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Abstract
Given a regular measure � ∈ M([0, 1)) and an analytic function g ∈ H(�) , we define H(�, g)(z) = ∫ 1

0
g(tz)d�(t) 

and study its boundedness from X × Y into Z where X ⊂ M([0, 1)) and Y , Z ⊂ H(�) are the Hardy spaces. We 
shall analyze the case X = Lp([0, 1)) and characterize the functions g ∈ H(�) such that Hg maps Lp([0, 1)) 
into Hp(�) where Hg(�) = H(�, g).
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Introduction

We denote by � the unit disc in the complex plane ℂ and by H(�) the space of all analytic functions in � . Throughout 
the paper, � stands for a complex measure in M([0, 1)) with ‖�‖1 = ∫ 1

0
d���(t) and g ∈ H(�) . We denote by ĝ(n) the Taylor 

coefficients of g ∈ H(�) , i.e., g(z) =
∑∞

n=0
ĝ(n)zn and by �n(�) the moments of � , that is �n(�) = ∫ 1

0
tnd�(t) for n ≥ 0 . Also 

we write h ∗ g for the Hadamard product h ∗ g(z) =
∑∞

n=0
ĥ(n)ĝ(n)zn between h, g ∈ H(�) . We denote K�(z) =

1

(1−z)1+�
 for 

𝜆 > −1 and D�g = K� ∗ g . In particular Dg(z) =
∑∞

n=0
(n + 1)ĝ(n)zn.

We use the notations dm(�) = d�

2�
 and dA =

dxdy

�
 for the normalized Lebesgue measures on �� and � , respectively. As usual, 

for f ∈ H(�) , 1 ≤ p ≤ ∞ and 0 < r < 1 we write fr(z) = f (rz) and Mp(f , r) = (∫ 2�

0
|f (rei�)|p d�

2�
)1∕p . For 𝛼 > 0 , 𝛽 > −1 and 

1 ≤ p ≤ ∞ , we denote by Hp(�) , Hp
�(�) and Ap

�
(�) the Hardy spaces, and weighted Hardy and weighted Bergman spaces 

consisting on functions f ∈ H(�) such that

and

‖f‖Hp = sup
0<r<1

Mp(f , r) < ∞,

‖f‖Hp
𝛼
= sup

0<r<1

(1 − r)𝛼Mp(f , r) < ∞

‖f‖Ap

𝛽
=

�

∫
�

�f (z)�p(1 − �z�2)𝛽dA(z)
�1∕p

< ∞.
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Let us also recall the mixed norm spaces of analytic functions to be used later on: given 1 ≤ p, q ≤ ∞ and 𝛼 > 0 , we denote 
by H(p, q, �) the space of functions f ∈ H(�) such that

We say that f ∈ D(p, q, �) if Df ∈ H(p, q, �) and ‖f‖D(p,q,�) = ‖Df‖p,q,� . Note that H(p,∞, �) = H
p
�(�) , and that for 

0 < 𝛼 < 1 the space

coincides with the Lipschitz classes Λ(p, 1 − �) (see [8, Theorem 5.4]).
Of course, one has the identification H2(�) = D(2, 2, 1) and, due to the work of Hardy, Littlewood, Paley, and Flett, we 
have the following embeddings:

and

The reader is referred to the books [8, 14] for these results and for the original references.
We now mention the operators we shall be dealing with. Recall that the Hilbert matrix can be viewed as an operator acting 
on spaces of analytic functions by its action on the Taylor coefficients:

which can be formally rephrased as

whenever the integral makes sense. Of course, the above operators are well defined for f (z) =
∑∞

n=0
anz

n whenever ∑∞

n=0

�an�
n+1

< ∞ or whenever f ∈ L1([0, 1)) , respectively.
A possible generalization of the above mapping was given in [10] by considering a positive measure � ∈ M([0, 1)) and 
defining the operator

where �k,n = ∫ 1

0
tk+nd�(t) . This operator can be seen as an integral operator in the case that � is a Carleson measure, namely

The conditions on a positive measure � ∈ M([0, 1)) to obtain that H� is bounded on different spaces of analytic functions 
have been studied by several authors (see [4, 10, 13]).
Another generalization of the operator H was given in [11]. The authors introduced, for a given g ∈ H(�) , the operator

This clearly generalizes H , which corresponds to g(z) = log(
1

1−z
) . The study of functions g ∈ H(�) , such that Hg is 

bounded between Hardy, Bergman, and weighted Bergman spaces, has been developed in different papers (see [11, 16]).

