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Abstract
We present a very detailed proof of the growth of the Lebesgue constants of hyperbolic Bochner-Riesz 
means for double Fourier series.
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Introduction

Since the appearance of Babenko’s paper [1], interest has continued in various questions of Approximation Theory and 
Fourier analysis in ℝn connected with the study of linear means with harmonics in “hyperbolic crosses”:

We are interested in the hyperbolic means of Bochner-Riesz type of order � ≥ 0

where for x = (x1, ..., xn) ∈ �
n and k = (k1, ..., kn) ∈ ℤ

n , the inner product kx = k1x1 + ... + knxn . Hyperbolic Bochner-Riesz 
means (for the two-dimensional Fourier integrals with �1 = �2 = 2 ) appeared for the first time in the paper of El-Kohen 
[10] in connection with the study of their Lp-norms. That result not being sharp shortly after was strengthened by Carbery 
[7]. Of course, taking �1 = �2 = 2 (or any other integer parameters) simplifies the calculations. Such calculations would 
be similarly simplified if the parameters �j were large enough. This is not the problem for partial sums. Taking N in the 
appropriate power allows one to have these parameters as large as needed. However, for the Bochner-Riesz type means, 
we have to adjust the means themselves. By this, the dimension and order � are taken into account.

Γ(N, 𝛾) = {k ∈ ℤ
n ∶ h(N, k, 𝛾) =

n∏
j=1

(|kj|
N

)𝛾j ≤ 1, 𝛾j > 0, j = 1, ..., n}.

L�
Γ(N,�)

∶ f (x) ↦
∑

k∈Γ(N,�)

(1 − h(N, k, �))� f̂ (k)eikx,
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The case � = 0 , the hyperbolic partial sums LΓ(N,�) = L0
Γ(N,�)

 , has been investigated separately earlier. The exact degree of growth 
for them ‖LΓ(N,�)‖ ≍ N

n−1

2  was established in the two-dimensional case independently by Belinsky [5] and by A. and V. Yudins 
[18], and afterwards was generalized to the case of arbitrary dimension in [13]. Recently, these results were applied to problems 
of uniform convergence in [9].
For � ≥ 0, the estimates are announced in [16, Ch.7]. The strategy for the proof is only outlined there. It is inductive and 
strongly based on the two-dimensional version of the result. The proof of the latter is also only outlined there. Here we 
present an extremely detailed proof for the double case. The corresponding result reads as follows.

Theorem 1.1 For �1, �2 ≥ 1 , the following assertions hold. 

1. For 0 ≤ 𝛼 <
1

2
, we have 

2. For � =
1

2
, we have 

3. For 𝛼 >
1

2
, we have 

Here and below � with subscripts denotes, generally speaking, different constants depending only on the indicated 
indices. Also, A ≍ B denotes A ≲ B ≲ A , where we use here and below the notation “ ≲ ” as abbreviations for “ ≤ C ” 
with C being a positive constant, may be different in different occurrences (and of course different in A ≲ B ≲ A ). 
Such constants never depend on varying essential parameters. What is important in this work is that in estimates with 
� the constants may depend on � . Being fixed in every particular case, such constants may grow when � approaches 
1

2
 . Also, there will appear a parameter � in the sequel on which the constants in the estimates may depend.

Observe that the critical order 1
2
 is the same as in the spherical case (in dimension two; for dimension n, it is n−1

2
 ). But if for 

the values lower than the critical one, the orders of growth of the Lebesgue constants are such as in the spherical case, the 
difference between the uniform boundedness in the spherical case and 2) in Theorem 1.1 is striking, moreover, for the orders 
greater than 1

2
 : in the latter case the Lebesgue constants of the usual spherical Bochner-Riesz means are bounded. In order 

to establish Theorem 1.1, especially 2) and 3), we need the following result. We present only the two-dimensional version; 
besides that it is worth noting that in fact the estimates obtained in [14] are valid for a wider range of �.

