https://doi.org/10.1007/s10958-022-05876-y Journal of Mathematical Sciences (2022) 266:133–147

INTERACTION PROBLEMS ON PERIODIC HYPERSURFACES FOR DIRAC OPERATORS ON ℝⁿ

Vladimir Rabinovich¹

Accepted: 29 December 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

We consider the Dirac operators with singular potentials

$$
D_{A,\Phi,m,\Gamma\delta_{\Sigma}} = \mathfrak{D}_{A,\Phi,m} + \Gamma \delta_{\Sigma} \tag{1}
$$

where

$$
\mathfrak{D}_{A,\Phi,m} = \sum_{j=1}^{n} \alpha_j \left(-i \partial_{x_j} + A_j \right) + \alpha_{n+1} m + \Phi I_N \tag{2}
$$

is a Dirac operator on ℝ^{*n*} with variable magnetic and electrostatic potentials $A = (A_1, ..., A_n)$, Φ , and the vari-able mass m. In formula [\(2](#page-0-0)), α_j are the $N \times N$ Dirac matrices, that is $\alpha_j \alpha_k + \alpha_k \alpha_j = 2\delta_{jk}I_N$, I_N is the unit $N \times N$ matrix, $N = 2^{[(n+1)/2]}$, $\Gamma \delta_{\Sigma}$ is a singular delta-potential supported on C^2 —hypersurface $\Sigma \subset \mathbb{R}^n$ periodic with respect to the action of a lattice \mathbb{G} on ℝ^{*n*}. We consider the self-adjointnes and discretness of the spectrum of unbounded in $L^2(\mathbb{T}, \mathbb{C}^N)$ operators associated with the formal Dirac operator [\(1](#page-0-1)) on the torus $\mathbb{T} = \mathbb{R}^N / \mathbb{G}$. We study the band-gap structure of the spectrum of self-adjoint operators D in $L^2(\mathbb{R}^n, \mathbb{C}^N)$ associated with the formal Dirac operator [\(1](#page-0-1)) on ℝⁿ with G-periodic regular and singular potentials. We also consider the Fredholm property and the essential spectrum of unbounded operators associated with non-periodic regular and singular potentials supported on *G*-periodic smooth hypersurfaces in ℝ^{*n*}.

Keywords Dirac operators · Singular potential · Delta-interactions · Self-adjointness · Essential spectrum · Floquet theory

Mathematical Subject Classifcation (2010) 81Q10 · 81V05 · 35P15 · 58C40

 \boxtimes Vladimir Rabinovich vladimir.rabinovich@gmail.com

On the occasion of the 80-th anniversary of the birth of Professor Nikolai Karapetiants.

¹ Instituto Politécnico Nacional, ESIME Zacatenco, Mexico City, Mexico

Introduction

We consider the formal Dirac operators with singular potentials

$$
D_{A,\Phi,m,\Gamma\delta_{\Sigma}} = \mathfrak{D}_{A,\Phi,m} + \Gamma \delta_{\Sigma} \tag{3}
$$

where $\mathfrak{D}_{A,\Phi,m}$ is a Dirac operator on \mathbb{R}^n

$$
\mathfrak{D}_{A,\Phi,m} = \alpha \cdot (D + A) + \alpha_{n+1} m + \Phi I_N \n= \sum_{j=1}^n \alpha_j (D_{x_j} + A_j) + \alpha_{n+1} m + \Phi I_N, D_{x_j} = -i \partial_{x_j},
$$
\n(4)

with magnetic and electrostatic potentials $A = (A_1, ..., A_n)$, Φ , and the variable mass *m*, such that A_j , Φ , $m \in L^{\infty}(\mathbb{R}^n)$. In formula [\(2](#page-0-0)), α_j are the $N \times N$ Dirac matrices, that is

$$
\alpha_j \alpha_k + \alpha_k \alpha_j = 2 \delta_{jk} I_N,
$$

I_N is the unit *N* × *N* matrix, $N = 2^{[(n+1)/2]}$ (see [[18,](#page-13-0) [24](#page-14-0)]), and $\Gamma \delta_{\Sigma}$ is a singular delta-type potential supported on a C^2 hypersurface Σ *⊂* ℝ*ⁿ* periodic with respect to the action of a lattice *⊂* ℝ*ⁿ*. More exactly, we assume that

$$
\Sigma = \bigcup_{g \in \mathbb{G}} \Sigma_g \tag{5}
$$

, where $\Sigma_g = \Sigma_0 + g$, Σ_0 is a closed C^2 -hypersurface which is a boundary of the open bounded set Ω_0 . We assume that $\Sigma_{g_1} \cap \Sigma_{g_2} = \emptyset$ if $g_1 \neq g_2$. Let $\Omega_+ = \bigcup_{g \in \mathbb{G}} \Omega_g$, $\Omega_g = \Omega_0 + g$, and $\Omega_- = \mathbb{R}^n \setminus \overline{\Omega}_+$, that is Σ is a common boundary of the sets

Ω_+ and Ω_- .

Such Dirac operators arise as approximation of Hamiltonians of interactions of relativistic quantum particles with potentials localized in thin tubular neighborhoods of the supports of singular potentials (see for instance [[15](#page-13-1), [30,](#page-14-1) [31\]](#page-14-2)). In physical statements such problems describe the transitions of relativistic particles through obstacles generated by the potentials supported on the mentioned domains in ℝ*ⁿ* (see for instance [[9,](#page-13-2) [14](#page-13-3), [16,](#page-13-4) [22,](#page-13-5) [23](#page-13-6), [28\]](#page-14-3)).

The formal Dirac operators with singular potentials are realized as unbounded operators D in Hilbert spaces with domains described by interaction conditions on the sets carrying the singular potentials. Recently, many papers devoted to their spectral properties for the dimensions $n = 2, 3$ have appeared; see, for instance, $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ $[4, 7, 8, 11-13, 15,$ [21,](#page-13-12) [29](#page-14-4)–[31,](#page-14-2) [37,](#page-14-5) [38](#page-14-6)].

In the paper [\[39\]](#page-14-7), it was considered the self-adjointness of the unbounded operators in $L^2(\mathbb{R}^n, \mathbb{C}^N)$ associated with the operators $D_{A,\Phi,m,\Gamma\delta_{\Sigma}}$ for Σ belonging to the class of so-called uniformly regular C^2 -hypersurfaces which contain all closed *C*²-hypersurfaces and a wide set of unbounded *C*²−hypersurfaces, in particular, 𝔾−periodic *C*²−hypersurfaces described by formula ([5](#page-1-0)).

Let $H^1(\Omega_+, \mathbb{C}^N)$ be the Sobolev spaces of distributions on Ω_+ with values in \mathbb{C}^N and we set

$$
H^1(\mathbb{R}^n \diagdown \Sigma, \mathbb{C}^N) = H^1(\Omega_+, \mathbb{C}^N) \oplus H^1(\Omega_-, \mathbb{C}^N).
$$

We associate with the formal Dirac operator $D_{A,\Phi,m,\Gamma\delta_{\Sigma}}$ the unbounded in $L^2(\mathbb{R}^n,\mathbb{C}^N)$ operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ defined by the Dirac operator $\mathfrak{D}_{A,\Phi,m}$ with the domain

$$
H_{\mathfrak{B}_{\Sigma}}^{1}(\mathbb{R}^{n}\diagdown\Sigma,\mathbb{C}^{N})
$$

= $\{u \in H^{1}(\mathbb{R}^{n}\diagdown\Sigma,\mathbb{C}^{N}) : \mathfrak{B}_{\Sigma}u(s) = a_{+}(s)\gamma_{\Sigma}^{+}u(s)(s) + a_{-}(s)\gamma_{\Sigma}^{-}u(s) = 0, s \in \Sigma\}$ (6)

where $\gamma_{\Sigma}^{\pm}: H^{1}(\Omega_{\pm}\mathbb{C}^{N}) \to H^{1/2}(\Sigma, \mathbb{C}^{N})$ are the trace operators, and

$$
a_{\pm}(s) = \frac{1}{2}\Gamma(s) \mp i\alpha \cdot v(s), \ \alpha \cdot v(s) = \sum_{j=1}^{n} \alpha_j v_j(s), s \in \Sigma,
$$
\n⁽⁷⁾

 $\nu(s) = (\nu_1(s), \nu_n(s)), s \in \Sigma$ is the field of unit normal vectors to Σ pointed into Ω ₋. We also associate the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}}$ of the interaction (transmission) problem with the formal Dirac operator $D_{A,\Phi,m,\Gamma\delta}$

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}u = \begin{cases} \mathfrak{D}_{A,\Phi,m}u \text{ on } \mathbb{R}^n \diagdown \Sigma \\ \mathfrak{B}_{\Sigma}u = 0 \text{ on } \Sigma \end{cases} . \tag{8}
$$

acting from $H^1(\mathbb{R}^n\diagdown \Sigma, \mathbb{C}^N)$ into $L^2(\mathbb{R}^n, \mathbb{C}^N)$. The following problems are considered in the paper.

