construction of the Solution 

We assume that the residual stresses formed in the half space are homogeneous.  Then the expressions for 
the components of the stress tensor and displacement vector take the form [4]: 

 
 
σrz (r, z) = − c44 (1+m1)

n1
α3

0

∞

∫ (A1 + A2(s0 +αz))e
αz(   

  + 
 
(B1 + B2(s0 −αz))e−αz) J0(αr) dα ,  

 
  
σzz (r, z) = c44 (1+m1) ℓ1 α3 (A1 + A2(s +αz))e

αz(
0

∞

∫   

  + 
 
(B1 + B2(s −αz))e−αz) J0(αr) dα ,  

 
 
ur (r, z) = − α2 (A1 + A2(1+αz))eαz(

0

∞

∫   

  + 
 
(B1 + B2(1+αz))e−αz) J1(αr) dα ,  

 
 
uz (r, z) = m1

n1
α2 (A1 + A2(s1 +αz))e

αz(
0

∞

∫   

  + 
 
(B1 + B2(s1 −αz))e−αz) J0(αr) dα . (6) 
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Here,  c44 ,  m1,  n1,   ℓ1,  s,  s0 ,  and  s1  are constants depending on the elastic potential [4] and  A i   and  Bi   
are unknown functions that can be found from the boundary conditions. 

On the boundary plane of the half space  z = 0 ,  with the use of notation  Fj = A j + Bj,  j = 1, 2 ,  from ex-

pressions (6), we obtain  

 
 
σrz (r, 0) = c44 (1+m1)

n1
α3(F1 + s0F2)J0(αr)dα

0

∞

∫ , (7) 

 
  
σzz (r, 0) = c44 1+m1( ) ℓ1 α3(F1 + sF2)J0(αr)dα

0

∞

∫ , (8) 

 
 
uz (r, 0) = m1

n1
α2(F1 + s1F2)J0(αr)dα

0

∞

∫ . (9) 

Satisfying the boundary condition (2), by using (7), we arrive at the following relation for the functions  F1  
and  F2 :  

 F1 = −s0F2. (10) 

In view of (10), we can write the expressions for the normal stresses (8) and vertical displacements (9) in 
the form  

 
 
σzz (r) = c44 (1+m1)(s − s0 )ℓ1 α3F2J0(αr)dα

0

∞

∫ , (11) 

 uz (r) = m1(s1 − s0 )
n1

α2F2J0(αr)dα
0

∞

∫ . (12) 

Satisfying condition (3) with regard for expression (11), we obtain 

 
 

c44 (1+m1)(s − s0 )ℓ1 α3F2J0(αr) dα
0

∞

∫ = 0,    a < r. (13) 

Further, we introduce an unknown function  x(r) ,  0 ≤ r ≤ a,  with the help of which relation (13) can be ex-
tended to the interval  0 ≤ r < ∞ :  

 
 

c44 (1+m1)(s − s0 )ℓ1 α3F2J0(αr) dα
0

∞

∫ = x(r)η(a − r),    0 ≤ r < ∞, (14) 



CONTACT INTERACTION OF A PRESTRAINED THICK PLATE WITH PARABOLIC PUNCH 133 

where  η(r)  is the unit Heaviside function. 
The function  x(r)   specifies the distribution of contact stresses under the punch.  In view of their continuity 

and equality to zero on the boundary of the contact zone (for  r = a),  we can represent this function as a partial 
sum of the generalized Fourier series in the functions   J0(λnr/a):  

 x(r) = σzz (r) =
n=1

N

∑ anJ0
λnr
a

⎛
⎝

⎞
⎠ ,    0 ≤ r ≤ a, (15) 

where  λn   are positive roots of the Bessel function  J0(λn ) = 0,   n = 1,…, N ,  and  an   are unknown coeffi-
cients. 

Applying the formula of inversion for the Hankel integral transformation to relation (14), we arrive at the 
expression 

 
 

α2F2 = 1
c44 (1+m1)(s − s0 )ℓ1

an rJ0
λn
a

r⎛
⎝

⎞
⎠ J0(αr) dr

0

a

∫
n=1

N

∑ ,      0 ≤ α < ∞ . (16) 

By using relations (12), (16) and condition (5), we find 

 
 
k1 an Ψn (α)[J0(αr)− J0(αa)]dα = ω(r)

0

∞

∫
n=1

N

∑ ,    0 ≤ r ≤ a, (17) 

where   

 
 
k1 = m1(s1 − s0 )

c44 (1+m1)(s − s0 )ℓ1 n1
,      and      Ψn (α) = rJ0

λn
a

r⎛
⎝

⎞
⎠ J0(αr) dr

0

a

∫ .  

