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Abstract
We consider the Dirac operators with singular potentials 

where 

is a Dirac operator on ℝn with variable magnetic and electrostatic potentials A = (A1, ...,An), Φ , and the vari-
able mass m. In formula (2), �j are the N × N Dirac matrices, that is �j�k + �k�j = 2�jkIN , IN is the unit N × N 
matrix, N = 2[(n+1)∕2], Γ�Σ is a singular delta-potential supported on C2−hypersurface Σ ⊂ ℝ

n periodic with 
respect to the action of a lattice � on ℝn. We consider the self-adjointnes and discretness of the spectrum of 
unbounded in L2(𝕋 ,ℂN) operators associated with the formal Dirac operator (1) on the torus 𝕋 = ℝ

N
⟋𝔾 . 

We study the band-gap structure of the spectrum of self-adjoint operators D in L2(ℝn,ℂN) associated with 
the formal Dirac operator (1) on ℝn with �-periodic regular and singular potentials. We also consider the 
Fredholm property and the essential spectrum of unbounded operators associated with non-periodic regular 
and singular potentials supported on �-periodic smooth hypersurfaces in ℝn.

Keywords  Dirac operators · Singular potential · Delta-interactions · Self-adjointness · Essential spectrum · 
Floquet theory
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(1)D
A,Φ,m,Γ�Σ

= �
A,Φ,m + Γ�Σ

(2)�
A,Φ,m =

n
∑

j=1

�j

(

−i�xj + Aj

)

+ �n+1m + ΦIN
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Introduction

We consider the formal Dirac operators with singular potentials

where �
A,Φ,m is a Dirac operator on ℝn

with magnetic and electrostatic potentials A = (A1, ...,An),Φ , and the variable mass m,  such that Aj,Φ,m ∈ L∞(ℝn). In 
formula (2), �j are the N × N Dirac matrices, that is

IN is the unit N × N matrix, N = 2[(n+1)∕2] (see [18, 24]), and Γ�Σ is a singular delta-type potential supported on a C2−

hypersurface Σ ⊂ ℝ
n periodic with respect to the action of a lattice 𝔾 ⊂ ℝ

n. More exactly, we assume that

, where Σg = Σ0 + g, Σ0 is a closed C2-hypersurface which is a boundary of the open bounded set Ω0. We assume that 
Σg1

∩ Σg2
= ∅ if g1 ≠ g2. Let Ω+ =

⋃

g∈�

Ωg,Ωg = Ω0 + g , and Ω− = ℝ
n⟍Ω+, that is Σ is a common boundary of the sets 

Ω+ and Ω−.

Such Dirac operators arise as approximation of Hamiltonians of interactions of relativistic quantum particles with 
potentials localized in thin tubular neighborhoods of the supports of singular potentials (see for instance [15, 30, 31]). 
In physical statements such problems describe the transitions of relativistic particles through obstacles generated by 
the potentials supported on the mentioned domains in ℝn (see for instance [9, 14, 16, 22, 23, 28]).
The formal Dirac operators with singular potentials are realized as unbounded operators D in Hilbert spaces with 
domains described by interaction conditions on the sets carrying the singular potentials. Recently, many papers 
devoted to their spectral properties for the dimensions n = 2, 3 have appeared; see, for instance, [4, 7, 8, 11–13, 15, 
21, 29–31, 37, 38].
In the paper [39], it was considered the self-adjointness of the unbounded operators in L2(ℝn,ℂN) associated with the 
operators D

A,Φ,m,Γ�Σ
 for Σ belonging to the class of so-called uniformly regular C2−hypersurfaces which contain all 

closed C2-hypersurfaces and a wide set of unbounded C2−hypersurfaces, in particular, �−periodic C2−hypersurfaces 
described by formula (5).
Let H1(Ω±,ℂ

N) be the Sobolev spaces of distributions on Ω± with values in ℂN and we set

We associate with the formal Dirac operator D
A,Φ,m,Γ�Σ

 the unbounded in L2(ℝn,ℂN) operator D
A,Φ,m,�Σ

 defined by the 
Dirac operator �

A,Φ,m with the domain

where �±
Σ
∶ H1(Ω±ℂ

N) → H1∕2(Σ,ℂN) are the trace operators, and

(3)D
A,Φ,m,Γ�Σ

= �
A,Φ,m + Γ�Σ

(4)

�
A,Φ,m =� ⋅ (D + A) + �n+1m + ΦIN

=

n
∑

j=1

�j(Dxj
+ Aj) + �n+1m + ΦIN ,Dxj

= −i�xj ,

�j�k + �k�j = 2�jkIN ,

(5)Σ =
⋃

g∈�

Σg

H1(ℝn⟍Σ,ℂN) = H1(Ω+,ℂ
N)⊕ H1(Ω−,ℂ

N).

(6)
H

1

�Σ
(ℝn⟍Σ,ℂN)

=
{

u ∈ H
1(ℝn⟍Σ,ℂN) ∶ �Σu(s) = a+(s)�

+
Σ
u(s)(s) + a−(s)�

−
Σ
u(s) = 0, s ∈ Σ

}

(7)a±(s) =
1

2
Γ(s) ∓ i� ⋅ �(s), � ⋅ �(s) =

n
∑

j=1

�j�j(s), s ∈ Σ,
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�(s) =
(

�1(s)..., �n(s)
)

, s ∈ Σ is the field of unit normal vectors to Σ pointed into Ω−. We also associate the operator �
A,Φ,m,� 

of the interaction (transmission) problem with the formal Dirac operator D
A,Φ,m,Γ�Σ

acting from H1(ℝn⟍Σ,ℂN) into L2(ℝn,ℂN).

The following problems are considered in the paper. 