- 1. We study the Dirac operators on *n*−dimensional torus \mathbb{T} with singular potentials $\Gamma \delta_{\Sigma}$ where Σ is $(n-1)$ −dimensional C^2 –submanifold of \overline{T} , $\Gamma = (\Gamma_{ij})_{i,j=1}^N$ is the matrix with elements $\Gamma_{ij} \in C^1(\Sigma)$. As above, we associate with the formal Dirac operator with singular potential an unbounded $L^2(\mathbb{T}, \mathbb{C}^n)$ operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ and the interaction operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ bounded from $H^1(\mathbb{T}\setminus \Sigma, \mathbb{C}^N)$ into $L^2(\mathbb{R}^n, \mathbb{C}^N)$. We study the Fredholm properties of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$, the self-adjointness and discreetness of the spectrum of the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ on the torus \mathbb{T} .
- 2. We consider the Floquet theory for the formal Dirac operator ([3](#page-1-1)) where $\Sigma \subset \mathbb{R}^n$ is a \mathbb{G} -periodic C^2 -hypersurface, Γ is a 𝔾− periodic matrix, and the potentials *A*, Φ, *m* are 𝔾− periodic. We describe the band-gap structure of the spectrum for the self-adjoint operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$.
- 3. We consider the Fredholm property of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ and essential spectrum of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ in the case if Σ is $\mathbb{G}-$ periodic hypersurface in ℝ*ⁿ* but the matrix Γ, and potentials *A*, Φ, *m* are not periodic. Our approach to the investigation of the Fredholm property of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ and the essential spectrum of the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is based on the limit operator method (see [\[32](#page-14-8)[–34](#page-14-9)]). We associate the sets of the limit operators with the operators $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ and $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$

$$
\mathbb{D}^h_{A,\Phi,m,\mathfrak{B}_\Sigma}=\mathbb{D}_{A^h,\Phi^h,m^h,\mathfrak{B}_\Sigma^h},\mathcal{D}^h_{A,\Phi,m,\mathfrak{B}_\Sigma}=\mathcal{D}_{A^h,\Phi^h,m^h,\mathfrak{B}_\Sigma^h}
$$

defined by the sequences $G \ni h_k \to \infty$, where $A^h(x), \Phi^h(x), m^h(x)$ are the limits of the sequences $A(x + h_k)$, $\Phi(x + h_k)$, $m(x + h_k)$ in the sense of uniform convergence on compact sets in ℝ^{*n*}, and

$$
\mathfrak{B}_{\Sigma}^{h}u = a_{+}^{h}\gamma_{\Sigma}^{+}u + a_{-}^{h}\gamma_{\Sigma}^{-}u,
$$

where $a_{\pm}^{h}(x) = \lim_{k \to \infty} a_{\pm}(x + h_k)$ in the sense of uniform convergence on compact sets in Σ . We denote by $Lim(\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}})$ *Lim*($\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$) the set of all limit operators of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$, $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$. Applying the limit operators approach, we obtain the following result.

Theorem 1 Let Σ be G-periodic C²-hypersurface, A_j , Φ , $m \in C_b^1(\Omega)$, $\Gamma = (\Gamma_{jl})_{j,l=1}^N$ be an Hermitian matrix defined on Σ *such that* $\Gamma_{jl} \in C^1_b(\Sigma)$, $k, l = 1, ..., N$. We assume that the Lopatinsky-Shapiro condition

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2}\right) \neq 0, \xi_x \in T_x^*(\Sigma) : |\xi_x| = 1,
$$

holds at every point $x \in \Sigma$ *where* $T_x^*(\Sigma)$ *is the cotangent space to* Σ *at the point x*. *Then*:

(i) $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} : H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N) \to L^2(\mathbb{R}^n, \mathbb{C}^N)$ is a Fredholm operator if and only if all limit operators $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^h : H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N) \to L^2(\mathbb{R}^n, \mathbb{C}^N)$ are inverti

(*ii*) The operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ is closed and

$$
sp_{ess}\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}=\bigcup_{\mathcal{D}^h\in Lim(\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}) }sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^h
$$

As an example, we consider the essential spectrum of operators which are perturbations of periodic operators $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ by slowly oscillating at infnity potentials.

Notations and auxiliary material

Notations

- If X, Y are Banach spaces, then we denote by $B(X, Y)$ the space of bounded linear operators acting from X into Y with the uniform operator topology, and by $K(X, Y)$ the subspace of $B(X, Y)$ of all compact operators. In the case $X = Y$, we write shortly $\mathcal{B}(X)$ and $\mathcal{K}(X)$.
- An operator $A \in \mathcal{B}(X, Y)$ is called a Fredholm operator if $ker A$, and $coker A = Y/Im A$ are finite dimensional spaces. Let A be a closed unbounded operator in a Hilbert space H with a dense in H domain $dom A$. Then A is called a Fredholm operator if $ker A = {u \in dom A : Au = 0}$ and $coker A = H/Im A$ where $Im A = {w \in H : w = Au, u \in D_A}$ are the finite-dimensional spaces. Note that A is a Fredholm operator as the unbounded operator in H if and only if A ∶ *dom*A → H is a Fredholm operator as the bounded operator where *dom*A is equipped by the graph norm

$$
||u||_{dom\mathcal{A}} = \left(||u||_{\mathcal{H}}^2 + ||\mathcal{A}u||_{\mathcal{H}}^2\right)^{1/2}, u \in dom\mathcal{A}
$$

(see for instance [[1\]](#page-13-13)).

- The essential spectrum $sp_{esc}A$ of an unbounded operator A is a set of $\lambda \in \mathbb{C}$ such that $A \lambda I$ is not the Fredholm operator as the unbounded operator, and the discrete spectrum $sp_{dis}A$ of A is a set of isolated eigenvalues of finite multiplicity. It is well known that if A is a self-adjoint operator, then $sp_{dis}A = spA\setminus sp_{ess}A$.
- We denote by $L^2(\mathbb{R}^n, \mathbb{C}^N)$ the Hilbert space of *N*−dimensional vector functions $u(x) = (u^1(x), ..., u^N(x)), x \in \mathbb{R}^n$ with the scalar product

$$
\langle u, v \rangle = \int_{\mathbb{R}^n} u(x) \cdot v(x) dx,
$$

where $u \cdot v = \sum_{j=1}^{n} u_j \overline{v}_j$.

• We denote by $\overline{H}^s(\mathbb{R}^n, \mathbb{C}^N)$ the Sobolev space of vector-valued distributions $u \in \mathcal{D}'(\mathbb{R}^n, \mathbb{C}^N)$ such that

$$
\|u\|_{H^s(\mathbb{R}^n,\mathbb{C}^N)}=\left(\int_{\mathbb{R}^n}(1+|\xi|^2)^s\|\hat{u}(\xi)\|_{\mathbb{C}^N}^2d\xi\right)^{1/2}<\infty, s\in\mathbb{R},
$$

where \hat{u} is the Fourier transform of *u*. If Ω is a domain in \mathbb{R}^n then $H^s(\Omega, \mathbb{C}^N)$ is the space of restrictions of $u \in H^s(\mathbb{R}^n, \mathbb{C}^N)$ on Ω with the norm

$$
||u||_{H^{s}(\Omega,\mathbb{C}^{N})} = \inf_{lu \in H^{s}(\mathbb{R}^{n},\mathbb{C}^{N})} ||lu||_{H^{s}(\mathbb{R}^{n},\mathbb{C}^{N})},
$$

where *lu* is an extension of *u* on ℝ^{*n*}. If Σ is a smooth enough hypersurface in ℝ^{*n*}, we denote by $H^{s-1/2}(\Sigma, \mathbb{C}^N)$ the space of restrictions on Σ the distributions in $H^s(\mathbb{R}^n, \mathbb{C}^N)$, $s > 1/2$.

- We denote by $C_b(\mathbb{R}^n)$ the class of bounded continuous functions on \mathbb{R}^n , $C_b^m(\mathbb{R}^n)$ the class of functions *a* on \mathbb{R}^n such that $\partial^{\alpha} a \in C_b(\mathbb{R}^n)$ for all multi-indices $\alpha : |\alpha| \leq m$. We denote by $C_b^1(\Sigma)$ the class of differentiable on Σ functions that are bounded with their first derivatives, and $C^{\infty}(\mathbb{R}^n) = 0$. $C^m(\mathbb{R}^n)$ that are bounded with their first derivatives, and $C_b^{\infty}(\mathbb{R}^n) = \cap_{m \geq 0} C_b^m(\mathbb{R}^n)$.
- Let a *C*²−hypersurface Σ *⊂* ℝ*ⁿ*, *n* ≥ 2 be the common boundary of the domains Ω±. We say that Σ is *uniformly regular* (see for instance [\[3,](#page-13-14) [19\]](#page-13-15)) if: (i) there exists $r > 0$ such that for every point $x_0 \in \Sigma$ there exists a ball $B_r(x_0) = \left\{ x \in \mathbb{R}^n : |x - x_0| < r \right\}$ and the diffeomorphism $\varphi_{x_0} : B_r(x_0) \to B_1(0)$ such that

$$
\varphi_{x_0}(B_r(x_0) \cap \Omega_{\pm}) = B_1(0) \cap \mathbb{R}^n_{\pm}, \mathbb{R}^n_{\pm}
$$

= $\{ y = (y', y_n) \in \mathbb{R}^{n-1}_{y'} \times \mathbb{R}_{y_n} : y_n \ge 0 \},$

$$
\varphi_{x_0}(B_r(x_0) \cap \Sigma) = B_1(0) \cap \mathbb{R}^{n-1}_{y'};
$$

(ii) Let $\varphi_{x_0}^i, \psi_{x_0}^i, i = 1, ..., n$ be the coordinate functions of the mappings $\varphi_{x_0}, \varphi_{x_0}^{-1}$. Then

$$
\sup_{x_0 \in \Sigma} \sup_{|\alpha| \le 2, x \in B_r(x_0)} \left| \partial^{\alpha} \varphi_{x_0}^i(x) \right| < \infty, i = 1, \dots, n;
$$
\n
$$
\sup_{x_0 \in \Sigma} \sup_{|\alpha| \le 2, y \in B_1(0)} \left| \partial^{\alpha} \psi_{x_0}^i(y) \right| < \infty, i = 1, \dots, n.
$$

Note that each closed *C*²−hypersurface is uniformly regular.