‖f‖p,q,𝛼 =

�

∫
1

0

(1 − r)q𝛼−1Mq
p
(f , r)dr

�1∕q

< ∞.

D(p,∞, �) = {f ∈ H(�) ∶ Mp(Df , r) = O((1 − r)−�)}

(1)D(p, p, 1) ⊂ Hp ⊂ D(p, 2, 1), 1 ≤ p ≤ 2

(2)D(p, 2, 1) ⊂ Hp ⊂ D(p, p, 1), p ≥ 2.

(an)
∞

n=0
→

( ∞∑

k=0

ak

n + k + 1

)∞

n=0

H(f )(z) = ∫
1

0

f (t)

1 − tz
dt, f ∈ H(�)

(an)
∞

n=0
→

( ∞∑

k=0

�k,nak

)∞

n=0

H�(f )(z) = ∫
1

0

f (t)

1 − tz
d�(t), f ∈ H1(�).

Hg(f ) = ∫
1

0

f (t)g�(tz)dt.

275



Journal of Mathematical Sciences (2022) 266: –274 284        

In this paper, we shall consider the bilinear map H ∶ M([0, 1)) ×H(�) → H(�) given by

for any � ∈ M([0, 1)) and g ∈ H(�) . We shall write Hg(f ) = H(f (t)dt, g) and H�(g) = H(�, g).
Of course, denoting K0(z) =

1

1−z
 we have H(f ) = HK0

(f (t)dt) , H�(f ) = HK0
(f (t)d�(t)) and Hg(f ) = H(f (t)dt, g�) for any 

f ∈ H1(�) and g ∈ H(�).
There are many results in the literature concerning the boundedness of H� where d�(t) = f (t)dt for some f ∈ H(�) 
belonging to the classical spaces of analytic functions. In this paper, we shall analyze the situation for general meas-
ures d� and in particular for d�(t) = f (t)dt where f ∈ Lp([0, 1)) is not necessarily a holomorphic function. Let us recall 
some of the known results when acting on Hardy spaces

[6, Theorem 1.1],

[15, Theorem 1.2],

[15, Theorem 3.1],

[11, Theorem 1].
If 1 < max{q, 2} < p , then

[11, Theorem 2].
We shall study some conditions on � and g to obtain that H(�, g) ∈ Hp(�) and to get conditions on g to obtain that 
Hg ∶ Lp([0, 1)) → Hq(�) for some values of p and q. Our techniques are based on the formula

combined wi th  some resul ts  on H(�) ,  mul t ip l iers  between spaces  of  analyt ic  funct ions 
(X, Y) = {g ∈ H(�) ∶ g ∗ f ∈ Y ∀f ∈ X} , and inclusions between mixed norm spaces and Hardy spaces.
The paper is divided into two more sections. In the first one, we show that for very general Banach spaces Y ⊂ H(�) 
we have that Hg ∶ M([0, 1)) → Y  is equivalent to Hg ∶ L1([0, 1)) → Y  and it holds only when g ∈ Y  (see Theorem 3.1). 
Then, we study some couples X ⊂ M([0, 1)) and Y ⊂ H(�) such that H ∶ X × Y → Hp(�) for 1 ≤ p ≤ ∞ . In section “3,” 
we study the functions g ∈ H(�) such that Hg ∶ Lp([0, 1)) → Hq(�) for some values of p and q. We get some independ-
ent proofs of some results in [6] and [11] and extend them to Lp-spaces instead of Hp(�).
As usual, p′ stands for the conjugate exponent 1∕p + 1∕p� = 1 and C denotes a constant that may vary from line to line.

Results on the Hilbert matrix operator

We start mentioning some general facts on the Hilbert matrix operator which follows the ideas from [15].