1.	 We study the Dirac operators on n−dimensional torus �  with singular potentials Γ�Σ where Σ is (n − 1)−dimensional 
C2−submanifold of � , Γ =

(

Γij

)N

i,j=1
 is the matrix with elements Γij ∈ C1(Σ). As above, we associate with the formal 

Dirac operator with singular potential an unbounded L2(𝕋 ,ℂn) operator D
A,Φ,m,�Σ

 and the interaction operator �
A,Φ,m,�Σ

 
bounded from H1(𝕋⟍Σ,ℂN) into L2(ℝn,ℂN) . We study the Fredholm properties of �

A,Φ,m,�Σ
, the self-adjointness and 

discreetness of the spectrum of the operator D
A,Φ,m,�Σ

 on the torus � .
2.	 We consider the Floquet theory for the formal Dirac operator (3) where Σ ⊂ ℝ

n is a �−periodic C2−hypersurface, Γ is 
a �− periodic matrix, and the potentials A,Φ,m are �− periodic. We describe the band-gap structure of the spectrum 
for the self-adjoint operator D

A,Φ,m,�Σ
.

3.	 We consider the Fredholm property of �
A,Φ,m,�Σ

 and essential spectrum of D
A,Φ,m,�Σ

 in the case if Σ is �−periodic 
hypersurface in ℝn but the matrix Γ , and potentials A,Φ,m are not periodic. Our approach to the investigation of the 
Fredholm property of �

A,Φ,m,�Σ
 and the essential spectrum of the operator D

A,Φ,m,�Σ
 is based on the limit operator 

method (see [32–34]). We associate the sets of the limit operators with the operators �
A,Φ,m,�Σ

 and D
A,Φ,m,�Σ

 defined by the sequences � ∋ hk → ∞, where Ah(x),Φh(x),mh(x) are the limits of the sequences 
A
(

x + hk
)

,Φ(x + hk),m(x + hk) in the sense of uniform convergence on compact sets in ℝn, and 

 where ah
±
(x) = limk→∞ a±(x + hk) in the sense of uniform convergence on compact sets in Σ . We denote by 

Lim(�
A,Φ,m,�Σ

) Lim(D
A,Φ,m,�Σ

) the set of all limit operators of �
A,Φ,m,�Σ

,D
A,Φ,m,�Σ

. Applying the limit operators 
approach, we obtain the following result.

Theorem 1  Let Σ be �−periodic C2-hypersurface, Aj,Φ,m ∈ C1
b
(Ω),Γ =

(

Γjl

)N

j,l=1
 be an Hermitian matrix defined on Σ 

such that Γjl ∈ C1
b
(Σ), k, l = 1, ...,N. We assume that the Lopatinsky-Shapiro condition

holds at every point x ∈ Σ where T∗
x
(Σ) is the cotangent space to Σ at the point x. Then:

(i) 𝔻
A,Φ,m,�Σ

∶ H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN) is a Fredholm operator if and only if all limit operators 
𝔻

h
A,Φ,m,�Σ

∶ H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN) are invertible;

(ii) The operator D
A,Φ,m,�Σ

 is closed and

As an example, we consider the essential spectrum of operators which are perturbations of periodic operators D
A,Φ,m,�Σ

 
by slowly oscillating at infinity potentials.

(8)𝔻
A,Φ,m,�Σ

u =

{

�
A,Φ,mu on ℝ

n⟍Σ

�Σu = 0 on Σ
.

�
h
A,Φ,m,�Σ

= �
A
h,Φh,mh,�h

Σ
,Dh

A,Φ,m,�Σ
= D

A
h,Φh,mh,�h

Σ

�
h
Σ
u = ah

+
�
+
Σ
u + ah

−
�
−
Σ
u,

det

(

� ⋅ �x +
Γ(x)

2

)

≠ 0, �x ∈ T∗
x
(Σ) ∶ |

|

�x
|

|

= 1,

spessDA,Φ,m,�Σ
=

⋃

D
h∈Lim(DA,Φ,m,�Σ

)

spDh
A,Φ,m,�Σ
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Notations and auxiliary material

Notations

•	 If X,Y are Banach spaces, then we denote by B(X,Y) the space of bounded linear operators acting from X into Y 
with the uniform operator topology, and by K(X,Y) the subspace of B(X,Y) of all compact operators. In the case 
X = Y , we write shortly B(X) and K(X).

•	 An operator A ∈ B(X,Y) is called a Fredholm operator if kerA , and cokerA = Y∕ImA are finite dimensional spaces. 
Let A be a closed unbounded operator in a Hilbert space H with a dense in H domain domA. Then A is called a 
Fredholm operator if kerA = {u ∈ domA ∶ Au = 0} and cokerA = H∕ImA where ImA=

{

w ∈ H ∶ w = Au, u ∈ D
A

}

 
are the finite-dimensional spaces. Note that A is a Fredholm operator as the unbounded operator in H if and only 
if A ∶ domA → H is a Fredholm operator as the bounded operator where domA is equipped by the graph norm 

 (see for instance [1]).
•	 The essential spectrum spessA of an unbounded operator A is a set of � ∈ ℂ such that A − �I is not the Fredholm 

operator as the unbounded operator, and the discrete spectrum spdisA of A is a set of isolated eigenvalues of finite 
multiplicity. It is well known that if A is a self-adjoint operator, then spdisA = spA⟍spessA.

•	 We denote by L2(ℝn,ℂN) the Hilbert space of N−dimensional vector functions u(x) = (u1(x), ..., uN(x)), x ∈ ℝ
n with 

the scalar product 

 where u ⋅ v =
∑n

j=1
ujv̄j.

•	 We denote by Hs(ℝn,ℂN) the Sobolev space of vector-valued distributions u ∈ D
�(ℝn,ℂN) such that 

 where û is the Fourier transform of u. If Ω  is a domain in ℝn then Hs(Ω,ℂN) is the space of restrictions of 
u ∈ Hs(ℝn,ℂN) on Ω with the norm 

 where lu is an extension of u on ℝn. If Σ is a smooth enough hypersurface in ℝn , we denote by Hs−1∕2(Σ,ℂN) the space 
of restrictions on Σ the distributions in Hs(ℝn,ℂN), s > 1∕2.