Auxiliary material

Dirac operators on ℝ**ⁿ with singular potentials ([[39\]](#page-14-7)).**

• Let

$$
\mathfrak{D}_{A,\Phi,m,\Gamma\delta}u(x)=\big(\mathfrak{D}_{A,\Phi,m}+\Gamma\delta_{\Sigma}\big)u(x), x\in\mathbb{R}^{n}
$$

 be the formal Dirac operator defned by formulas [\(3\)](#page-1-1), [\(5](#page-1-0)). We assume that Σ is the uniformly regular *C*²−hypersurface in \mathbb{R}^n , A_j , Φ , $m \in L^{\infty}(\mathbb{R}^n)$, $\Gamma = \left(\Gamma_{i,j}\right)_{i,j=1}^N$, $\Gamma_{i,j} \in C_b^1(\Sigma)$. We define the product $\Gamma \delta_{\Sigma} u$ where $u \in H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N)$ as a distribution in $\mathcal{D}'(\mathbb{R}^n, \mathbb{C}^N) = \mathcal{D}'(\mathbb{R}^n) \otimes \mathbb{C}^N$ acting on the test functions $\varphi \in C_0^\infty(\mathbb{R}^n, \mathbb{C}^N)$ as

$$
\left(\Gamma \delta_{\Sigma} u\right)(\boldsymbol{\varphi}) = \frac{1}{2} \int_{\Sigma} \Gamma(s) \left(\gamma_{\Sigma}^{+} u(s) + \gamma_{\Sigma}^{-} u(s)\right) \cdot \boldsymbol{\varphi}(s) ds. \tag{9}
$$

Integrating by parts and taking into account ([9\)](#page-4-0), we obtain that

$$
D_{A,\Phi,m,\Gamma\delta_{\Sigma}}u = \mathfrak{D}_{A,\Phi,m}u - \left[i\alpha \cdot v(\gamma_{\Sigma}^+u - \gamma_{\Sigma}^-u) + \frac{1}{2}\Gamma(\gamma_{\Sigma}^+u + \gamma_{\Sigma}^-u)\right]\delta_{\Sigma},\tag{10}
$$

where γ_{Σ}^{\pm} : $H^{1}(\Omega_{\pm}, \mathbb{C}^{N}) \to H^{1/2}(\Omega_{\pm}, \mathbb{C}^{N})$ are the trace operators, $v(s) = (v_{1}(s), ..., v_{n}(s))$ is the field of unit normal vectors pointed to Ω _−. Formula [\(10](#page-4-1)) yields that in the distribution sense

$$
D_{A,\Phi,m,\Gamma\delta_{\Sigma}}u = \mathfrak{D}_{A,\Phi,m}u - \left[i\alpha \cdot \nu(\gamma_{\Sigma}^+u - \gamma_{\Sigma}^-u) + \frac{1}{2}\Gamma(\gamma_{\Sigma}^+u + \gamma_{\Sigma}^-u)\right]\delta_{\Sigma},\tag{11}
$$

where $\mathfrak{D}_{A,\Phi,m}u$ is the regular distribution given by the function $\mathfrak{D}_{A,\Phi,m}u \in L^2(\mathbb{R}^n,\mathbb{C}^N)$. Formula [\(11\)](#page-4-2) yields that $\mathfrak{D}_{A,\Phi,m,\Gamma\delta_{\Sigma}} u \in L^2(\mathbb{R}^n,\mathbb{C}^N)$ if and only if

$$
-i\alpha \cdot \nu \left(\gamma_{\Sigma}^{+} u - \gamma_{\Sigma}^{-} u\right) + \frac{1}{2} \Gamma \left(\gamma_{\Sigma}^{+} u + \gamma_{\Sigma}^{-} u\right) = 0 \text{ on } \Sigma. \tag{12}
$$

Condition [\(12](#page-4-3)) can be written in the form

$$
\mathfrak{B}_{\Sigma}u = a_{+}\gamma_{\Sigma}^{+}u + a_{-}\gamma_{\Sigma}^{-}u = \mathbf{0} \text{ on } \Sigma
$$
\n⁽¹³⁾

where a_+ are $N \times N$ matrices:

$$
a_{\pm} = \frac{1}{2} \Gamma \mp i\alpha \cdot v \text{ on } \Sigma.
$$
 (14)

We associate with the formal Dirac operator $\mathfrak{D}_{A,\Phi,\Gamma\delta_{\Sigma}}$ the unbounded in $L^2(\mathbb{R}^n,\mathbb{C}^N)$ operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ defined by the Dirac operator $\mathfrak{D}_{A,\Phi,m}$ with the domain

$$
dom\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = H^{1}_{\mathfrak{B}_{\Sigma}}(\mathbb{R}^{n}\diagdown\Sigma,\mathbb{C}^{N})
$$

= $\{u \in H^{1}(\mathbb{R}^{n}\diagdown\Sigma,\mathbb{C}^{N}) : \mathfrak{B}_{\Sigma}u = 0 \text{ on } \Sigma\},$ (15)

and the bounded operator of the interaction (transmission) problem

Journal of Mathematical Sciences (2022) 266:133–147

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}u = \begin{cases} \mathfrak{D}_{A,\Phi,m}u \text{ on } \mathbb{R}^{n} \setminus \Sigma, \\ \mathfrak{B}_{\Sigma}u = a_{+}\gamma_{\Sigma}^{+}u + a_{-}\gamma_{\Sigma}^{-}u = 0 \text{ on } \Sigma \end{cases}
$$
(16)

acting from $H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N)$ into $L^2(\mathbb{R}^n, \mathbb{C}^N)$.

• We consider the parameter-dependent operator

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(i\mu)u = (\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} - i\mu I_{N})u
$$
\n
$$
= \begin{cases}\n\mathfrak{D}_{A,\Phi,m}(i\mu)u = (\mathfrak{D}_{A,\Phi,m} - i\mu I_{N})u \text{ on } \mathbb{R}^{n} \setminus \Sigma, \\
\mathfrak{B}_{\Sigma}u = a_{+}\gamma_{\Sigma}^{+}u + a_{-}\gamma_{\Sigma}^{-}u = 0 \text{ on } \Sigma\n\end{cases}, \mu \in \mathbb{R}
$$
\n(17)

acting from $H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N)$ into $L^2(\mathbb{R}^n, \mathbb{C}^N)$.

Condition

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2} - i\mu I_N\right) \neq 0 \text{ for } (\xi_x, \mu) \in T_x^*(\Sigma) \times \mathbb{R} : |\xi_x|^2 + \mu^2 = 1
$$
\n(18)

is called the local parameter-dependent Lopatinsky-Shapiro condition where $T^*_x(Σ)$ is the cotangent space to Σ at the point $x \in \Sigma$, and the condition

$$
\inf_{x \in \Sigma} \inf_{(\xi_x, \mu) \in T_x^*(\Sigma) \times \mathbb{R} : |\xi_x|^2 + \mu^2 = 1} \left| \det \left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2} - i\mu I_N \right) \right| > 0 \tag{19}
$$

is called the **uniform parameter-dependent Lopatinsky-Shapiro condition**.

Note that if the matrix $\Gamma(x)$ is Hermitian for every $x \in \Gamma$, then condition ([18\)](#page-5-0) becomes the local Lopatinsky-Shapiro condition

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2}\right) \neq 0 \text{ for } \xi_x \in T_x^*(\Sigma) : |\xi_x| = 1 \tag{20}
$$

Theorem 2 Let Σ be the uniformly regular C^2 –hypersurface in \mathbb{R}^n , A_j , Φ , $m \in L^{\infty}(\mathbb{R}^n)$, $\Gamma = (\Gamma_{ij})_{i,j=1}^N$, $\Gamma_{ij} \in C_b^1(\Sigma)$, and *the uniform parameter-dependent Lopatinsky-Shapiro condition* ([19](#page-5-1)) *hold. Then there exists* $\mu_0 \in \mathbb{R}$ *such that the operator*

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(i\mu): H^1(\mathbb{R}^n \diagdown \Sigma, \mathbb{C}^N) \to L^2(\mathbb{R}^n, \mathbb{C}^N)
$$

is invertible for every $\mu \in \mathbb{R}$: $|\mu| > R$.