Proposition 2.1  Let � ∈ M([0, 1)) . Then 

(3)H(𝜂, g)(z) =

∞∑

n=0

𝜇n(𝜂)ĝ(n)z
n = ∫

1

0

g(tz)d𝜂(t)

(4)H ∶ Hp(�) → Hp(�), 1 < p < ∞,

(5)H ∶ H∞(�) → BMOA

(6)H ∶ Hp
𝛼
(�) → Hp

𝛼
(�), 1 ≤ p < ∞, 𝛼 < 1∕p�

(7)Hg ∶ Hp(�) → Hp(�)iffg ∈ Λ
p

1∕p
(�), 1 < p ≤ 2

(8)g ∈ Λ
q

1∕q
(�) ⟹ Hg ∶ Hp(�) → Hp(�)

(9)Hg(�)(z) = H(�) ∗ g(z),
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	 (i)	 H(�)(z) =
F� (z)

1−z
 where F� ∈ A(� ) , i.e. 

∑∞

n=0
�F̂𝜂(n)� < ∞.

	 (ii)	 H(�) ∈ A1
�
(�) for any 𝛽 > −1.

	 (iii)	 If log( 1

1−t
) ∈ L1(|�|) then H(�) ∈ H1(�).

	 (iv)	 If � ≥ 0 and H(�) ∈ H1(�) then log( 1

1−t
) ∈ L1(�).

Proof 

	 (i)	 Let us write 

 Clearly, 

	 (ii)	 From (i), we have 

	 (iii)	 Assume that log( 1

1−t
) ∈ L1(|�|). Note that 

 implies that 

 Therefore, for any 0 < r < 1

	 (iv)	 Assume � ≥ 0 and H(�) ∈ H1(�) . From Féjer-Riesz’s inequality (see [8, Theorem 3.13]), it follows: 

F�(z) = (1 − z)H(�)(z) = ∫
1

0

1 − z

1 − tz
d�(t) =

∞∑

n=0

(�n(�) − �n+1(�))z
n.

∞�

n=0

��n(�) − �n+1(�)� ≤
∞�

n=0
�

1

0

tn(1 − t)d���(t) = ‖�‖1.

�
�

�H(𝜂)(z)�(1 − �z�)𝛽dA(z) ≤�
1

0

�F𝜂(z)�
�1 − z�

(1 − �z�)𝛽dA(z)

≤C �
1

0

(

∞�

n=0

�F̂𝜂(n)�rn)M1(K0, r)(1 − r)𝛽dr

≤C
∞�

n=0

�F̂𝜂(n)�(�
1

0

rn log(
1

1 − r
)(1 − r)𝛽dr)

≤C
∞�

n=0

�F̂𝜂(n)�(
∞�

k=0

1

k + 1
(�

1

0

rn+k(1 − r)𝛽dr)

≤C
∞�

n=0

�F̂𝜂(n)�(
∞�

k=0

1

(k + 1)(n + k + 1)𝛽+1
)

≤C(𝛽)
∞�

n=0

�F̂𝜂(n)� ≤ C(𝛽)‖𝜂‖1.

|H(�)(z)| ≤ �
1

0

d|�|(t)
|1 − tz|

dt

(10)M1(H(�), r) ≤ C �
1

0

log(
1

1 − rt
)d|�|(t).

‖H(𝜂)‖H1 = sup
0<r<1

M1(H(𝜂), r) ≤ C�
1

0

log
1

1 − t
d�𝜂�(t) ≤ C.
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	�  ◻

The case X = M([0, 1))

Let us start by showing a result for a very general class of Banach spaces of the analytic functions. We deal here 
with Banach spaces Y ⊂ H(�) containing the monomials un(z) = zn for n ≥ 0 and satisfying

Note that this condition guarantees that gr ∈ Y  for any g ∈ H(�) and for any 0 < r < 1 . Moreover, the mapping r → gr is 
continuous from [0, 1) into Y. This is due to the fact that the series 

∑∞

n=0
ĝ(n)unz

n defines a Y-valued homorphic function 
defined in the disc because if g ∈ H(�) then (11) implies that

We shall also assume the following properties (see [3] or [14, Chapter 9]):
(P1) There exists M > 0 such that sup0<r<1 ‖gr‖Y ≤ M‖g‖Y for any g ∈ Y .
(P2) Y satisfies the Fatou property, i.e., there exists A > 0 such that for any sequence (gn) ⊂ Y  with supn ‖gn‖Y ≤ 1 and 
gn → g in H(�) one has that g ∈ Y  and ‖g‖Y ≤ A.