•	 We denote by Cb(ℝ
n) the class of bounded continuous functions on ℝn, Cm

b
(ℝn) the class of functions a on ℝn such 

that ��a ∈ Cb(ℝ
n) for all multi-indices � ∶ |�| ≤ m. We denote by C1

b
(Σ) the class of differentiable on Σ functions 

that are bounded with their first derivatives, and C∞
b
(ℝn) = ∩m≥0C

m
b
(ℝn).

•	 Let a C2−hypersurface Σ ⊂ ℝ
n, n ≥ 2 be the common boundary of the domains Ω± . We say that Σ is uniformly 

regular (see for instance [3, 19]) if: (i) there exists r > 0 such that for every point x0 ∈ Σ there exists a ball 
Br(x0) =

{

x ∈ ℝ
n ∶ |

|

x − x0
|

|

< r
}

 and the diffeomorphism �x0
∶ Br(x0) → B1(0) such that 

 (ii) Let �i
x0
,� i

x0
, i = 1, ..., n be the coordinate functions of the mappings �x0

,�−1
x0
. Then 

‖u‖domA =
�

‖u‖2
H
+ ‖Au‖2

H

�1∕2
, u ∈ domA

⟨u, v⟩ =
∫
ℝn

u(x) ⋅ v(x)dx,

‖u‖Hs(ℝn,ℂN ) =

�

∫
ℝn

(1 + �𝜉�
2)s‖û(𝜉)‖2

ℂN d𝜉

�1∕2

< ∞, s ∈ ℝ,

‖u‖Hs(Ω,ℂN ) = inf
lu∈Hs(ℝn,ℂN )

‖lu‖Hs(ℝn,ℂN ),

𝜑x0

(

Br(x0) ∩ Ω±

)

=B1(0) ∩ℝ
n
±
,ℝn

±

=
{

y = (y�, yn) ∈ ℝ
n−1
y�

×ℝyn
∶ yn ≷ 0

}

,

𝜑x0

(

Br(x0) ∩ Σ
)

=B1(0) ∩ℝ
n−1
y�

;
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 Note that each closed C2−hypersurface is uniformly regular.

Auxiliary material

Dirac operators on ℝn with singular potentials ([39]).

•	 Let 

 be the formal Dirac operator defined by formulas (3), (5). We assume that Σ is the uniformly regular C2−hypersurface 
in ℝn,Aj,Φ,m ∈ L∞(ℝn), Γ =

(

Γi,j

)N

i,j=1
,Γi,j ∈ C1

b
(Σ). We define the product Γ�Σu where u ∈ H1(ℝn⟍Σ,ℂN) as a dis-

tribution in D�(ℝn,ℂN) = D
�(ℝn)⊗ ℂ

N acting on the test functions � ∈ C
∞
0
(ℝn,ℂN) as 

 Integrating by parts and taking into account (9), we obtain that 

 where �±
Σ
∶ H1(Ω±,ℂ

N) → H1∕2(Ω±,ℂ
N) are the trace operators, �(s) = (�1(s), ..., �n(s)) is the field of unit normal 

vectors pointed to Ω− . Formula (10) yields that in the distribution sense 

 where �
A,Φ,mu is the regular distribution given by the function �

A,Φ,mu ∈ L2(ℝn,ℂN). Formula (11) yields that 
�

A,Φ,m,Γ�Σ
u ∈ L2(ℝn,ℂN) if and only if 

 Condition (12) can be written in the form 

 where a± are N × N matrices: 

 We associate with the formal Dirac operator �
A,Φ,Γ�Σ

 the unbounded in L2(ℝn,ℂN) operator D
A,Φ,m,�Σ

 defined by the 
Dirac operator �

A,Φ,m with the domain 

 and the bounded operator of the interaction (transmission) problem 

sup
x0∈Σ

sup
|𝛼|≤2,x∈Br(x0)

|

|

|

𝜕
𝛼
𝜑
i
x0
(x)

|

|

|

< ∞, i = 1, ..., n;

sup
x0∈Σ

sup
|𝛼|≤2,y∈B1(0)

|

|

|

𝜕
𝛼
𝜓

i
x0
(y)

|

|

|

< ∞, i = 1, ..., n.

�
A,Φ,m,Γ�u(x) =

(

�
A,Φ,m + Γ�Σ

)

u(x), x ∈ ℝ
n

(9)
(

Γ�Σu
)

(�) =
1

2 ∫Σ

Γ(s)
(

�
+
Σ
u(s) + �

−
Σ
u(s)

)

⋅ �(s)ds.

(10)D
A,Φ,m,Γ�Σ

u = �
A,Φ,mu −

[

i� ⋅ �
(

�
+
Σ
u − �

−
Σ
u
)

+
1

2
Γ
(

�
+
Σ
u + �

−
Σ
u
)

]

�Σ,

(11)D
A,Φ,m,Γ�Σ

u = �
A,Φ,mu −

[

i� ⋅ �
(

�
+
Σ
u − �

−
Σ
u
)

+
1

2
Γ
(

�
+
Σ
u + �

−
Σ
u
)

]

�Σ,

(12)−i� ⋅ �
(

�
+
Σ
u − �

−
Σ
u
)

+
1

2
Γ
(

�
+
Σ
u + �

−
Σ
u
)

= 0 on Σ.

(13)�Σu = a+�
+
Σ
u + a−�

−
Σ
u = � on Σ

(14)a± =
1

2
Γ ∓ i� ⋅ � on Σ.

(15)
domD

A,Φ,m,�Σ
=H1

�Σ
(ℝn⟍Σ,ℂN)

=
{

u ∈ H
1(ℝn⟍Σ,ℂN) ∶ �Σu = 0 on Σ

}

,
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 acting from H1(ℝn⟍Σ,ℂN) into L2(ℝn,ℂN).

•	 We consider the parameter-dependent operator 

 acting from H1(ℝn⟍Σ,ℂN) into L2(ℝn,ℂN).