Theorem 3 Let Σ be the uniformly regular C^2 –hypersurface in \mathbb{R}^n , A_j , Φ , $m \in L^{\infty}(\mathbb{R}^n)$, $\Gamma = (\Gamma_{i,j})_{i,j=1}^N$, $\Gamma_{i,j} \in C_b^1(\Sigma)$, A_j , Φ , m *be real*-*valued functions*, Γ(*x*) *be Hermitian matrix for every x* ∈ Σ, *and the uniform Lopatinsky*-*Shapiro condition*

$$
\inf_{x \in \Sigma} \inf_{\xi_x \in T_x^*(\Sigma) : |\xi_x|^2 = 1} \left| \det \left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2} \right) \right| > 0 \tag{21}
$$

hold. Then the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ *is self-adjoint.*

Example 4 Let $\Gamma(x) = \eta(x)I_N + \tau(x)\alpha_{n+1}$ where $\eta(x), \tau(x) \in C_b^1(\Sigma)$ be real-valued functions. Then condition

$$
\inf_{x \in \mathbb{R}^n} \left| \eta^2(x) - \tau^2(x) - 4 \right| > 0 \tag{22}
$$

ensures the condition [\(21](#page-5-2)), and therefore the invertibility $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(i\mu)$ for large enough $|\mu|$, and the self-adjointness of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}.$

Note that the singular potential $\Gamma \delta_{\Sigma}$ describes the electrostatic and Lorentz scalar shell interactions in ℝ^{*n*} (see [\[11](#page-13-10)[–13](#page-13-11)].)

138

Journal of Mathematical Sciences (2022) 266:133–147

Band‑dominated operators on ℝ**ⁿ and their local invertibility at infnity ([[32–](#page-14-8)[34\]](#page-14-9) ,[[26\]](#page-14-10))**

Let
$$
\psi \in C_0^{\infty}(\mathbb{R}^n)
$$
, $\psi(x) = 1$ if $|x| \le 1/2$ and $\psi(x) = 0$ if $|x| \ge 1$, $\chi(x) = 1 - \psi(x)$, $\psi_R(x) = \psi_R(x/R)$, $\chi_R(x) = \chi(x/R)$.

Definition 5 We say that $A \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ is locally invertible at infinity if there exists $R > 0$ and the operators $\mathcal{L}_R, \mathcal{R}_R \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ such that

$$
\mathcal{L}_R A \chi_R I = \chi_R I, \chi_R A \mathcal{R}_R = \chi_R I.
$$

Definition 6 We say that the operator $A \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ belongs to the class $\mathcal{A}(\mathbb{R}^n, \mathbb{C}^N)$ of band-dominated operators on \mathbb{R}^n if for every function $\varphi \in C_b^{\infty}(\mathbb{R}^n)$

$$
\lim_{t \to 0} \left\| \left[\varphi_t I, A \right] \right\|_{\mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))} = \lim_{t \to 0} \left\| \left[\varphi_t A - A \varphi_t I \right] \right\|_{\mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))} = 0
$$

where $\varphi_i(x) = \varphi(t_1, x_1, ..., t_n, x_n), t = (t_1, ..., t_n) \in \mathbb{R}^n$.

Note that $\mathcal{A}(\mathbb{R}^n, \mathbb{C}^N)$ is an inverse closed C^* -algebra. We denote by V_h , $h \in \mathbb{G}$ the unitary in $L^2(\mathbb{R}^n, \mathbb{C}^N)$ shift operator $V_h u(x) = u(x - h)$. Ler \mathbb{G} be the lattice in \mathbb{R}^n , that is

$$
\mathbb{G} = \left\{ g \in \mathbb{R}^n : g = \sum_{j=1}^n g_j a_j, g_j \in \mathbb{Z} \right\},\tag{23}
$$

where $\{a_1, ..., a_n\}$ is a linearly independent system of vectors in ℝ^{*n*}.

Definition 7 Let the sequence $\mathbb{G} \ni h_k \to \infty$. We say that the operator $A^h \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ is a limit operator of $A \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ if for every function $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$
\lim_{k \to \infty} \left\| \left(V_{-h_k} A V_{h_k} - A^h \right) \varphi I \right\|_{\mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))}
$$

=
$$
\lim_{k \to \infty} \left\| \varphi \left(V_{-h_k} A V_{h_k} - A^h \right) \right\|_{\mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))} = 0.
$$

We say that the operator $A \in \mathcal{B}(L^2(\mathbb{R}^n, \mathbb{C}^N))$ is **rich** if every sequence $\mathbb{G} \ni h_k \to \infty$ has a subsequence h_{k_l} defining the limit operator.

Theorem 8 (see [\[26,](#page-14-10) [32,](#page-14-8) [33\]](#page-14-11)). Let $A \in \mathcal{A}(\mathbb{R}^n, \mathbb{C}^N)$ be a rich operator acting in $L^2(\mathbb{R}^n, \mathbb{C}^N)$. Then the following assertions *are equivalent*:

- (i) *A is a locally invertible at infnity operator*;
- (ii) *The family Lim(A) of all limit operators is uniformly invertible in* $L^2(\mathbb{R}^n,\mathbb{C}^N)$ *that is every limit operator* A^h *has* $$

$$
\sup_{A^h \in Lim(A)} \| (A^h)^{-1} \| < \infty;
$$

(iii) *Each limit operator* $A^h \in Lim(A)$ *is invertible in* $L^2(\mathbb{R}^n, \mathbb{C}^N)$.

Remark 9 The equivalence of conditions (i) and (ii) has been proved in [[32](#page-14-8), [33](#page-14-11)], but the question of the equivalence of conditions (ii) and (iii) has been open for a long time. The affirmative answer to this question has been obtained in [[26\]](#page-14-10).

Interaction problems for Dirac operators on the torus

Let G be the lattice defined by [\(23](#page-6-0)). We consider the formal Dirac operator on ℝ^{*n*} given by formulas [\(3](#page-1-1)), [\(5](#page-1-0)) with the 𝔾−periodic potentials *Aj* , Φ, *m*, and the 𝔾−periodic singular potentials Γ*𝛿*Σ. Let *W* be a fundamental domain for the action of the group \mathbb{G} on \mathbb{R}^n , and Ω_0 be a domain such that $\Omega_0 \subset int(W)$. We set

$$
\Omega_+ = \bigcup_{g \in G} \Omega_g, \Omega_- = \mathbb{R}^n \setminus \overline{\Omega}_+,
$$

and

$$
\Sigma=\bigcup_{g\in\mathbb{G}}\Sigma_g,~\Sigma_g=\partial\Omega_g
$$

is the periodic common boundary of the domains Ω_{+} . We associate with the periodic formal Dirac operator

$$
D_{A,\Phi,m,\mathfrak{B},\Gamma\delta_{\Sigma}}=\mathfrak{D}_{A,\Phi,m}+\Gamma\delta_{\Sigma}
$$

where A_j , Φ , $m \in C^1(\mathbb{R}^n)$ are \mathbb{G} -periodic function on \mathbb{R}^n , $\Gamma = (\Gamma_{kl})_{k,l=1}^N$ is a periodic matrix with $\Gamma_{kl} \in C^1(\Sigma)$, the interaction operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}}$ on the torus $\mathbb{T} = \mathbb{R}^n \diagup \mathbb{G}$

$$
\mathbb{D}_{A,\Phi,\Psi,\mathfrak{B}_{\Sigma}}^{\mathbb{T}} u = \begin{cases} \mathfrak{D}_{A,\Phi,m} u \text{ on } \mathbb{T} \setminus \tilde{\Sigma} \\ \mathfrak{B}_{\tilde{\Sigma}} u = a_{+} \gamma_{\Sigma_{0}}^{+} u + a_{-} \gamma_{\Sigma_{0}}^{-} u = 0 \text{ on } \tilde{\Sigma} \end{cases} \tag{24}
$$

where $a_{\pm} = \frac{\Gamma}{2} \mp i\alpha \cdot v$, $\tilde{\Sigma}$ is a C^2 manifold on \mathbb{T} of dimension $(n-1)$ which is the natural projection on \mathbb{T} by the hypersurface $\sum^{\pm} \subset \mathbb{R}^n$, and \sum^{\pm} is the common boundary of the domain $\tilde{\Omega}_{\pm} \subset \mathbb{T}$, which are the projections of Ω_{\pm} on \mathbb{T} , $v(s)$ is the unit normal vector to $\tilde{\Sigma}$ pointed to $\tilde{\Omega}$ ^{$\tilde{\Omega}$}

Let

$$
H^1(\mathbb{T}\setminus \tilde{\Sigma}, \mathbb{C}^N) = H^1(\tilde{\Omega}_+, \mathbb{C}^N) \oplus H^1(\tilde{\Omega}_-, \mathbb{C}^N),
$$