Theorem 1.2 ([14, 17]) Let � and � be the same as in Theorem 1.1. For the norms of operators

the following asymptotic equality holds true

This is a strengthening of Kivinukk’s result [12], where bilateral ordinal inequalities were obtained; by this it was shown 
for the first time the influence of smoothness at the corner points on the order drop of a logarithmic growth, as compared 
with the Lebesgue constants of the cubic partial sums.
It should be mentioned that our results are proved by step by step passage from sums to corresponding integrals. The 
Fourier transform of the function generating the method of summability under consideration is thus to be estimated. This 
will give the upper estimates for 0 ≤ 𝛼 <

1

2
 , while the lower ones of the same order are given in [15], the leading term of 

‖L�
Γ(N,�)

‖ ≍ N
1

2
−� .

‖L
1

2

Γ(N,�)
‖ = �� ln

2 N + O(lnN).

‖L�
Γ(N,�)

‖ = �� ,� lnN + O(1).

L̄𝛼
Γ(N,𝛾)

∶ f (x) ↦
∑

|kj|≤N,j=1,2
(1 − h(N, k, 𝛾))𝛼�f (k)eikx,

‖L̄𝛼
Γ(N,𝛾)

‖ = 𝜔𝛾 ,𝛼 lnN + O(1).
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the asymptotics for � =
1

2
 , and remainder terms for 𝛼 >

1

2
 . The leading term for 𝛼 >

1

2
 comes from Theorem 1.2. Some 

ideas from [5] are used here.

Passage to the Fourier transform: first steps

Since the norms of the operators

taking C(� 2) into C(� 2), are bounded, we can restrict our estimates to those for the norm of the operator

This norm is equal to

The estimate for the last sum is given in Theorem 1.2. The first two sums are similar, so we will handle only one of them. 
We are going to replace summation in m2 by the corresponding integration, that is, passing from the trigonometric sum 
to the Fourier transform. We have

where z substitutes for y2|m1|
�1
�2

N

�1
�2

+1
. The right-hand side may be rewritten as:

f → ∫
�

f (x1, x2)dx1 and f → ∫
�

f (x1, x2)dx2,

f →
∑

1≤|m1|�1 |m2|�2≤N�1+�2

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

f̂ (m)eimx.

(2.1)

1

4�2 �
� 2

||||
∑

1≤|m1|�1 |m2|�2≤N�1+�2

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eimx
|||| dx

=
1

4�2 �
� 2

||||
∑

1≤|m1|≤N
eim1x1

∑
1≤|m2|�2≤ N�1+�2

|m1 |�1

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eim2x2

+
∑

1≤|m2|≤N
eim2x2

∑
1≤|m1|�1≤ N�1+�2

|m2 |�2

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eim1x1

−
∑

1≤|m1|,|m2|≤N

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eimx
|||| dx

(2.2)

�
� 2

||||
∑

1≤|m1|≤N
eim1x1

{ ∑
1≤|m2|�2≤ N�1+�2

|m1 |�1

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eim2x2

− �
|y2|�2≤ N�1+�2

|m1 |�1

(
1 −

|m1|�1 |y2|�2
N�1+�2

)�

eiy2x2dy2

}|||| dx

= �
� 2

||||
∑

1≤|m1|≤N
eim1x1

{ ∑
1≤|m2|�2≤ N�1+�2

|m1 |�1

(
1 −

|m1|�1 |m2|�2
N�1+�2

)�

eim2x2

−
N

�1
�2
+1

|m1|
�1
�2

1

�
−1

(1 − |z|�2)�eix2z
N�1∕�2+1

|m1 |�1∕�2 dz

}|||| dx,
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with M =
N

�1
�2

+1

|m1|
�1
�2

 . We now represent this as

where Λ is the one-dimensional inverse Fourier transform, times 2� , of the function ��2,�(z) = (1 − |z|�2)�
+
, that is,