Proposition 3.1  Let Y ⊂ H(�) be a Banach space satisfying (11), (P1) and (P2), and let g ∈ H(�) . Then, the following 
conditions are equivalent: 

(1)	 Hg is bounded from M([0, 1)) to Y.
(2)	 Hg is bounded from L1([0, 1)) to Y.
(3)	 g ∈ Y .

Proof  (1) ⟹ (2) It is obvious.
(2) ⟹ (3) Let 0 < r < 1 . Then, for any 𝜀 > 0 , we can write

Observe now that hn = Hg(n�[r,r+1∕n]dm) ∈ Y  for all n ∈ ℕ , gr = limn→∞ hn in H(�) and

Hence, using the Fatou property, one gets ‖gr‖Y ≤ ‖Hg‖L(L1,Y). Since grn → g in H(�) for any rn → 1 , due to the Fatou 
property again we conclude that g ∈ Y .

(3) ⟹ (1) From (P2), we have that the mapping t → gt is Bochner integrable with respect to |�| and

Therefore, using the Fatou property again, we obtain ‖Hg(�)‖Y ≤ K‖g‖Y‖�‖1 for some constant K > 0.
	�  ◻

�
1

0

log(
1

1 − t
)d�(t) = �

1

0 �
1

0

r

1 − rt
drd�(t) = �

1

0

H(�)(r)rdr ≤ C‖H(�)‖1.

(11)lim
n→∞

1∕n
√
‖un‖Y = 1.

lim sup
n→∞

1∕n
√
�ĝ(n)�‖un‖Y = lim sup

n→∞

1∕n
√
�ĝ(n)� ≥ 1.

Hg(
1

�
�[r,r+�]dm)(z) =

1

� ∫
r+�

r

g(tz)dt, z ∈ �.

‖Hg(n�[r,r+1∕n]dm)‖Y ≤ ‖Hg‖L(L1,Y), n ∈ ℕ

‖Hg(�)r‖Y ≤ �
1

0

‖gtr‖Yd���(t) ≤ A‖g‖Y‖�‖1.
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Note that from Proposition 3.1, we have H ∶ M([0, 1)) × Hp(�) → Hp(�) for any 1 ≤ p ≤ ∞ . We shall now consider 
other possible pairs of Banach spaces such that H maps X × Y  into Hp(�).
We shall make use of the following result, which can be found in [8, Theorem 6.7] for p = 2 and that was proved by 
Stein-Zygmund for p > 2 (see [2, 14, 17]).

Lemma 3.2  Let p ≥ 2 and F ∈ H(�) . The following ones are equivalent: 

	 (i)	 There exists C > 0 such that ‖F ∗ f‖Hp ≤ C‖f‖H1 for any f ∈ Hp(�)

	 (ii)	 Mp(DF, r) = O(
1

1−r
).

Theorem 3.3  Let p ≥ 2 and set, for 𝛼 > 0,

Then H ∶ X1∕p� × H1(�) → Hp(�) is bounded.

Proof  Let � ∈ X1∕p� . Let us first show that

Since DH(�) = ∫ 1

0

d�(t)

(1−tz)2
 , we obtain that

Taking into account that 1

(1−r)1+�
≈
∑∞

n=0
(n + 1)�rn for 𝛾 > 0 , we get the following estimates:

Now we can use Lemma 3.2, together with the fact H�(g) = H(�) ∗ g , to obtain

and the proof is completed.
	�  ◻

Theorem 3.4  Let p ≥ 2 and set

and denote the Zygmund class by

Then H ∶ Mlog × Zp → Hp(�) is bounded.

Proof  Combine Proposition 2.1 and Lemma 3.2 as in the previous theorem.   