 $H^1(\tilde{\Omega}_{\pm}, \mathbb{C}^N)$ are Sobolev spaces on domains $\tilde{\Omega}_{\pm} \subset \mathbb{T}$. We consider $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}}$ as a bounded operator from $H^1(\mathbb{T} \setminus \tilde{\Sigma}, \mathbb{C}^N)$ into $L^2(\mathbb{T}, \mathbb{C}^N)$. We denoted by $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}}$ the unbounded operator in $L^2(\mathbb{T}, \mathbb{C}^N)$ generated by the Dirac operator $\mathfrak{D}_{A,\Phi,\Psi}$ on the torus $\mathbb T$ with the domain

$$
dom \mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}} = \big\{ u \in H^{1}(\mathbb{T} \setminus \tilde{\Sigma}, \mathbb{C}^{N}) : \mathfrak{B}_{\tilde{\Sigma}} u = 0 \text{ on } \tilde{\Sigma} \big\}.
$$

Theorem 10 (i) Let $\tilde{\Sigma} \subset \mathbb{T}$ be a C^2 -submanifold of the dimension $(n-1)$, A_j , Φ , $m \in C^1(\mathbb{T})$, the matrix $\Gamma = (\Gamma_{ij})_{i,j=1}^N$ be *defned on* Σ*̃ and such that* Γ*ij* [∈] *^C*¹(Σ)*̃* . *Moreover*, *let for every point ^x* [∈] ^Σ*̃ the Lopatinsky*-*Shapiro condition*

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2}\right) \neq 0, \text{ for each } \xi_x \in T_x^*(\tilde{\Sigma}) : |\xi_x| = 1 \tag{25}
$$

hold, where $T_x^*(\tilde{\Sigma})$ is the cotangent space to the manifold $\tilde{\Sigma}$ at the point x. Then, $\mathbb{D}_{A,\Phi,\Psi,\mathfrak{B}\tilde{\Sigma}}: H^1(\mathbb{T},\mathbb{C}^N)\to L^2(\mathbb{T},\mathbb{C}^N)$ is *the Fredholm operator*.

(*ii*) Let in addition to the above conditions the matrix $\Gamma(x)$ be Hermitian for each $x \in \tilde{\Sigma}$. Then ind $(\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\tilde{\Sigma}}})=0$, and *the operator* $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} - \lambda I : H^1(\mathbb{T}\setminus \tilde{\Sigma}, \mathbb{C}^N) \to L^2(\mathbb{T}, \mathbb{C}^N)$ *is invertible for each* $\lambda \in \mathbb{C}\setminus \Pi$ *where* Π *is a discrete set in* \mathbb{C} *with a unique limit point* ∞. The unbounded operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ is closed and has the discrete spectrum only.

Proof (i) As in the paper [[39\]](#page-14-7), one can prove that the Lopatinsky-Shapiro condition ([25](#page-7-0)) is sufficient for the local Fredholmness of the operator $\mathbb{D}_{A,\Phi,\Psi,\mathfrak{B}_{\Sigma}}$ at the point $x \in \Sigma$. Since the operator $\mathfrak{D}_{A,\Phi,m}$ is elliptic at every point $x \in \mathbb{T}$ the local principle of the elliptic theory [[1](#page-13-13)] yields that the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is Fredholm if condition [\(25](#page-7-0)) holds at every point $x \in \tilde{\Sigma}$;

(ii) It follows from (i) the operator $\mathbb{D}_{A,\Phi,\Psi,\mathfrak{B}_{\tilde{\tau}}} - i\mu I_N$ is the Fredholm operator for every $\mu \in \mathbb{C}$. Hence $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\tilde{\tau}}} - i\mu I_N$ is the analytical family of the Fredholm operators. Moreover, since $\Gamma(x)$ is a Hermitian matrix for every $x \in \mathbb{R}^n$ the parameter-dependent Lopatinsky-Shapiro condition holds for every $\mu \in \mathbb{R}$. By Theorem [2](#page-5-3), the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\tilde{\tau}}} - i\mu I_N$ is invertible for $\mu \in \mathbb{R}$ with $|\mu|$ is large enough. Hence, by the Analytic Fredholm Theorem (see [[10](#page-13-16), [20](#page-13-17)]), the operator

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} - \lambda I : H^{1}(\mathbb{T}\setminus \tilde{\Sigma}, \mathbb{C}^{N}) \to L^{2}(\mathbb{T}, \mathbb{C}^{N})
$$

is invertible for each $\lambda \in \mathbb{C}\setminus \Pi$ (26)

where Π is a discrete set with a possible limit point ∞ .

Moreover, $ind(\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\bar{\Sigma}}})=0$. The Lopatinsky-Shapiro condition [\(25\)](#page-7-0) yields the a priori estimate

$$
||u||_{H^1(\mathbb{T}\setminus \tilde{\Sigma},\mathbb{C}^N)} \le C\Big(||\mathfrak{D}_{A,\Phi,m}u||_{L^2(\mathbb{T},\mathbb{C}^N)} + ||u||_{L^2(\mathbb{T},\mathbb{C}^N)}\Big)
$$
(27)

for every $u \in H^1(\mathbb{T}\setminus \tilde{\Sigma}, \mathbb{C}^N)$ with a constant $C > 0$ independent of *u*. The a priori estimate [\(27\)](#page-8-0) implies the closedness of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$. Moreover, applying property [\(26](#page-8-1)) we obtain that $sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is discrete.

Theorem 11 *Let conditions* (*i*) *of Theorem* [10](#page-7-1) *hold*. *Moreover*, *Aj* Φ, *m are real*-*valued functions*, *and the matrix* Γ(*x*) *is Hermitian for every* $x \in \tilde{\Sigma}$ *. Then the operator* $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}}$ *is self-adjoint in* $L^2(\mathbb{T},\mathbb{C}^n)$.

Proof We turn to the paper [[39](#page-14-7)] where the similar result was obtined for the unbounded in $L^2(\mathbb{R}^n\setminus\Sigma,\mathbb{C}^N)$ opertator $\mathcal{D}_{\mathbf{A}\Phi,m,\mathfrak{B}_\Sigma}.$

 1^0 . Let *u*, $v \in dom\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$. Then integrating by parts we obtain that

$$
\langle \mathfrak{D}_{A,\Phi,m}u, v \rangle_{L^2(\mathbb{T},\mathbb{C}^N)} - \langle u, \mathfrak{D}_{A,\Phi,m}v \rangle_{L^2(\mathbb{T},\mathbb{C}^N)}
$$

=
$$
- \frac{1}{4} \langle \Gamma \Big(\gamma_{\Sigma_0}^+ u + \gamma_{\Sigma_0}^- u \Big), \gamma_{\Sigma_0}^+ v - \gamma_{\Sigma_0}^- v \rangle_{L^2(\tilde{\Sigma},\mathbb{C}^N)}
$$

+
$$
\frac{1}{4} \langle \gamma_{\Sigma_0}^+ u + \gamma_{\Sigma_0}^- u, \Gamma(\gamma_{\Sigma}^+ v - \gamma_{\Sigma}^- v) \rangle_{L^2(\tilde{\Sigma},\mathbb{C}^N)}.
$$
 (28)

Since Γ is an Hermitian matrix we obtain that $\mathfrak{D}_{A,\Phi,m}$ is a symmetric operator.

 $2⁰$. Let

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\tilde{\Sigma}}}(i\mu)u = \begin{cases} (\mathfrak{D}_{A,\Phi,m} - i\mu I_N)u \text{ on } \mathbb{T}\setminus \tilde{\Sigma} \\ \mathfrak{B}_{\tilde{\Sigma}}u = 0 \text{ on } \tilde{\Sigma} \end{cases}
$$
(29)

be the operator depending on the parameter $\mu \in \mathbb{R}$ acting from $H^1(\mathbb{T} \setminus \tilde{\Sigma}, \mathbb{C}^N)$ into $L^2(\mathbb{T}, \mathbb{C}^N)$, and let the Lopatinsky-Shapiro condition ([25\)](#page-7-0) holds at every point $x \in \tilde{\Sigma}$. Then since $\mathfrak{D}_{A,\Phi,\Psi} - i\mu I_N$ is the elliptic with parameter operator on the torus $\mathbb T$, and the Lopatinsky-Shapiro condition [\(25](#page-7-0)) yields the parameter-dependent Lopatinsky-Shapiro condition

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2} - i\mu I_N\right) \neq 0, \xi_x \in T_x^*(\tilde{\Sigma}) : \left|\xi_x\right|^2 + \mu^2 = 1
$$
\n(30a)

since Γ is a Hermitian matrix. Condition [\(30a](#page-8-2)) yields that the interaction (transmission) operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma_0}}^{\mathbb{T}}(i\mu)$ is invertible for the large value of $|\mu|$ (see [[1](#page-13-13), [2](#page-13-18)]). Moreover, the invertibility of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{\mathbb{T}}(i\mu)$ for large $|\mu|$ implies that *Range*($\mathfrak{D}_{A,\Phi,m} - i\mu I_N$) = $L^2(\mathbb{T}, \mathbb{C}^N)$ for all $\mu \in \mathbb{R}$ with large enough $|\mu|$. Hence, the deficiency indices of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ are equal to zero, and the operator \mathcal{D} is self-adjoint. equal to zero, and the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is self-adjoint.