Multiplying (17) by  
 
rJ0(λqr/a)  and integrating the result with respect to  r  from  0   to  a,  we get 

 
 

an Ψn (α)(Ψq (α)− KqJ0(αa))dα
0

∞

∫
n=1

N

∑ =
wq

k1
,     q = 1,…, N , (18) 

where   

 Kq = rJ0
λq

a
r⎛

⎝⎜
⎞
⎠⎟
dr

0

a

∫ ,      and      wq = rω(r) J0
λq

a
r⎛

⎝⎜
⎞
⎠⎟
dr

0

a

∫ .  

Relations (18) specify the system of  N   linear algebraic equations for unknowns  an .   

The relationship between the focal parameter of the parabola  R   and the applied force follows from relation 
(1), namely, 
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 R = − π
2k1P

an
∗Kn

n=1

N

∑ . (19) 

Here, 

  an
∗ = an/(2k1R) . (20) 

By using (19), with the help of (15) and (20), we establish the law of distribution of contact stresses under 
the punch:  

 σzz (r) = − P
2π

an
∗Kn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

−1

n=1

N

∑an
∗J0

λn
a

r⎛
⎝

⎞
⎠ . (21) 

Moreover, in view of relations (12), (16), and (19), we get the following formula for the vertical displacements 
of points of the boundary plane of the half space: 

 uz (r) = − k1P
2π

an
∗Kn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

−1

n=1

N

∑an
∗ Ψn (α)J0(αr)dα
0

∞

∫ . (22) 

4.  Examples of Numerical Analyses 

To estimate the efficiency of the proposed procedure, we compare the obtained approximate solution with 
the exact solution of the problem of contact of a parabolic punch with an isotropic half space [2]: 

 σzz (r) = − 3P
2πa3 a2 − r2 . (23) 

In Fig. 2, the solid line corresponds to function (23), while the dashed line corresponds to function (21) with  
a = 1  and  ra = 0   (there is no plane domain at the footing of the punch).  As follows from this figure, the devia-
tion of the approximate solution from the exact solution does not exceed  2%. 

The coefficient  k1  characterizes the influence of initial strains on the stresses and displacements (6) and 
depends on the structure of elastic potential of the preliminary stressed plate.  In particular, for the Bartenev–
Khazanovich potential [3], we have  

 k1 = 2 1+ ν
E

λ1
7/2

3λ1
3 −1

,  

where  ν   is Poisson’s ratio, and  E   is Young’s modulus of the material of half space.  As follows from the pre-
sented relation,  k1 →∞   as   λ1

3 → 1/3,  i.e., as  λ1 → λkp ≈ 0.693.  The value of  λkp   corresponds to the sur-
face instability under uniform biaxial compression.  In this case, as follows from relations (19), (21), and (22),  
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Fig. 2.  Comparison of the exact (23) and approximate (21) solutions. 

 

Fig. 3.  Dependence of  k1   on  λ1.  

the vertical displacements of points of the boundary plane of the half space are infinitely increasing and the con-
tact stresses are absent.  Hence, we observe the following mechanical effect:  As  λ1  approaches the critical val-
ue  λkp ,   the phenomena of “resonance nature” discovered by O. M. Guz’ for the problems of brittle fracture of 
materials with initial stresses appear in the half space [1]. 

A similar effect is observed in bodies with harmonic-type elastic potential [3] for which the coefficient  k1  
takes the form  

 k1 = 2 1− ν2

E
λ1
2

λ1(2 + ν)−1− ν
.  

In this case, the critical values  λkp  are different for different materials because they depend on  ν .  In particu-
lar, for  ν = 0.3,  the “resonance” phenomena are observed as  λ1 → λkp ≈ 0.565.  
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Fig. 4.  Distributions of contact stresses for various values of  ra .  

 

Fig. 5.  Distributions of the vertical displacements for various values of  ra .  

In Fig. 3, we illustrate the dependences of  k1  on the parameter of linear elongation  λ1  for the Bartenev–
Khazanovich elastic potential (curve 1) and the harmonic-type potential (curve 2). 

We analyzed the influence of presence of the plane domain in the punch footing on the distribution of con-
tact stresses and the character of vertical displacements.  In Figs. 4 and 5, we present the plots of the functions  
σ∗ =  σzz (r, 0)/P  and   u

∗ = uz (r, 0)/P  for the parabolic punch in the absence of residual strains in the half 
space, constant contact zone  a = 1,  and various values of the parameter  ra:  ra = 0 (curve 1), ra = 0.2  (curve 2),  
and   ra = 0.5  (curve 3).  

CONCLUSIONS 

The performed numerical analysis enables us to conclude that the influence of initial strains on the vertical 
displacements of compressible and incompressible bodies is much stronger in the presence of preliminary com-
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pressive strains  λ1 <1  than in the case of preliminary tensile strains,  λ1 >1.  The shape of the punch strongly 
affects the level and character of distribution of the contact stresses.  In particular, for the parabolic punch whose 
base does not contain a plane part, the extreme values of contact stresses are detected at the center of the contact 
zone.  The appearance of a plane part leads to a shift of the points of extreme to the edge of contact zone and 
decreases their absolute value.  
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