•	 Condition 

 is called the local parameter-dependent Lopatinsky-Shapiro condition where T∗
x
(Σ) is the cotangent space to Σ at the 

point x ∈ Σ, and the condition 

 is called the uniform parameter-dependent Lopatinsky-Shapiro condition.
•	 Note that if the matrix Γ(x) is Hermitian for every x ∈ Γ, then condition (18) becomes the local Lopatinsky-Shapiro 

condition 

Theorem 2  Let Σ be the uniformly regular C2−hypersurface in ℝn , Aj , Φ , m ∈ L∞(ℝn), Γ =
(

Γi,j

)N

i,j=1
,Γi,j ∈ C1

b
(Σ) , and 

the uniform parameter-dependent Lopatinsky-Shapiro condition (19) hold. Then there exists �0 ∈ ℝ such that the 
operator

is invertible for every 𝜇 ∈ ℝ ∶ |𝜇| > R.

Theorem 3  Let Σ be the uniformly regular C2−hypersurface in ℝn , Aj , Φ , m ∈ L∞(ℝn), Γ =
(

Γi,j

)N

i,j=1
,Γi,j ∈ C1

b
(Σ) , Aj,Φ,m 

be real-valued functions, Γ(x) be Hermitian matrix for every x ∈ Σ, and the uniform Lopatinsky-Shapiro condition

hold. Then the operator D
A,Φ,m,�Σ

 is self-adjoint.

Example 4  Let Γ(x) = �(x)IN + �(x)�n+1 where �(x), �(x) ∈ C1
b
(Σ) be real-valued functions. Then condition

ensures the condition (21), and therefore the invertibility �
A,Φ,m,�Σ

(i�) for large enough |�|, and the self-adjointness of 
D

A,Φ,m,�Σ
.

Note that the singular potential Γ�Σ describes the electrostatic and Lorentz scalar shell interactions in ℝn (see [11–13].)

(16)𝔻
A,Φ,m,�Σ

u =

{

�
A,Φ,mu on ℝ

n⟍Σ,

�Σu = a+�
+
Σ
u + a−�

−
Σ
u = 0 on Σ

(17)
𝔻

A,Φ,m,�Σ
(i�)u =

(

𝔻
A,Φ,m,�Σ

− i�I
N

)

u

=

{

�
A,Φ,m(i�)u = (�

A,Φ,m − i�I
N
)u on ℝ

n⟍Σ,

�Σu = a+�
+
Σ
u + a−�

−
Σ
u = 0 onΣ

,� ∈ ℝ

(18)det

(

� ⋅ �x +
Γ(x)

2
− i�IN

)

≠ 0 for (�x,�) ∈ T∗
x
(Σ) ×ℝ ∶ |

|

�x
|

|

2
+ �

2 = 1

(19)inf
x∈Σ

inf
(𝜉x,𝜇)∈T

∗
x
(Σ)×ℝ∶

|
𝜉x|

2
+𝜇2=1

|

|

|

|

|

det

(

𝛼 ⋅ 𝜉x +
Γ(x)

2
− i𝜇IN

)

|

|

|

|

|

> 0

(20)det

(

� ⋅ �x +
Γ(x)

2

)

≠ 0 for �x ∈ T∗
x
(Σ) ∶ |

|

�x
|

|

= 1

𝔻
A,Φ,m,�Σ

(i�) ∶ H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN)

(21)inf
x∈Σ

inf
𝜉x∈T

∗
x
(Σ)∶

|
𝜉x|

2
=1

|

|

|

|

|

det

(

𝛼 ⋅ 𝜉x +
Γ(x)

2

)

|

|

|

|

|

> 0

(22)inf
x∈ℝn

|

|

|

𝜂
2(x) − 𝜏

2(x) − 4
|

|

|

> 0
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Band‑dominated operators on ℝn and their local invertibility at infinity ([32–34] ,[26])

Let � ∈ C∞
0
(ℝn),�(x) = 1 if |x| ≤ 1∕2 and �(x) = 0 if |x| ≥ 1, �(x) = 1 − �(x), �R(x) = �R(x∕R), �R(x) = �(x∕R).

Definition 5  We say that A ∈ B(L2(ℝn,ℂN)) is locally invertible at infinity if there exists R > 0 and the operators 
LR,RR ∈ B(L2(ℝn,ℂN)) such that

Definition 6  We say that the operator A ∈ B
(

L2(ℝn,ℂN)
)

 belongs to the class A(ℝn,ℂN) of band-dominated operators on 
ℝ

n if for every function � ∈ C∞
b
(ℝn)

where �t(x) = �(t1x1, ..., tnxn), t = (t1, ..., tn) ∈ ℝ
n.

Note that A(ℝn,ℂN) is an inverse closed C∗−algebra.
We denote by Vh, h ∈ � the unitary in L2(ℝn,ℂN) shift operator Vhu(x) = u(x − h).

Ler � be the lattice in ℝn, that is

where 
{

a1, ..., an
}

 is a linearly independent system of vectors in ℝn.

Definition 7  Let the sequence � ∋ hk → ∞. We say that the operator Ah ∈ B(L2(ℝn,ℂN)) is a limit operator of 
A ∈ B(L2(ℝn,ℂN)) if for every function � ∈ C∞

0
(ℝn)

We say that the operator A ∈ B(L2(ℝn,ℂN)) is rich  if every sequence � ∋ hk → ∞ has a subsequence hkl defining the 
limit operator.

Theorem 8  (see [26, 32, 33]). Let A ∈ A(ℝn,ℂN) be a rich operator acting in L2(ℝn,ℂN). Then the following assertions 
are equivalent:

	 (i)	 A is a locally invertible at infinity operator;
	 (ii)	 The family Lim(A) of all limit operators is uniformly invertible in L2(ℝn,ℂN) that is every limit operator Ah has 

inverse 
(

Ah
)−1 , and 

	 (iii)	 Each limit operator Ah ∈ Lim(A) is invertible in L2(ℝn,ℂN).

Remark 9  The equivalence of conditions (i) and (ii) has been proved in [32, 33], but the question of the equivalence of 
conditions (ii) and (iii) has been open for a long time. The affirmative answer to this question has been obtained in [26].