The m2-th Fourier coefficient of the function MΛ(⋅M) (understood as extended periodically) is

Omitting the case m2 = 0 so far, we will return to it later. Combining () and (2.3), applying successively the Cauchy-
Schwarz inequality and Parseval’s identity to

we arrive at the following value to be estimated:

Without loss of generality, we can deal with

where now

�
� 2

||||
∑

1≤|m1|≤N
eim1x1

{ ∑
1≤|m2|≤M

(
1 −

(|m2|
M

)�2
)�

eim2x2

−M

1

�
−1

(1 − |z|�2)�eix2zM dz

}|||| dx,

�
� 2

||||
∑

1≤|m1|≤N
eim1x1

{ ∑
1≤|m2|≤M

(
1 −

(|m2|
M

)�2
)�

eim2x2

−MΛ(x2M)

}|||| dx,

Λ(u) = 2𝜋�̌�𝛾2,𝛼(u) = 2𝜋

1

∫
−1

(1 − |z|𝛾2)𝛼eiuz dz.

(2.3)

1

2𝜋 ∫
𝕋

MΛ(x2M)e−im2x2 dx2 =
1

2𝜋 ∫
𝕋

2𝜋M�̌�𝛾2,𝛼(x2M)e−im2x2 dx2

=

⎛⎜⎜⎝∫ℝ
− ∫
�t�>M𝜋

⎞⎟⎟⎠
�̌�𝛾2,𝛼(t)e

−im2
t

M dt

=

�
1 −

�m1�𝛾2 �m2�𝛾2
N𝛾1+𝛾2

�𝛼

+

− ∫
�t�>M𝜋

�̌�𝛾2,𝛼(t)e
−im2

t

M dt.

�
� 2

||||
∑

1≤|m1|≤N
eim1x1

∑
m2≠0

eim2x2 �
|t|>M𝜋

Λ(t)e−im2
t

M dt
|||| dx,

{ ∑
1≤|m1|≤N

∑
m2≠0

|||| �
|t|>𝜋M

Λ(t)e−im2
t

M dt
||||
2
}1∕2

.

{ N∑
m=1

∞∑
k=1

|||| ∫
|t|>𝜋M

Λ(t)e−ik
t

M dt
||||
2
} 1

2

,

7
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and

with � replacing more tedious �2 . Denoting Φ(t) =
Λ(t)

4�
 , we have to estimate the error of the passage from the trigonometric 

sum to the Fourier transform in one variable by means of

For subsequent estimates, we need to know certain asymptotic properties of Φ(t) for large t. We mention that the following 
assertions are of interest if 0 < 𝛼 < 1 . For � ≥ 1 , we will just apply the estimates for the remainder terms in the asymptotic 
relations. Also, certain problems might appear if 𝛿 < 𝛼 . However, in our case, � is either �1 or �2 and it does not play any 
role in the estimates. The stationary phase method yields (see, e.g., [8])

Here a and b are some constants, independent of t, that have no influence on the decay in t in the estimates. Since

the stationary phase method gives the same formula (2.7), maybe with different a and b.

Double hyperbolic partial sums

Though the estimates for partial sums are better studied, as mentioned above, we present our proof. It differs from the 
earlier ones. Not that it is really simpler but goes along more general lines, better adjusted to the case of any dimension.

Passage to the Fourier transform continued

We observe that for � = 0 , the case of the double hyperbolic partial sums,

and

which fits the above asymptotic relations. Let us, for the sake of completeness, fulfil all the calculations for the double 
hyperbolic partial sums separately. Also, this proof will differ from that in [18] and, in certain respects, from that in [5]. 
Here (2.6) is (recall that M is given in (2.4))

(2.4)M ∶= M(m) ∶=
N1+𝛾

m𝛾
, with 𝛾 =

𝛾1
𝛾2

> 0,

(2.5)Λ(t) = 2�

1

∫
−1

(1 − |z|�)�eitz dz = 4�

1

∫
0

(1 − z�)� cos tz dz,

(2.6)

{ N∑
m=1

∞∑
k=1

|||| ∫
|t|>𝜋M

Φ(t)e−ik
t

M dt
||||
2
} 1

2

.