X𝛼 = {𝜂 ∈ M([0, 1)); sup
n≥0

(n + 1)𝛼𝜇n(|𝜂|) < ∞}.

sup
0<r<1

(1 − r)Mp(DH(𝜂), r) < ∞.

Mp(DH(�), r) ≤ �
1

0

Mp(K1, rt)d|�|(t) ≤ C�
1

0

d|�|(t)

(1 − rt)
1+

1

p�

.

�
1

0

d|�|(t)

(1 − rt)
1+

1

p�

≈

∞∑

n=0

(n + 1)1∕p
�

�n(|�|)rn ≤ C

1 − r
.

‖H(𝜂, g)‖Hp ≤ C‖g‖H1 sup
0<r<1

(1 − r)Mp(DH(𝜂), r)

Mlog = {𝜂 ∈ M([0, 1)) ∶ ∫
1

0

log(
1

1 − t
)d|𝜂|(t) < ∞}

Zp = {f ∈ H(�) ∶ sup
0<r<1

(1 − r)Mp(D
2f , r) < ∞}.
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The case X = Lp([0, 1))

In this section, we consider the case d�(t) = f (t)dt where f ∈ Lp([0, 1)).

Lemma 4.1  Let 1 < p ≤ ∞ , 1 ≤ q ≤ ∞ and 1
q�
+

1

p
> 0 . If f ∈ Lp(0, 1) , then H(f ) ∈ D(q, p,

1

q�
+

1

p
) and

Proof  As abovementioned, we use that DH(f )(z) = ∫ 1

0
f (t)K1(tz)dt for z ∈ �. Therefore,

If p = ∞ then q > 1 and for f ∈ L∞([0, 1)) we have

This gives that H(f ) ∈ D(q,∞,
1

q�
).

For 1 < p < ∞ , we use the estimate

It is well known and it follows easily from interpolation that the mapping f → 1

1−r
∫ 1

r
f (t)dt defines a bounded operator on 

Lp([0, 1)) for 1 < p ≤ ∞ . Hence, using the adjoint operator, also the mapping f → ∫ r

0

f (t)

1−t
dt defines a bounded operator on 

Lp([0, 1)) for 1 < p < ∞ . Therefore, for any f ∈ Lp([0, 1)) we have

That gives that H(f ) ∈ D(q, p, �) for � =
1

p
+

1

q�
 and the desired estimate for the norms. 	�  ◻

Corollary 4.2  Let 1 < p ≤ ∞ . 

(1)	 If f ∈ Lp([0, 1)) for some p < ∞ , then ∫ 1

0
M

p

1
(DH(f ), r)dr < ∞.

(2)	 If f ∈ Lp([0, 1)) for some 1 < p ≤ 2 , then H(f ) ∈ Hp(�).
(3)	 If f ∈ L∞([0, 1)) , then H(f ) ∈ ∩q>1Λ(q,

1

q
).

Corollary 4.3  ([6, 15]) Let 1 < p < ∞ . Then H ∶ Hp(�) → Hp(�) and H ∶ H∞(�) → BMOA

Proof  We first show that H ∶ H∞(�) → BMOA . This follows trivially from (3) in Corollary 4.2 since Λ(2, 1
2
) ⊂ BMOA.

For 1 < p ≤ 2 , we have that Hp(�) ⊂ Lp([0, 1)) (due to Fèjer-Riesz’s inequality) and the result follows using Lemma 
4.1 for q = p and the fact that D(p, p, 1) ⊂ Hp(�).

Finally, the case 2 < p < ∞ follows from duality. Note that H∗ = H as an operator acting on Hardy spaces. Indeed, if 
f ∈ Hp(�) and g ∈ Hp� (�) , we have

‖H(f )‖
D(q,p,

1

q�
+

1

p
)
≤ C(p, q)‖f‖Lp .

Mq(DH(f ), r) ≤ �
1

0

|f (t)|Mq(K1, tr)dt ≤ C�
1

0

|f (t)|

(1 − rt)
1+

1

q�

dt.

Mq(DH(f ), r) ≤ C
‖f‖L∞

(1 − r)1∕q
�
.

(12)(1 − r)1∕q
�

Mq(DH(f ), r) ≤ C
(
�

r

0

|f (t)|
1 − t

dt +
1

1 − r �
1

r

|f (t)|dt
)
.