LRA�RI = �RI,�RARR = �RI.

lim
t→0

‖

‖

‖

[

�tI,A
]

‖

‖

‖B(L2(ℝn,ℂN ))
= lim

t→0

‖

‖

‖

[

�tA − A�tI
]

‖

‖

‖B(L2(ℝn,ℂN ))
= 0

(23)𝔾 =

{

g ∈ ℝ
n ∶ g =

n
∑

j=1

gjaj, gj ∈ ℤ

}

,

lim
k→∞

‖

‖

‖

(

V−hk
AVhk

− Ah
)

�I
‖

‖

‖B(L2(ℝn,ℂN )

= lim
k→∞

‖

‖

‖

�
(

V−hk
AVhk

− Ah
)

‖

‖

‖B(L2(ℝn,ℂN )
= 0.

sup
Ah∈Lim(A)

‖

‖

‖

(

Ah
)−1

‖

‖

‖

< ∞;
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Interaction problems for Dirac operators on the torus

Let � be the lattice defined by (23). We consider the formal Dirac operator on ℝn given by formulas (3), (5) with the 
�−periodic potentials Aj,Φ,m, and the �−periodic singular potentials Γ�Σ. Let W be a fundamental domain for the action 
of the group � on ℝn, and Ω0 be a domain such that Ω0 ⊂ int(W). We set

and

is the periodic common boundary of the domains Ω±.

We associate with the periodic formal Dirac operator

where Aj,Φ,m ∈ C1(ℝn) are �−periodic function on ℝn,Γ =
(

Γkl

)N

k.l=1
 is a periodic matrix with Γkl ∈ C1(Σ),the interac-

tion operator ��

A,Φ,m,�Σ
 on the torus 𝕋 = ℝ

n
⟋𝔾

where a± =
Γ

2
∓ i� ⋅ �, Σ̃ is a C2 manifold on �  of dimension (n − 1) which is the natural projection on �  by the hyper-

surface Σ ⊂ ℝ
n, and Σ̃ is the common boundary of the domain Ω̃± ⊂ � , which are the projections of Ω± on � , �(s) is the 

unit normal vector to Σ̃ pointed to Ω̃−.

Let

H1(Ω̃±,ℂ
N) are Sobolev spaces on domains Ω̃± ⊂ � . We consider ��

A,Φ,m,�Σ
 as a bounded operator from H1(𝕋⟍Σ̃,ℂN) 

into L2(𝕋 ,ℂN) . We denoted by D�

A,Φ,m,�Σ
 the unbounded operator in L2(𝕋 ,ℂN) generated by the Dirac operator �

A,Φ,Ψ on 
the torus �  with the domain

Theorem 10  (i) Let Σ̃ ⊂ �  be a C2-submanifold of the dimension (n − 1) , Aj,Φ,m ∈ C1(� ) , the matrix Γ =
(

Γij

)N

i,j=1
 be 

defined on Σ̃ and such that Γij ∈ C1(Σ̃). Moreover, let for every point x ∈ Σ̃ the Lopatinsky-Shapiro condition

hold, where T∗
x
(Σ̃) is the cotangent space to the manifold Σ̃ at the point x. Then, 𝔻

A,Φ,Ψ,�Σ̃ ∶ H1(𝕋 ,ℂN) → L2(𝕋 ,ℂN) is 
the Fredholm operator.

(ii) Let in addition to the above conditions the matrix Γ(x) be Hermitian for each x ∈ Σ̃. Then ind(�
A,Φ,m,�Σ̃

) = 0, and 
the operator 𝔻

A,Φ,m,�Σ̃
− 𝜆I ∶ H1(𝕋⟍Σ̃,ℂN) → L2(𝕋 ,ℂN) is invertible for each � ∈ ℂ⟍Π where Π is a discrete set in ℂ 

with a unique limit point ∞. The unbounded operator D
A,Φ,m,�Σ̃

 is closed and has the discrete spectrum only.

Ω+ =
⋃

g∈G

Ωg,Ω− = ℝ
n⟍Ω+,

Σ =
⋃

g∈�

Σg, Σg = �Ωg

D
A,Φ,m,�,Γ�Σ

= �
A,Φ,m + Γ�Σ

(24)�
�

A,Φ,Ψ,�Σ
u =

{

�
A,Φ,mu on �⟍Σ̃

�Σ̃u = a+𝛾
+
Σ0
u + a−𝛾

−
Σ0
u = 0 on Σ̃

,

H1(𝕋⟍Σ̃,ℂN) = H1(Ω̃+,ℂ
N)⊕ H1(Ω̃−,ℂ

N),

domD𝕋

A,Φ,m,�Σ
=
{

u ∈ H1(𝕋⟍Σ̃,ℂN) ∶ �Σ̃u = 0 on Σ̃
}

.

(25)det

(

𝛼 ⋅ 𝜉x +
Γ(x)

2

)

≠ 0, for each 𝜉x ∈ T∗
x
(Σ̃) ∶ |

|

𝜉x
|

|

= 1
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Proof  (i) As in the paper [39], one can prove that the Lopatinsky-Shapiro condition (25) is sufficient for the local Fred-
holmness of the operator �

A,Φ,Ψ,�Σ̃
 at the point x ∈ Σ̃. Since the operator �

A,Φ,m is elliptic at every point x ∈ �  the local 
principle of the elliptic theory [1] yields that the operator �

A,Φ,m,�Σ̃
 is Fredholm if condition (25) holds at every point x ∈ Σ̃;

(ii) It follows from (i) the operator �
A,Φ,Ψ,�Σ̃

− i𝜇IN is the Fredholm operator for every � ∈ ℂ . Hence �
A,Φ,m,�Σ̃

− i𝜇IN 
is the analytical family of the Fredholm operators. Moreover, since Γ(x) is a Hermitian matrix for every x ∈ ℝ

n the 
parameter-dependent Lopatinsky-Shapiro condition holds for every � ∈ ℝ . By Theorem 2, the operator �

A,Φ,m,�Σ̃
− i𝜇IN 

is invertible for � ∈ ℝ with |�| is large enough. Hence, by the Analytic Fredholm Theorem (see [10, 20]), the operator

where Π is a discrete set with a possible limit point ∞.