(2.7)Φ(t) = a
eit

t1+�
+ b

e−it

t1+�
+ O

(
1

t2

)
.

(2.8)Φ�(t) = −

1

∫
0

z(1 − z�)� sin zt dz,

Φ(t) =
sin t

t
,

Φ�(t) =
cos t

t
−

sin t

t2
,

8
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Before treating it, we complete certain simpler cases. The omitted case k = 0 reduces to

This is

more than enough.
Also, we wish to treat the case M − 2 < k < M + 2 immediately. It follows from the formula (see (5) in [6, Ch.I, §4]; it is 
mentioned in Remark 12 in the cited literature of [6] that the formula goes back to Fourier)

In the same book, this integral is called the Dirichlet discontinuous factor. The same integral, with sin yt in place of cos yt , 
vanishes if it exists because of oddness of the integrated function. Both integrals exist if understood in the principal value 
sense. Therefore, the integral in (3.1) is bounded, uniformly in M, and the estimate for this case reduces to

which is the claimed bound.
Integrating in (3.1) by parts, we get

For the integrated term, we obtain the bound

The term sin t
t2

 leads to the same estimate after routine calculations. The remaining value to be estimated is convenient to 
represent as

(3.1)

{ N∑
m=1

∞∑
k=1

|||| ∫
|t|>𝜋M

sin t

t
e
−ik

t

M dt
||||
2
} 1

2

.

{ N∑
m=1

|||| ∫
|t|>𝜋M

sin t

t
dt
||||
2
} 1

2

.

{ N∑
m=1

1

M2

} 1

2

= O(N−
1

2 ),

∫
∞

−∞

sin at

t
cos yt dx =

⎧⎪⎨⎪⎩

𝜋, y < a;
𝜋

2
, y = a;

0, y > a.

{ N∑
m=1

C

} 1

2

= O(N
1

2 ),

∫
|t|>𝜋M

sin t

t
e
−ik

t

M dt =
M

ik

sin𝜋M

𝜋M
e−i𝜋k

+
M

ik ∫
|t|>𝜋M

[
cos t

t
−

sin t

t2

]
e
−ik

t

M dt.

{ N∑
m=1

∞∑
k=1

M2

k2
1

M2

} 1

2

= O(N
1

2 ).

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

|||||||
�

|t|>𝜋M

eit

t
e
−ik

t

M dt

|||||||

2} 1

2

.

9
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We mention that the case where we have e−it and e−ik
t

M runs along the same lines, with simpler estimates. Integrating by 
parts, without loss of generality, in the integral

we obtain

which gives the value

to be estimated. This implies

Passing from sums to integrals, we can easily calculate that

which yields the same O(N
1

2 ) . More or less similarly,

Now, we have to pass from the discrete parameter m1 to the corresponding continuous in

Using the relation

we have to estimate the difference

∞

∫
M

e
it(1−

k

M
)

t
dt,

∞

∫
M

1

t
e
it(1−

k

M
)
dt = −

M

i(M − k)M
ei(M−k)

+
M

i(M − k)

∞

∫
M

1

t2
e
it(1−

k

M
)
dt,

1

|M − k|

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2
1

|M − k|2
} 1

2

.

∑
1≤k≤M−2

M2

k2
1

|M − k|2 = O(1),

{ N∑
m=1

∑
k≥M+2

M2

k2
1

|M − k|2
} 1

2

≲

{ N∑
m=1

∑
k≥M+2

1

|M − k|2
} 1

2

≲

{ N∑
m=1

} 1

2

= O(N
1

2 ).

�
� 2

||||
∑

1≤|m1|≤N
eim1x1 M �

|z|≤1
eix2zM dz

|||| dx.