Floquet theory of interaction problems on periodic hypersurfaces

Let $\mathbb G$ be the lattice ([23](#page-6-0)), and $\mathbb G^*$ be the reciprocal lattice

$$
\mathbb{G}^* = \left\{ k \in \mathbb{R}^n : k = \sum_{j=1}^n k_j b_j . k_j \in \mathbb{R} \right\},\newline a_j \cdot b_l = 2\pi \delta_{jl}, j, l = 1, ..., n.
$$

We fix a connected fundamental domain $W_0 \subset \mathbb{R}^n$ (Wigner–Seitz cell) of the lattice \mathbb{G} in \mathbb{R}^n , i.e., a set

$$
W_0 = \left\{ x \in \mathbb{R}^n : x = \sum_{j=1}^n t_j a_j, t_j \in [0, 1) \right\}.
$$

such that $\mathbb{R}^n = \sum_{g \in \mathbb{G}} W_g$, $W_g = W_0 + g$. We will also fix a connected fundamental domain B_0 (Brillouin zone) of the reciprocal lattice $\ddot{\mathbb{G}}$ [∗]

$$
B_0 = \left\{ x \in \mathbb{R}^n : x = \sum_{j=1}^n t_j b_j, t_j \in [0, 1) \right\}.
$$
 (31)

We also introduce two tori $\mathbb{T} = \mathbb{R}^n / \mathbb{G}$ and $\mathbb{T}^* = \mathbb{R}^n / \mathbb{G}^*$ which can be identified naturally with fundamental domains W_0 , B_0 , respectively. Let as above

$$
\Omega_{+} = \sum_{g \in \mathbb{G}} \Omega_{g}, \text{ where } \bar{\Omega}_{0} \subset int(W_{0}), \Omega_{g} = \Omega_{0} + g, g \in \mathbb{G}, \Omega_{-} = \mathbb{R}^{n} \setminus \overline{\Omega_{+}},
$$
\n(32)

and

$$
\Sigma = \bigcup_{g \in \mathbb{G}} \Sigma_g, \ \Sigma_0 = \partial \Omega_0, \ \Sigma_g = \Sigma_0 + g \tag{33}
$$

is the common boundary of the domains Ω_{+} .

We consider here the periodic formal Dirac operator on ℝⁿ with singular potentials of the form

$$
D_{A,\Phi,m,\Gamma\delta_{\Sigma}} = \mathfrak{D}_{A,\Phi,m} + \Gamma \delta_{\Sigma} \tag{34}
$$

where $\mathfrak{D}_{A,\Phi,m}$ is a Dirac operator on ℝ^{*n*} given by formula [\(4](#page-1-2)), A_j , Φ , $m \in C^1(\mathbb{R}^n)$ are real-valued G–periodic functions, and $\Gamma = \left(\Gamma_{i,j}\right)_{i,j=1}^{N^m}$ is a G-periodic Hermitian matrix with $\Gamma_{i,j} \in C^1(\Sigma)$.

Let $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ be the unbounded operator in $L^2(\mathbb{R}^n,\mathbb{C}^N)$ generated by the Dirac operator $\mathfrak{D}_{A,\Phi,m}$ with the domain

$$
dom(\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}})=\left\{u\in H^{1}(\mathbb{R}^{n}\diagdown\Sigma,\mathbb{C}^{N}) : \mathfrak{B}_{\Sigma}u=0\right\}
$$

associated with the formal Dirac operator $D_{A,\Phi,m,\Gamma\delta_{\Sigma}}$. We assume that the local Lopatinsky-Shapiro condition

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2}\right) \neq 0, \xi_x \in T_x^*(\Sigma) : |\xi_x| = 1 \tag{35}
$$

is satisfied at every point $x \in \Sigma$.

By Theorem [3](#page-5-4) $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is a self-adjoint operator in $L^2(\mathbb{R}^n,\mathbb{C}^N)$. Since the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is invariant with respect to the shifts V_g , $g \in \mathbb{G}$

$$
sp_{ess}\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}=sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}.
$$

We consider the band-gap structure of the spectrum of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ applying the Floquet transform (see for instance [[25,](#page-14-12) [40](#page-14-13)]).

143

Let $f \in S(\mathbb{R}^n, \mathbb{C}^N) = S(\mathbb{R}^n) \otimes \mathbb{C}^N$, where $S(\mathbb{R}^n)$ is the Schwartz space. The Floquet transform of *f* is defined as

$$
\left(\mathcal{F}_{\mathbb{G}}f\right)(x,k) = \sum_{\gamma \in \mathbb{G}} f(x-\gamma)e^{-ik \cdot (x-\gamma)}, k \in B_0,
$$

and the inverse Floquet transform is

$$
\big(\mathcal{F}_\mathbb{G}^{-1}v\big)(x)=\int_{B_0}v(x,k)e^{ix\cdot k}\frac{dk}{vol(B_0)}
$$

The operator $\mathcal{F}_{\mathbb{G}}$ is continued from the space $S(\mathbb{R}^n, \mathbb{C}^N)$ to the unitary operator acting from $L^2(\mathbb{R}^n, \mathbb{C}^N)$ into the space $L^2(\mathbb{T} \times \mathbb{T}^*, \mathbb{C}^N)$. Applying the Floquet transform, we obtain that

$$
\mathcal{F}_{\mathbb{G}} \mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \mathcal{F}_{\mathbb{G}}^* = \int_{k \in \mathbb{T}^*} \mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(k) \frac{dk}{vol(B_0)}
$$
(36)

where $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(k)$, $k \in \mathbb{T}^*$ is the unbounded operator in $L^2(\mathbb{T}, \mathbb{C}^N)$ generated by the Dirac operator

$$
\mathfrak{D}_{A,\Phi,m}(k) = \mathfrak{D}_{A+k,\Phi,m} = \alpha \cdot (D + A + k) + m\alpha_{n+1} + \Phi I_N
$$
 on T

with domain

$$
dom(\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(k)) = \left\{ u \in H^{1}(\mathbb{T} \setminus \tilde{\Sigma}, \mathbb{C}^{N}) : \mathfrak{B}_{\tilde{\Sigma}}u = 0 \right\}.
$$

As follows from Theorem [11](#page-8-3) the operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\mathfrak{F}}(k)$ has real discrete spectrum

$$
sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}(k) = \left\{ \lambda_j(k) \right\}_{j=-\infty}^{\infty}, k \in \mathbb{T}^*
$$

where $\lambda_j(k) < \lambda_{j+1}(k)$ for every $j \in \mathbb{Z}$ and $\lambda_j(k)$ are continuous real-valued functions on the torus \mathbb{T}^* . The decomposition of $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ in the direct integral [\(36](#page-10-0)) yields that

$$
sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = sp_{ess}\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = \bigcup_{j\in\mathbb{Z}} [a_j, b_j]
$$
(37)

where

$$
[a_j, b_j] = \{ \lambda \in \mathbb{R} : \lambda = \lambda_j(k), k \in \mathbb{T}^* \}.
$$
 (38)

Fredholm theory and essential spectrum of interaction problems on periodic hypersurfaces in ℝ^{*n*}

We consider the interaction problem on the domains Ω_+ with the common boundary Σ described in [\(32\)](#page-9-0) and [\(33\)](#page-9-1). Hence, the domains Ω_+ and the hypersurface Σ are invariant with respect to the shifts on the vectors $h \in \mathbb{G}$. We do not assume the periodicity of the potentials and the matrix Γ with respect to the action of \mathbb{G} . We assume that

$$
A_j, \Phi, m \in C_b^1(\mathbb{R}^n), \Gamma_{ij} \in C_b^1(\Sigma). \tag{39}
$$

Our approach is based on the limit operators method and Theorem [8](#page-6-1). We introduce the limit operators defned by the sequence $\mathbb{G} \ni h_k \to \infty$. We set

$$
A^{h}(x) = \lim_{k \to \infty} A(x + h_{k}), \Phi^{h}(x) = \lim_{k \to \infty} \Phi(x + h_{k}), m^{h}(x) = \lim_{k \to \infty} m(x + h_{k})
$$

where the limits are understood in the sense of the uniform converges on compact sets in ℝ*ⁿ*, and

Journal of Mathematical Sciences (2022) 266:133–147

$$
\Gamma^h(x) = \lim_{k \to \infty} \Gamma(x + h_k)
$$

is understood in the sense of the converges on the finite unions $\bigcup_{|g| \leq l} \sum_{g}$, $l \in \mathbb{N}$.
We use the notations $\mathbb{V} = H^1(\mathbb{R}^n)$, $\mathbb{R} \subset \mathbb{N}$, and $\mathbb{V} = L^2(\mathbb{R}^n, \mathbb{C}^N)$, and We use the notations $X = H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N)$ and $Y = L^2(\mathbb{R}^n, \mathbb{C}^N)$, and