Moreover, ind
(

�
A,Φ,m,�Σ̃

)

= 0. The Lopatinsky-Shapiro condition (25) yields the a priori estimate

for every u ∈ H1(𝕋⟍Σ̃,ℂN) with a constant C > 0 independent of u. The a priori estimate (27) implies the closedness of 
D

A,Φ,m,�Σ̃
. Moreover, applying property (26) we obtain that spD

A,Φ,m,�Σ̃
 is discrete.

Theorem 11  Let conditions (i) of Theorem 10 hold. Moreover, AjΦ,m are real-valued functions, and the matrix Γ(x) is 
Hermitian for every x ∈ Σ̃. Then the operator D�

A,Φ,m,�Σ
 is self-adjoint in L2(𝕋 ,ℂn).

Proof  We turn to the paper [39] where the similar result was obtined for the unbounded in L2(ℝn⟍Σ,ℂN) opertator 
D

�Φ,m,�Σ
.

10. Let u, v ∈ domD
A,Φ,m,�Σ

. Then integrating by parts we obtain that

Since Γ is an Hermitian matrix we obtain that �
A,Φ,m is a symmetric operator.

20. Let

be the operator depending on the parameter � ∈ ℝ acting from H1(𝕋⟍Σ̃,ℂN) into L2(𝕋 ,ℂN), and let the Lopatinsky-
Shapiro condition (25) holds at every point x ∈ Σ̃. Then since �

A,Φ,Ψ − i�IN is the elliptic with parameter operator on 
the torus �  , and the Lopatinsky-Shapiro condition (25) yields the parameter-dependent Lopatinsky-Shapiro condition 

since Γ is a Hermitian matrix. Condition (30a) yields that the interaction (transmission) operator ��

A,Φ,m,�Σ0

(i�) is invert-
ible for the large value of |�| (see [1, 2]). Moreover, the invertibility of ��

A,Φ,m,�Σ̃
(i𝜇) for large |�| implies that 

Range
(

�
A,Φ,m − i�IN

)

= L2(𝕋 ,ℂN) for all � ∈ ℝ with large enough |�|. Hence, the deficiency indices of D
A,Φ,m,�Σ̃

 are 
equal to zero, and the operator D

A,Φ,m,�Σ̃
 is self-adjoint.

(26)
𝔻

A,Φ,m,�Σ̃
− 𝜆I ∶ H1(𝕋⟍Σ̃,ℂN) → L2(𝕋 ,ℂN)

is invertible for each 𝜆 ∈ ℂ⟍Π

(27)‖u‖H1(𝕋⟍Σ̃,ℂN ) ≤ C
�

�

�

�
A,Φ,mu

�

�L2(𝕋 ,ℂN )
+ ‖u‖L2(𝕋 ,ℂN )

�

(28)

⟨

�
A,Φ,mu, v

⟩

L2(𝕋 ,ℂN )
−
⟨

u,�
A,Φ,mv

⟩

L2(𝕋 ,ℂN )

= −
1

4

⟨

Γ
(

𝛾
+
Σ0
u + 𝛾

−
Σ0
u
)

, 𝛾+
Σ0
v − 𝛾

−
Σ0
v
⟩

L2(Σ̃,ℂN )

+
1

4

⟨

𝛾
+
Σ0
u + 𝛾

−
Σ0
u,Γ(𝛾+

Σ
v − 𝛾

−
Σ
v
⟩

L2(Σ̃,ℂN )
.

(29)�
A,Φ,m,�Σ̃

(i𝜇)u =

{(

�
A,Φ,m − i𝜇IN

)

u on �⟍Σ̃

�Σ̃u = 0 on Σ̃

(30a)det

(

𝛼 ⋅ 𝜉x +
Γ(x)

2
− i𝜇IN

)

≠ 0, 𝜉x ∈ T∗
x
(Σ̃) ∶ |

|

𝜉x
|

|

2
+ 𝜇

2 = 1
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Floquet theory of interaction problems on periodic hypersurfaces

Let � be the lattice (23), and �∗ be the reciprocal lattice

We fix a connected fundamental domain W0 ⊂ ℝ
n (Wigner–Seitz cell) of the lattice � in ℝn , i.e., a set

such that ℝn =
∑

g∈𝔾 Wg,Wg = W0 + g. We will also fix a connected fundamental domain B0 (Brillouin zone) of the 
reciprocal lattice �∗

We also introduce two tori 𝕋 = ℝ
n
⟋𝔾 and 𝕋 ∗= ℝ

n
⟋𝔾

∗ which can be identified naturally with fundamental domains W0 , 
B0, respectively. Let as above

and

is the common boundary of the domains Ω±.

We consider here the periodic formal Dirac operator on ℝn with singular potentials of the form

where �
A,Φ,m is a Dirac operator on ℝn given by formula (4), Aj,Φ,m ∈ C1(ℝn) are real-valued �−periodic functions, and 

Γ =
(

Γi,j

)N

i,j=1
 is a �-periodic Hermitian matrix with Γi,j ∈ C1(Σ).

Let D
A,Φ,m,�Σ

 be the unbounded operator in L2(ℝn,ℂN) generated by the Dirac operator �
A,Φ,m with the domain

associated with the formal Dirac operator D
A,Φ,m,Γ�Σ

.

We assume that the local Lopatinsky-Shapiro condition

is satisfied at every point x ∈ Σ.

By Theorem 3 D
A,Φ,m,�Σ

 is a self-adjoint operator in L2(ℝn,ℂN). Since the operator D
A,Φ,m,�Σ

 is invariant with respect to the 
shifts Vg, g ∈ �

We consider the band-gap structure of the spectrum of D
A,Φ,m,�Σ

 applying the Floquet transform (see for instance [25, 40]).

𝔾
∗ =

{

k ∈ ℝ
n ∶ k =

n
∑

j=1

kjbj.kj ∈ ℝ

}

,

aj ⋅ bl =2��jl, j, l = 1, ..., n.