(3.2)eim1x1 =
x1

2 sin(x1∕2)

m1+1∕2

∫
m1−1∕2

eix1u du,

10
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Substituting u → m + u and applying simple inequalities, and then the Cauchy-Schwarz inequality, Parseval’s identity, 
and mean-value theorem, we estimate this difference via

It is obvious that for |x2| ≥ 1 , the bound is O(N
1

2 ) . Considering the integral in x2 to be over |x2| < 1 , we split the sum in 
m1 into two parts. First,

which is O(N
1

2 ) for any 𝛽 > 0 . On the other hand,

which is O(N
1

2 ) for any 𝛽 > 0 such that −𝛽𝛾 + 𝛽

2
> −1 . This is true for any 𝛽 <

1
1

2
+𝛾

 , and such a � always exists.

Thus, we have replaced the summation by integration with the error O(N
1

2 ).

Estimates for the Fourier transform

It remains to estimate

Of course, we can simplify the calculations by considering, without loss of generality,

�
� 2

||||
∑

1≤|m1|≤N

m1+1∕2

�
m1−1∕2

eix1u du

{
�

|t|≤N�+1|m1|−�
eix2t dt

− �
|t|≤N�+1|u|−�

eix2tdt

}|||| dx.

1∕2

�
−1∕2

�
�

{ ∑
1≤|m1|≤N

|||| �
|t|≤N�+1|m1|−�

eix2t dt − �
|t|≤N�+1|u|−�

eix2tdt
||||
2
} 1

2

dx2 du

≤
1∕2

�
−1∕2

�
�

{ ∑
1≤|m1|≤N

1

x2
2

|||| e
ix2N

�+1|m1|−� − eix2N
�+1|m1+u|−� ||||

2
} 1

2

dx2 du.

�
|x2|<1

{ ∑
1≤|m1|≤N|x2|𝛽

1

x2
2

|||| e
ix2N

𝛾+1|m1|−𝛾 − eix2N
𝛾+1|m1+u|−𝛾 ||||

2
} 1

2

dx2

≲ �
|x2|<1

{ ∑
1≤|m1|≤N|x2|𝛽

1

x2
2

} 1

2

dx2 ≲ N
1

2 �
|x2|<1

|x2|
𝛽

2
−1

dx2,

∫
|x2|<1

{ ∑
|m1|>N|x2|𝛽

1

|x|2
2

|||| e
ix2N

𝛾+1|m1|−𝛾 − eix2N
𝛾+1|m1+u|−𝛾 ||||

2
} 1

2

dx2

≲ ∫
|x2|<1

{ ∑
|m1|>N|x2|𝛽

N2(𝛾+1)

|m1|2(1+𝛾)
} 1

2

dx2

≲ N
1

2 ∫
|x2|<1

|x2|−𝛽(1+𝛾)+
𝛽

2 dx2,

�
� 2

|||| �
1∕2≤|u|≤[N]+1∕2

eix1u �
|t|≤N�+1|u|−�

eix2t dt du
|||| dx.

11
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since the calculations for the remaining integrals go along the same lines. The latter integral is

Again, and only for the sake of simplicity, we can take the upper limit to be N, since the bound for the difference of the 
two values is

which is equivalent to lnN.
By this, what remains to be estimated is

The next two steps correspond to two changes of variables: first

and then v1 = Nx1 and v2 = Nx2 . The estimated integral becomes

Further estimates will be undertaken for two different cases. Denoting V = v

�1
�1+�2

1
v

�2
�1+�2

2
 , we consider separately V ≤ 1 and 

V > 1.
Estimates for the case V ≤ 1  We do not have the same approach to all � =

�1
�2

 . Let first � ≥ 1

2
.