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}u=(\mathfrak{D}_{A,\Phi,m}u,\mathfrak{B}_{\Sigma}u=0)
$$

is a bounded operator from \mathbb{X} into \mathbb{Y} . We introduce the limit operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{h}$ defined by the sequence $\mathbb{G} \ni h_k \to \infty$ as follows:

$$
\mathbb{D}^h_{A,\Phi,m,\mathfrak{B}_{\Sigma}}u=\mathbb{D}_{A^h,\Phi^h,m^h,\mathfrak{B}^h_{\Sigma}}u=(\mathfrak{D}_{A^h,\Phi^h,m^h}u,\mathfrak{B}^h_{\Sigma}u=0)
$$

where $\mathfrak{B}_{\Sigma}^{h}u = a_{+}^{h}\gamma_{\Sigma}^{+}u + a_{-}^{h}\gamma_{\Sigma}^{-}u, a_{-}^{+} = \frac{\Gamma^{h}}{2} \mp i\alpha \cdot v.$ One can see that for every $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$
\lim_{k \to \infty} \left\| \left(V_{-h_k} \mathbb{D}_{A, \Phi, m, \mathfrak{B}_{\Sigma}} V_{-h_k} - \mathbb{D}_{A, \Phi, m, \mathfrak{B}_{\Sigma}}^h \right) \varphi I \right\|_{\mathcal{B}(\mathbb{X}, \mathbb{Y})}
$$
\n
$$
= \lim_{k \to \infty} \left\| \varphi \left(V_{-h_k} \mathbb{D}_{A, \Phi, m, \mathfrak{B}_{\Sigma}} V_{-h_k} - \mathbb{D}_{A, \Phi, m, \mathfrak{B}_{\Sigma}}^h \right) \right\|_{\mathcal{B}(\mathbb{X}, \mathbb{Y})} = 0.
$$

The Arcela-Ascoli Theorem implies that every sequence $G \ni h_k \to \infty$ has a subsequence defining the limit operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}^h$.

Defnition 12 (i) We say that: (a) the operator

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}\,:\,\mathbb{X}\rightarrow\mathbb{Y}
$$

is the locally Fredholm if for every $R > 0$ there exist operators \mathcal{L}_R , $\mathcal{R}_R \in B(\mathbb{Y}, \mathbb{X})$ such that

$$
\mathcal{L}_{R} \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \psi_{R} I_{\mathbb{X}} = \psi_{R} I_{\mathbb{X}} + T_{R}^{\dagger},
$$
\n
$$
\psi_{R} \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \mathcal{R}_{R} = \psi_{R} I_{\mathbb{Y}} + T_{Y}^{2}
$$
\n(40)

where $T_R^1 \in K(\mathbb{X}), T_R^2 \in \mathcal{K}(\mathbb{Y});$

(ii) The operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} : \mathbb{X} \to \mathbb{Y}$ is locally invertible at infinity if there exists $R > 0$ and the operators $\mathcal{L}'_R, \mathcal{R}'_R \in B(\mathbb{Y}, \mathbb{X})$ such that

$$
\mathcal{L}'_R \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \chi_R I_{\mathbb{X}} = \chi_R I_{\mathbb{X}},
$$

\n
$$
\chi_R \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \mathcal{R}'_R = \chi_R I_{\mathbb{Y}}.
$$
\n(41)

We will use the following simple statement.

Proposition 13 *The operator* $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$: $\mathbb{X} \to \mathbb{Y}$ *is Fredholm if and only if:*

 $(i) \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ *is locally Fredholm*; (*ii*) $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ *is locally invertible at infinity.*

Theorem 14 *Let conditions* ([39\)](#page-10-1) *hold*, *and the Lopatinsky*-*Shapiro condition*

$$
\det\left(\alpha \cdot \xi_x + \frac{\Gamma(x)}{2}\right) \neq 0, \xi_x \in T_x^*(\Sigma_0) : |\xi_x| = 1 \tag{42a}
$$

be satisfied at every point $x \in \Sigma$. Then the operator

$$
\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}: H^1(\mathbb{R}^n \diagdown \Sigma, \mathbb{C}^N) \to L^2(\mathbb{R}^n, \mathbb{C}^N)
$$

is Fredholm if and only if all limit operators $\mathbb{D}^h_{A,\Phi,m,\mathfrak{B}_\Sigma}$ are invertible.

Proof The ellipticity of $\mathfrak{D}_{A,\Phi,m}$ and the local Lopatinsky-Shapiro condition imply that the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is locally Fredholm. Hence, Proposition [13](#page-11-0) yields that $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ is the Fredholm operator if and only if $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}$ is locally invertible at infinity. We reduce the study of local invertibility at infinity of $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ to the application of Proposition [13.](#page-11-0)

We introduce the operator

$$
\mathbb{D}_{\mathfrak{B}_{\Sigma}}^{0}(i\mu)u = \begin{cases} \alpha \cdot D_{x} - i\mu I_{N})u \text{ on } \mathbb{R}^{n} \diagdown \Sigma, \\ \mathfrak{B}_{\Sigma}u = a_{+}^{0}\gamma_{\Sigma}^{+}u + a_{-}^{0}\mu\gamma_{\Sigma}^{-} = 0 \text{ on } \Sigma \end{cases}
$$

where $a_{\pm}^0 = \frac{1}{2}a_{n+1} \mp i\alpha \cdot v$ acting from \mathbb{X} into \mathbb{Y} . Then according to Example [4](#page-5-5) the operator

$$
\mathbb{D}_{\mathfrak{B}_{\Sigma}}^{0}(i\mu): H^{1}(\mathbb{R}^{n}\diagdown \Sigma, \mathbb{C}^{N})\rightarrow L^{2}(\mathbb{R}^{n}, \mathbb{C}^{N}).
$$

is invertible for $|\mu|$ large enough. We fix such μ . Let $\Xi(i\mu) = (\mathbb{D}_{\mathfrak{B}_{\Sigma}}^0(i\mu))^{-1}$. We introduce the bounded in $L^2(\mathbb{R}^n, \mathbb{C}^N)$ operator

$$
\tilde{\mathbb{D}}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} \Xi(i\mu). \tag{43}
$$

It is easy to prove that

$$
\lim_{R \to \infty} \left\| \left[\chi_R I, \Xi(i\mu) \right] \right\|_{\mathcal{B}\left(L^2(\mathbb{R}^n, \mathbb{C}^N), H^1(\mathbb{R}^n \setminus \Sigma, \mathbb{C}^N) \right)} = 0. \tag{44}
$$

Formula [\(44](#page-12-0)) implies that the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is locally invertible at infinity if and only if the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is locally invertible at infinity. One can prove that the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ belongs to the algebra $\mathcal{A}(\mathbb{R}^n,\mathbb{C}^N)$. Hence, $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ is locally invertible at infinity if and only if all limit operators $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{A,\Phi,\overline{m},\mathfrak{B}_{\Sigma}}$ are invertible. Formula

$$
V_{-h}\tilde{\mathbb{D}}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}V_{h} = (V_{-h}\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}V_{h})(V_{-h}\Xi(i\mu)V_{h})
$$

= $(V_{-h}\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}V_{h})\Xi(i\mu), h \in \mathbb{G}$ (45)

implies that $\tilde{\mathbb{D}}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{h} = \mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{h} \mathbb{E}(i\mu).$

Hence, $\tilde{\mathbb{D}}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{h}$: $L^2(\mathbb{R}^n,\mathbb{C}^N) \to L^2(\mathbb{R}^n,\mathbb{C}^N)$ is invertible if and only if $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^h$: $H^1(\mathbb{R}^n\setminus\Sigma,\mathbb{C}^N) \to L^2(\mathbb{R}^n,\mathbb{C}^N)$ is invertible, and by Theorem [8](#page-6-1) the operator $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}^h$ is locally invertible at infinity if and only if all limit operators $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}^h$ are invertible. Hence, the Theorem has been proved.

Corollary 15 *Let conditions of Theorem* [14](#page-11-1) *hold*. *Then*

$$
sp_{ess}\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = \bigcup_{h} sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}^{h}
$$
(46)

where $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}^h$ are unbounded operators associated with the operators $\mathbb{D}_{A,\Phi,m,\mathfrak{B}_\Sigma}^h$ and the union is taken with respect to *all such limit operators*.

Example 16 We consider an operator $\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}}$ where Σ is the above defined G–periodic hypersurface in ℝ^{*n*}, We assume that the real-valued potentials A , Φ have the form: $A = A^0 + A'$, $\Phi = \Phi^0 + \Phi'$, where A^0 is a Φ -periodic magnetic potential, Φ^0 is a G–periodic electrostatic potential, $m \in \mathbb{R}$ is the mass of the particle, and Γ is a Hermitian G–periodic matrix on Σ such that the local Lopatinsky-Shapiro condition is satisfed at every point *x* ∈ Σ. We assume that the perturbations *A'* and Φ' are slowly oscillating at infinity, such that their partial derivatives tend to zero at infinity. In this case the limit operators $\mathcal{D}_{A^h, \Phi^h, m, \mathfrak{B}_{\Sigma}}$ are such that $A^h = A^0 + A'_h, \Phi^h = \Phi^0 + \Phi'_h$ where $A'_h \in \mathbb{R}^n, \Phi'_h \in \mathbb{R}$. Then

$$
sp\mathcal{D}_{A^h, \Phi^h, m, \mathfrak{B}_{\Sigma}} = sp(\mathcal{D}_{A^0, \Phi^0, m, \mathfrak{B}_{\Sigma}} + \Phi'_h I) = \sum_{j \in \mathbb{Z}} \left[a_j + \Phi'_h, b_j + \Phi'_h \right].
$$

Applying formula [\(46\)](#page-12-1), we obtain that

$$
sp\mathcal{D}_{A,\Phi,m,\mathfrak{B}_{\Sigma}} = \sum_{j\in\mathbb{Z}} \left[a_j + \mathfrak{m}(\Phi'), b_j + \mathfrak{M}(\Phi') \right],
$$

where $\mathfrak{m}(\Phi') = \liminf_{x \to \infty} \Phi'(x)$, $\mathfrak{M}(\Phi') = \limsup_{x \to \infty} \Phi'(x)$.