W0 =

{

x ∈ ℝ
n ∶ x =

n
∑

j=1

tjaj, tj ∈ [0, 1)

}

.

(31)B0 =

{

x ∈ ℝ
n ∶ x =

n
∑

j=1

tjbj, tj ∈ [0, 1)

}

.

(32)Ω+ =
∑

g∈𝔾

Ωg, where Ω̄0 ⊂ int(W0),Ωg = Ω0 + g, g ∈ 𝔾,Ω− = ℝ
n⟍Ω+,

(33)Σ =
⋃

g∈�

Σg, Σ0 = �Ω0, Σg = Σ0 + g

(34)D
A,Φ,m,Γ�Σ

= �
A,Φ,m + Γ�Σ

dom
(

D
A,Φ,m,�Σ

)

=
{

u ∈ H1(ℝn⟍Σ,ℂN) ∶ �Σu = 0
}

(35)det

(

� ⋅ �x +
Γ(x)

2

)

≠ 0, �x ∈ T∗
x
(Σ) ∶ |

|

�x
|

|

= 1

spessDA,Φ,m,�Σ
= spD

A,Φ,m,�Σ
.
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Let f ∈ S(ℝn,ℂN) = S(ℝn)⊗ ℂ
N , where S(ℝn) is the Schwartz space. The Floquet transform of f is defined as

and the inverse Floquet transform is

The operator F
�
 is continued from the space S(ℝn,ℂN) to the unitary operator acting from L2(ℝn,ℂN) into the space 

L2(𝕋 × 𝕋
∗,ℂN). Applying the Floquet transform, we obtain that

where D
A,Φ,m,�Σ

(k), k ∈ �
∗ is the unbounded operator in L2(𝕋 ,ℂN) generated by the Dirac operator

with domain

As follows from Theorem 11 the operator D
A,Φ,m,�Σ̃

(k) has real discrete spectrum

where 𝜆j(k) < 𝜆j+1(k) for every j ∈ ℤ and �j(k) are continuous real-valued functions on the torus � ∗.

The decomposition of D
A,Φ,m,�Σ

 in the direct integral (36) yields that

where

Fredholm theory and essential spectrum of interaction problems on periodic 
hypersurfaces in ℝn

We consider the interaction problem on the domains Ω± with the common boundary Σ described in (32) and (33). Hence, 
the domains Ω± and the hypersurface Σ are invariant with respect to the shifts on the vectors h ∈ �. We do not assume the 
periodicity of the potentials and the matrix Γ with respect to the action of �.
We assume that

Our approach is based on the limit operators method and Theorem 8. We introduce the limit operators defined by the 
sequence � ∋ hk → ∞. We set

where the limits are understood in the sense of the uniform converges on compact sets in ℝn, and

(

F
�
f
)

(x, k) =
∑

�∈�

f (x − �)e−ik⋅(x−�), k ∈ B0,

(

F
−1
�
v
)

(x) =
∫B0

v(x, k)eix⋅k
dk

vol(B0)

(36)F
�
D

A,Φ,m,�Σ
F

∗
�
=
∫

⊕

k∈� ∗

D
A,Φ,m,�Σ

(k)
dk

vol(B0)

�
A,Φ,m(k) = �

A+k,Φ,m = � ⋅ (D + A + k) + m�n+1 + ΦIN on �

dom(D
A,Φ,m,𝔅Σ

(k)) =
{

u ∈ H1(𝕋 ⧵ Σ̃,ℂN) ∶ 𝔅Σ̃u = 0
}

.

spD
A,Φ,m,�Σ̃

(k) =
{

𝜆j(k)
}∞

j=−∞
, k ∈ �

∗

(37)spD
A,Φ,m,�Σ

= spessDA,Φ,m,�Σ
=
⋃

j∈ℤ

[

aj, bj
]

(38)
[

aj, bj
]

=
{

� ∈ ℝ ∶ � = �j(k), k ∈ 𝕋
∗
}

.

(39)Aj,Φ,m ∈ C1
b
(ℝn),Γij ∈ C1

b
(Σ).

A
h(x) = lim

k→∞
A(x + hk),Φ

h(x) = lim
k→∞

Φ(x + hk),m
h(x) = lim

k→∞
m(x + hk)
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is understood in the sense of the converges on the finite unions ∪
|g|≤lΣg, l ∈ ℕ.

We use the notations 𝕏 = H1(ℝn⟍Σ,ℂN) and 𝕐 = L2(ℝn,ℂN), and

is a bounded operator from � into � . We introduce the limit operator �h
A,Φ,m,�Σ

 defined by the sequence � ∋ hk → ∞ as 
follows:

where �h
Σ
u = ah

+
�
+
Σ
u + ah

−
�
−
Σ
u, a± =

Γh

2
∓ i� ⋅ �.

One can see that for every � ∈ C∞
0
(ℝn)

The Arcela-Ascoli Theorem implies that every sequence � ∋ hk → ∞ has a subsequence defining the limit operator 
�

h
A,Φ,m,�Σ

.

Definition 12  (i) We say that: (a) the operator

is the locally Fredholm if for every R > 0 there exist operators L
R
,R

R
∈ B(� ,�) such that

where T1
R
∈ K(�), T2

R
∈ K(� );

(ii) The operator �
A,Φ,m,�Σ

∶ � → �  is locally invertible at infinity if there exists R > 0 and the operators 
L
�
R
,R

�
R
∈ B(� ,�) such that

We will use the following simple statement.

Proposition 13  The operator �
A,Φ,m,�Σ

∶ � → �  is Fredholm if and only if:

(i) �
A,Φ,m,�Σ

 is locally Fredholm; (ii) �
A,Φ,m,�Σ

 is locally invertible at infinity.