�
1

0

(1 − r)p∕q
�

Mp
q
(DH(f ), r)dr ≤ C‖f‖p

Lp(0,1)
.
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Therefore, H∗ is bounded on Hp� (�) for 1 < p′ < 2 and then we obtain the result. 	�  ◻

Remark 4.1  The case 2 < p < ∞ also follows from interpolation using that [H2(�),BMOA]� = Hp(�) for 1
p
=

1−�

2
.

Remark 4.2  Let d�(t) = f (t)dt for some f ∈ Lp([0, 1)) , since �n(�f �) ≤ ‖f‖p(n + 1)−1∕p
� , we have that Lp([0, 1)) ⊂ X1∕p� and 

invoking Theorem 3.3 we obtain H ∶ Lp([0, 1)) × H1(�) → Hp(�) is bounded for p ≥ 2.
On the other hand,

Therefore,

This shows that H ∶ Lp
�

([0, 1)) × Ap(�) → Hp(�) is bounded for p > 1.

Our objective now is to get the “best” space Y ⊂ H(�) such that H ∶ Lp([0, 1)) × Y → Hq(�) is bounded. We start with 
the case p = q = 2.

Theorem 4.4  Let g ∈ H(�) . The following ones are equivalent: 

(1)	 Hg ∶ L2([0, 1)) → H2(�) is bounded.
(2)	 Hg ∶ H2(�) → H2(�) is bounded.
(3)	 g ∈ H2

1∕2
(�).

In particular H ∶ L2([0, 1)) × H2
1∕2

(�) → H2(�) is bounded.
Proof  (1) ⟹ (2) It follows from Féjer-Riesz’s inequality.

(2) ⟹ (3) Let us assume that Hg is bounded on H2(�) . For 0 < r < 1 consider Cr(z) = K0(rz) =
1

1−rz
=
∑∞

n=0
rnzn.

We have ‖Cr‖H2 = (1 − r2)−1∕2 , �n(Cr) =
∑∞

k=0

rk

n+k+1
 and

Note that

Therefore, for each 0 < r < 1 , we have

∫
�

H(f )(𝜉)g(𝜉)
d𝜉

𝜉
=∫

�

(∫
1

0 ∫
�

f (𝜌)

1 − t𝜌̄

d𝜌

𝜌
)

dt

1 − t𝜉
)g(𝜉)

d𝜉

𝜉

=∫
�

(∫
1

0 ∫
�

g(𝜉)

1 − t𝜉

d𝜉

𝜉
)

dt

1 − t𝜌
)f (𝜌)

d𝜌

𝜌

=∫
�

H(g)(𝜌)f (𝜌)
d𝜌

𝜌

�Hg(f )(z)� ≤ ‖f‖p� (�
1

0

�g(tz)�pdt)1∕p.

Mp(Hg(f ), r) ≤ ‖f‖p� (�
1

0

Mp
p
(g, rt))dt)1∕p ≤ ‖f‖p�‖g‖Ap .

Hg(Cr) =

∞∑

n=0

ĝ(n)(

∞∑

k=0

rk

n + k + 1
)zn.

(13)�n(Cr) ≥ (

2n∑

k=n

rk

n + k + 1
) ≥ 1

2
r2n.
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This shows that g ∈ H2
1∕2

(�).
(3) ⟹ (1) Let sup0<r<1(1 − r)1∕2M2(g, r)) = A and f ∈ L2([0, 1)) . Combining the fact H2(�) = D(2, 2, 1) and Lemma 

4.1, we obtain that

This completes the proof.   

Corollary 4.5  [11, Theorem 1] Let g ∈ H(�) . Then Hg ∶ H2(�) → H2(�) iff g ∈ Λ(2, 1∕2).

Theorem 4.4 can be easily generalized for Lq spaces and D(2, q, �).

Theorem 4.6  Let g ∈ H(�) , 1 < q < ∞ and 𝛼 > 1∕q . The following ones are equivalent 

(1)	 Hg ∶ Lq([0, 1)) → D(2, q, �) is bounded.
(2)	 Hg ∶ Hq(�) → D(2, q, �) is bounded.
(3)	 g ∈ H2

�−1∕q
(�).