Hence, if

$$
a_{j+1} - b_j < \mathfrak{M}(\Phi') - \mathfrak{m}(\Phi')
$$

the gap (b_j, a_{j+1}) in the spectrum of operator $\mathcal{D}_{A^0, \Phi^0, m, \mathfrak{B}_{\Sigma}}$ disappears in the spectrum of perturbed operator $\mathcal{D}_{A, \Phi, m, \mathfrak{B}_{\Sigma}}$.

REFERENCES

- 1. Agranovich,M.S.: Elliptic boundary problems, in Partial Diferential Equations,IX, Agranovich,M.S.,Egorov,Y.V.,Shubin,M.A. (Eds.) Springer, Berlin-Heidelberg-New York, (2010).
- 2. Agranovich,M.S., Vishik,M.I.: Elliptic problems with a parameter and parabolic problems of general forms. Uspekhi Mat. Nauk. 1964,219; 63–161; English trans. Russian Math. Surveys. 1964; 19; 53–157.
- 3. Amann, H.: Parabolic Equations on Uniformly Regular Riemannian Manifolds and Degenerate Initial Boundary Value Problems. In: Amann H., Giga Y., Kozono H., Okamoto H., Yamazaki M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, https://doi.org/10.1007/978-3-0348-0939-9_4, (2016).
- 4. Arrizabalaga, N.,Mas,A.,Vega,L.: Shell interactions for Dirac operators. J. Math. Pures Appl. (9), 102(4):617–639, (2014).
- 5. Birman,M.Sh.,Solomjak,M.Sh.: Spectral Theory of Self-adjoint Operators in Hilbert Spaces. Reidel, Dordrecht (1987).
- 6. Bogolubov,N.N., Shirkov,D.V.: Quantum Fields, Benjamin/Cummings Publishing Company Inc. (1982).
- 7. R.D.Benguria, S. Fournais, E. Stockmeyer, H. Van Den Bosch: Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincarè 18(4), 1371–1383 (2017)
- 8. Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Anal. Geom.20(2),12 (2017)
- 9. Berry, M.V. and Mondragon,R. J., Neutrino billiards: time-reversal symmetry-breaking without magnetic felds, Proc. R. Soc. Land. A 412, 53-74 (1987).
- 10. Behrndt, J., Gesztesy, F., Holden, H., Nichols, R., On the index of meromorphic operator-valued functions and some applications. arXiv:151206962v3 [math.SP] 11 Nov 2016.
- 11. Behrndt,J.,Exner,P.,Holzmann,M.,Lotoreichik,V.: On the spectral properties of Dirac operators with electrostatic δ -shell interactions, J. Math.Pures Appl.111, 47–78, (2018).
- 12. Behrndt,J.,Exner,P.,Holzmann,M.,Lotoreichik,V: On Dirac operators in ℝ³ with electrostatic and Lorentz scalar δ-shell interactions, Quantum Stud.: Math. Found., [https://doi.org/10.1007/s40509-019-00186-6,](https://doi.org/10.1007/s40509-019-00186-6) (2019).
- 13. Behrndt,J, Holzmann, M., Ourmières-Bonafos,T., Pankrashkin,K.: Two-dimensional Dirac operators with singular interactions supported on closed curves, Journal of Functional Analysis, V. 279, Is. 8, 108700 (2020).
- 14. Bjorken, J.D., Drell,S.D.: Relativistic Quantum Mechanics, McGraw-Hill Book Company, New York St. Louis San Francisco Toronto London Sydney (1964)
- 15. Cassano,B., Lotoreichik, V., Mas,A., and Tusek,M.: General δ –shell interactions for two-dimensional Dirac operators: self-adjointness and approximation. arXiv:210209988v1 [math.AP] (2021).
- 16. A. Chodos: Field-theoretic Lagrangian with baglike solutions. Phys. Rev. D (3) 12(8): 2397–2406, (1975).
- 17. A. Chodos, R.L. Jafe, K. Johnson, C.B. Thorn, and V.F. Weisskopf: New extended model of hadrons. Phys. Rev. D (3) 9(12): 3471–3495, (1974)
- 18. Delanghe, R., Sommen, F., Soucek, V.: Cliford Algebra and Spinor-Valued Functions, A Function Theory for the Dirac Operator, Springer-Science-Busines-Media, B.V. (1992).
- 19. Grosse,N., Nistor,V : Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry, Potential Analysis, volume 53, pages, (2020), 407–447
- 20. Gohberg, I., Leiterer, J., Holomorphic operator functions of one variable and applications, Operator Theory: Advances and Applications, Vol. 192, Birkhäuser, Basel, 2009.
- 21. Holzmann, M.: A Note on the Three Dimensional Dirac Operator with Zigzag Type Boundary Conditions, Complex Analysis and Operator Theory 15:47<https://doi.org/10.1007/s11785-021-01090-x> (2021).
- 22. K.T.Hecht,: Quantum Mechanics, Springer Science+Business Media, LLC, (2000).
- 23. Johnson K.: The MIT bag model. Acta Phys. Pol., B(6),865–892, (1975).
- 24. Kalf, H., Yamada., O: Essential self-adjointness of n-dimensional Dirac operators with a variable mass term, J. of Math. Physics, V.42, N.6, (2001).
- 25. Kuchment,P.: An Overview of Periodic Elliptic Operators, BULLETIN (New Series) OF AMS, Volume 53, Number 3, July 2016, Pages 343–414, [https://doi.org/10.1090/bull/1528.](https://doi.org/10.1090/bull/1528)
- 26. Lindner, M., Seidel, M.: An afrmative answer to a core issue on limit operators. J. Funct. Anal. 267(3), 901–917 (2014).
- 27. Mas,A., Pizzichillo,F.: Klein's paradox and the relativistic *𝛿*-shell interaction in ℝ³, Anal. PDE 11 (3) 705-744, 2018).
- 28. Mehringer,J. Stockmeyer,E.: Confnement–deconfnement transitions for two-dimensional Dirac particles, Journal of Functional Analysis 266,2225–2250, (2014).
- 29. F. Pizzichillo, H. Van Den Bosch: Self-adjointness of two-dimensional Dirac operators on corner domains. Preprint arXiv:1902.05010 (2019)
- 30. Ourmierès-Bonafos-Bonafos,The.,Vega,L.: A strategy for self-adjointnessof Dirac operators: Applications to the MIT BAG model and shell interactions. Publ.Mat. 62, 397-437,(2018).
- 31. Ourmierès-Bonafos-Bonafos, Th., Pizzichlllo,F., Dirac operators and shell interactions: a survey, [math-ph] arXiv:190203901v1 (2019).
- 32. Rabinovich,V.S.,Roch,S.,Silbermann,B.: Limit Operators and their Applications in Operator Theory, In ser.Operator Theory: Advances and Applications, vol 150, Birkhäuser Verlag, (2004).
- 33. Rabinovich, V.S., Roch, S., Silbermann, B.: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections. Integr. equ. oper. theory 40 (2001) 342-381, 0378-620X/01/030342-40\\$1.50+0.20/09 Birkh[∼] iuser Verlag, Basel, 2001.
- 34. Rabinovich,V.S.: Essential spectrum of perturbed pseudodiferential operators. Applications to the Schrödinger, Klein-Gordon, and Dirac operators, Russ. J. Math. Physics, 12:1, 62-80, (2005).
- 35. Rabinovich, V.S.: Essential spectrum of Schroödinger operators with δ −interactions on unbounded surfaces, Math. Notes, 102:5, 698–709, (2017).
- 36. Rabinovich,V.S.: Schrödinger operators with interactions on unbounded surfaces: Math. Meth. Appl. Sci. Math Meth Appl Sci.;42: 4981–4998 (2019).
- 37. Rabinovich,V.S.: Fredholm property and essential spectrum of 3 − *D* Dirac operators with regular and singular potentials, Complex Variables and Elliptic equations,<https://doi.org/10.1080/17476933.2020.1851211> (2020).
- 38. Rabinovich,V.: Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves, ISSN 1061-9208, Russian Journal of Mathematical Physics, Vol. 28, No. 4, 2021, pp. 524–542. c Pleiades Publishing, Ltd., 2021.
- 39. Rabinovich,V.S.: Dirac operators with delta-interactions on smooth hypersurfaces in ℝ*ⁿ*, Journal of Fourier Analysis and Applications, (2022).
- 40. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.