Theorem 14  Let conditions (39) hold, and the Lopatinsky-Shapiro condition 

be satisfied at every point x ∈ Σ. Then the operator

Γh(x) = lim
k→∞

Γ(x + hk)

�
A,Φ,m,�Σ

u = (�
A,Φ,mu,�Σu = 0)

�
h
A,Φ,m,�Σ

u = �
A
h,Φh,mh,�h

Σ
u = (�

A
h,Φh,mhu,�

h
Σ
u = 0)

lim
k→∞

‖

‖

‖

‖

(

V−hk
�

A,Φ,m,�Σ
V−hk

− �
h
A,Φ,m,�Σ

)

�I
‖

‖

‖

‖B(�,� )

= lim
k→∞

‖

‖

‖

‖

�

(

V−hk
�

A,Φ,m,�Σ
V−hk

− �
h
A,Φ,m,�Σ

)

‖

‖

‖

‖B(�,� )

= 0.

�
A,Φ,m,�Σ

∶ � → �

(40)
LR�A,Φ,m,�Σ

�RI� = �RI� + T
1
R
,

�R�A,Φ,m,�Σ
RR = �RI� + T

2
Y

(41)
L
�
R
�

A,Φ,m,�Σ
�RI� = �RI�,

�R�A,Φ,m,�Σ
R

�
R
= �RI� .

(42a)det

(

� ⋅ �x +
Γ(x)

2

)

≠ 0, �x ∈ T∗
x
(Σ0) ∶

|

|

�x
|

|

= 1

𝔻
A,Φ,m,�Σ

∶ H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN)
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is Fredholm if and only if all limit operators �h
A,Φ,m,�Σ

 are invertible.

Proof  The ellipticity of �
A,Φ,m and the local Lopatinsky-Shapiro condition imply that the operator �

A,Φ,m,�Σ
 is locally 

Fredholm. Hence, Proposition 13 yields that �
A,Φ,m,�Σ

 is the Fredholm operator if and only if �
A,Φ,m,�Σ

 is locally invertible 
at infinity. We reduce the study of local invertibility at infinity of �

A,Φ,m,�Σ
 to the application of Proposition 13.

We introduce the operator

where a0
±
=

1

2
�n+1 ∓ i� ⋅ � acting from � into � . Then according to Example 4 the operator

is invertible for |�| large enough. We fix such �. Let Ξ(i�) =
(

�
0
�Σ
(i�)

)−1

 . We introduce the bounded in L2(ℝn,ℂN) 
operator

It is easy to prove that

Formula (44) implies that the operator �
A,Φ,m,�Σ

 is locally invertible at infinity if and only if the operator 𝔻̃
A,Φ,m,�

�
 is locally 

invertible at infinity. One can prove that the operator 𝔻̃
A,Φ,m,�Σ

 belongs to the algebra A
(

ℝ
n,ℂN

)

. Hence, 𝔻̃
A,Φ,m,�Σ

 is 
locally invertible at infinity if and only if all limit operators 𝔻̃h

A,Φ,m,�Σ
 are invertible. Formula

implies that 𝔻̃h
A,Φ,m,�Σ

= 𝔻
h
A,Φ,m,�Σ

Ξ(i�).

Hence, 𝔻̃h
A,Φ,m,�Σ

∶ L2(ℝn,ℂN) → L2(ℝn,ℂN) is invertible if and only if �h
A,Φ,m,�Σ

 : H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN) is 
invertible, and by Theorem 8 the operator �h

A,Φ,m,�Σ
 is locally invertible at infinity if and only if all limit operators �h

A,Φ,m,�Σ
 

are invertible. Hence, the Theorem has been proved.

Corollary 15  Let conditions of Theorem 14 hold. Then

where Dh
A,Φ,m,�Σ

 are unbounded operators associated with the operators �h
A,Φ,m,�Σ

 and the union is taken with respect to 
all such limit operators.

Example 16  We consider an operator D
A,Φ,m,�Σ

 where Σ is the above defined �−periodic hypersurface in ℝn, We assume 
that the real-valued potentials A,Φ have the form: A = A

0 + A
�,Φ = Φ0 + Φ� , where A0 is a �−periodic magnetic poten-

tial, Φ0 is a �−periodic electrostatic potential, m ∈ ℝ is the mass of the particle, and Γ is a Hermitian �−periodic matrix 
on Σ such that the local Lopatinsky-Shapiro condition is satisfied at every point x ∈ Σ. We assume that the perturbations 
A
′ and Φ� are slowly oscillating at infinity, such that their partial derivatives tend to zero at infinity. In this case the limit 

operators D
A
h,Φh,m,�Σ

 are such that Ah = A
0 + A

�
h
,Φh = Φ0 + Φ�

h
 where A�

h
∈ ℝ

n,Φ�
h
∈ ℝ . Then

𝔻
0
�Σ
(i�)u =

{

(� ⋅ Dx − i�IN)u on ℝ
n⟍Σ,

�Σu = a0
+
�
+
Σ
u + a0

−
u�−

Σ
= 0 on Σ

𝔻
0
�Σ
(i�) ∶ H1(ℝn⟍Σ,ℂN) → L2(ℝn,ℂN).

(43)𝔻̃
A,Φ,m,�Σ

= 𝔻
A,Φ,m,�Σ

Ξ(i�).

(44)lim
R→∞

‖

‖

‖

[

�RI,Ξ(i�)
]

‖

‖

‖B(L2(ℝn,ℂN ),H1(ℝn⟍Σ,ℂN ))
= 0.

(45)
V−h𝔻̃A,Φ,m,�Σ

Vh =
(

V−h𝔻A,Φ,m,�Σ
Vh

)(

V−hΞ(i�)Vh

)

=
(

V−h𝔻A,Φ,m,�Σ
Vh

)

Ξ(i�), h ∈ 𝔾

(46)spessDA,Φ,m,�Σ
=
⋃

h

spDh
A,Φ,m,�Σ
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Applying formula (46), we obtain that

where �(Φ�) = lim infx→∞ Φ�(x) , �(Φ�) = lim supx→∞ Φ�(x).

Hence, if

the gap (bj, aj+1) in the spectrum of operator D
A
0,Φ0,m,�Σ

disappears in the spectrum of perturbed operator D
A,Φ,m,�Σ

.
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