Proof  (1) ⟹ (2) It follows as above stated using now that Hq(�) ⊂ Lq([0, 1)).
(2) ⟹ (3) Let us assume that Hg is bounded from Hq(�) into D(2, q, �) . Note that DHg(Cr) = HDg(Cr) and arguing as 

in Theorem 4.4 we have that for 0 < s < 1

Therefore,

‖Hg‖2L(H2,H2)
‖Cr‖2H2 ≥‖Hg(Cr)‖2H2

=

∞�

n=0

�ĝ(n)�2�𝜇n(Cr)�2

≥1

2

∞�

n=0

�ĝ(n)�2r2n

≥1

2
M2

2
(g, r).

‖Hg(f )‖2H2 ≈�
1

0

(1 − r)M2
2
(DHg(f ), r)dr

≈�
1

0

(1 − r2)M2
2
(g ∗ DH(f ), r2)rdr

≤C �
1

0

(1 − r)M2
2
(g, r)M2

1
(DH(f ), r)dr

≤CA2 �
1

0

M2
1
(DH(f ), r)dr

≤CA2‖f‖2
L2
.

(14)M2(DHg(Cr), s) = M2(HDg(Cr), s) ≥ 1

2
M2(Dg, rs)

‖Hg‖
q

L(Hq,D(2,q,�))
‖Cr‖

q

Hq ≥‖Hg(Cr)‖
q

D(2,q,�)

=‖HDg(Cr)‖
q

H(2,q,�)

≥ 1

2q
‖(Dg)r‖

q

H(2,q,�)
.
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Since ‖Cr‖Hq ≈
1

(1−r)1∕q
�  it implies that ‖(Dg)r‖H(2,q,�) ≤ C

(1−r)1∕q
�  for some constant C > 0 . Therefore, for any 0 < s, r < 1

This gives M2(Dg, r
2) ≤ C

(1−r)�+1∕q
�  . Now since 𝛼 + 1∕q� > 1 , this is equivalent to (1 − r)�−1∕qM2(g, r) ≤ C . Therefore, 

g ∈ H2
�−1∕q

(�).
(3) ⟹ (1) Set A = sup0<r<1(1 − r)𝛼−1∕qM2(g, r) . We can use Lemma 4.1 for f ∈ Lq([0, 1)) to obtain

This shows that Hg(f ) ∈ D(2, q, �) and the proof is complete now. 	�  ◻

Theorem 4.7  Let 1 < q ≤ p < ∞ , 𝛼 >
1

p
 and 1

t
=

1

q
−

1

p
 . Then H ∶ Lp([0, 1)) × H(p, t, � −

1

p
) → D(p, q, �) is bounded.

Proof  Let f ∈ Lp([0, 1)) . Due to Lemma 4.1, we have H(f ) ∈ D(1, p,
1

p
) . Assume first that q < p and use Hölder inequality, 

for p/q and p∕(p − q) to obtain the following estimate:

The case p = q (hence, t = ∞ ) follows using the same argument but a simpler one. 	�  ◻

Corollary 4.8  Let g ∈ H(�) . 

	 (i)	 If 1 < p ≤ 2 and g ∈ Λ(p,
1

p
) , then Hg ∶ Lp(0, 1) → Hp is bounded (see [11]).

	 (ii)	 If 2 < p < ∞ and g ∈ D(p, t,
1

p�
) where 1

t
=

1

2
−

1

p
 , then Hg ∶ Lp(0, 1) → Hp is bounded.

Proof 

	 (i)	 Recall that due to Hardy-Littlewood g ∈ Λ(p,
1

p
) corresponds to g ∈ D(p,∞,

1

p�
) . Now use Theorem 4.7 together 

with the inclusion D(p, p, 1) ⊂ Hp for 1 < p ≤ 2.
	 (ii)	 Recall that D(p, 2, 1) ⊂ Hp for p > 2 and use Theorem 4.7 for q = 2 and � = 1.

	�  ◻

(1 − s)�qM
q

2
(Dg, rs) ≤ �q�

1

s

(1 − t)�q−1M
q

2
(Dg, rt)dt,≤ �q‖(Dg)r‖

q

H(2,q,�)
.

�
1

0

(1 − r)�q−1M
q

2
(DHg(f ), r)dr ≈�

1

0

(1 − r2)�q−1M
q

2
(g ∗ DH(f ), r2)rdr

≤C �
1

0

�
(1 − r)�−1∕qM2(g, r)

�q

M
q

1
(DH(f ), r)dr

≤CAq �
1

0

M
q

1
(DH(f ), r)dr

≤CAq‖f‖q
Lq
.

�
1

0

(1 − r)�q−1Mq
p
(r,D(g ∗ H(f ))dr

≤C �
1

0

(1 − r)�q−1Mq
p
(g, r)M

q

1
(DH(f ), r)dr

≤C��
1

0

(1 − r)(�q−1)p∕(p−q)Mpq∕(p−q)
p

(g, r)dr
�1−q∕p�

�
1

0

M
p

1
(DH(f ), r)dr

�q∕p

≤C��
1

0

(1 − r)(�−1∕p)t−1Mt
p
(g, r)dr

�q∕t

‖H(f )‖q
D(1,p,

1

p
)

≤C‖g‖q
p,t,�−1∕p

‖f‖q
Lp
.

283



Journal of Mathematical Sciences (2022) 266: –274 284        

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Partially supported by the Spanish project 
PGC2018-095366-B-I00 (MCIU Spain).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s 
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

REFERENCES

	 1.	 A. Aleman and A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), 337—356.
	 2.	 O. Blasco, Multipliers on spaces of analytic functions Canad. Math. J. 47 (1995), 44–64.
	 3.	 O. Blasco, M. Pavlovic, Coefficient multipliers on Banach spaces of analytic functions, Revista Mathematica Iberoamericana, 27 (2011), 

415-447.
	 4.	 Ch. Chatzifountas, D. Girela, and J. A. Peláez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413 (2014), 

no. 1, 154–168.
	 5.	 E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math. 48 (3) (2004) 1067–1078.
	 6.	 E. Diamantopoulos, and A. G. Siskakis, Composition operators and the Hilbert matrix. - Studia Math. 140, 2000, 191–198.
	 7.	 M. Dostanic, M. Jevtic, D. Vukotic, Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type, J. Funct. 

Anal. 154 (2008), 2800-2815.
	 8.	 P. Duren, Hp-spaces Academic Press, New York, 1970.
	 9.	 P.L. Duren and A.L. Shields, Coefficient multipliers ofHpandBpspaces, Pacific J. Math., 32 (1970), 69-78.
	10.	 P. Ganalopoulos, J.A. Peláez, A Hankel matirx acting on Hardy and Bergman spaces, Studia Math. 200:3, 2010, 201–220.
	11.	 P. Ganalopoulos, D. Girela, J.A. Peláez, A. Siskakis, Generalized Hilbert operators, Ann. Acad. Sci. Fennicae Math. 39 (2014), 1–32.
	12.	 J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
	13.	 D. Girela, N. Merchán, A generalized Hilbert operator acting on conformally invariant spaces Banach J. Math. Anal. 12 (2018), no. 2, 

374–398
	14.	 M. Jevtic, D. Vukotic, M. Arsenovic, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces Springer Verlag, 

2016
	15.	 B. Lanucha, M. Nowak, M. Pavlovic, Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. 37 (2012) 161–174.
	16.	 J.A. Peláez, J. Rättyä Generalized Hilbert operators on weighted Bergman spaces Advances in Mathematics 240 (2013) 227–267.
	17.	 E.M. Stein, A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and Lp-spaces, Ann. of Math. 85 (1967), 

337–349.
	18.	 K. Zhu, Operators on Bergman spaces, Marcel Dekker, Inc., New York, 1990.
	19.	 A. Zygmund, Trigonometric series, Cambrigde Univ. Press, New York, 1959.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

284

http://creativecommons.org/licenses/by/4.0/

	REMARKS ON GENERALIZED HILBERT OPERATORS
	Abstract
	Introduction
	Results on the Hilbert matrix operator
	The case 
	The case 
	References