(a1) The simplest part is 0 ≤ v1 ≤ N1∕2

lnN
 , 1
N�

≤ v2 ≤ N . Since

we obtain

(a2) Furthermore,

�
�
2
+

|||| �
1∕2≤u≤[N]+1∕2

eix1u �
|t|≤N�+1u−�

eix2t dt du
|||| dx,

�
�
2
+

1

x2

|||| �
1∕2≤u≤[N]+1∕2

eix1u sin(x2N
�+1u−� ) du

|||| dx.

[N]+1∕2

∫
N

∫
�+

1

x2
| sin(x2N�+1u−� )| dx2 du,

∫
�
2
+

1

x2

||||

N

∫
1∕2

eix1u sin(x2N
�+1u−� ) du

|||| dx.

t = x

1

1+�

1
x
−

1

1+�

2
N−1u,

(3.3)
∫
N� 2

+

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

||||

(v1∕v2)
�2

�1+�2

∫
(v1∕v2)

�2
�1+�2 (2N)−1

eiv
�1

�1+�2
1

v

�2
�1+�2
2

t

× sin(v

�1
�1+�2

1
v

�2
�1+�2

2
t−� ) dt

|||| dv.

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

(
v1

v2

) �2
�1+�2

=
1

v2
,

N1∕2

lnN

∫
0

N

∫
1

N𝛾

dv2

v2
dv1 ≲ N1∕2.

12



Journal of Mathematical Sciences (2022) 266:4–25 

which is O(N
1

2 ) provided � ≥ 1

2
 . Of course, the above calculations are true for � ≠ 1 . However, for � = 1 , the corresponding 

calculations are quite similar and even easier (see [5]).
(a3) Finally, observing that V ≤ 1 is equivalent to v2 ≤ 1

v
�

1

 and fulfilling exactly the same estimates as in (a2), we get, for � ≤ 1

,

which is O(N
1

2 ) provided � ≥ 1

2
 . Needless to say that the above remark 0n the case � = 1 is true here as well. If 𝛾 > 1 , we 

provide instead of (a2) the simpler estimate

Let now 𝛾 <
1

2
 . The first two steps are very similar to (a1) and (a2). We only replace 1

N�
 by 1

N1∕2
 . This shows a sort of satura-

tion for the considered � . We also note that estimates on these domains can be provided for all � . The first step is such in 
any case. On the second step, this can be achieved by replacing

with

N

�
0

1

N�

�
0

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

(v1∕v2)
�2

�1+�2

�
(v1∕v2)

�2
�1+�2 (2N)−1

|||||
sin(v

�1
�1+�2

1
v

�2
�1+�2

2
t−� )

|||||
dt dv2 dv1

≤
N

�
0

1

N�

�
0

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

v

�1
�1+�2

1
v

�2
�1+�2

2

(v1∕v2)
�2

�1+�2

�
(v1∕v2)

�2
�1+�2 (2N)−1

t−� dt dv2 dv1

=|1 − �|
N

�
0

1

N�

�
0

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

v

�1
�1+�2

1
v

�2
�1+�2

2

(
v1

v2

) �2−�1
�1+�2 |1 − (2N)�−1| dv2 dv1

=|1 − �|
N

�
0

1

N�

�
0

|1 − (2N)�−1| dv2 dv1 = |1 − �|N1−� + O(1),

N

∫
N1∕2

lnN

1

v
𝛾
1

∫
1

N𝛾

|1 − (2N)𝛾−1| dv2 dv1 ≲
N

∫
N1∕2

lnN

dv1

v
𝛾

1

= O(N1−𝛾 ),

N

�
N1∕2

lnN

1

v
𝛾
1

�
1

N𝛾

1

v

𝛾2
𝛾1+𝛾2

1

1

v

𝛾1
𝛾1+𝛾2

2

(v1∕v2)
𝛾2

𝛾1+𝛾2

�
(v1∕v2)

𝛾2
𝛾1+𝛾2 (2N)−1

dt dv2 dv1

≤
N

�
N1∕2

lnN

1

v
𝛾
1

�
1

N𝛾

1

v

𝛾2
𝛾1+𝛾2

1

1

v

𝛾1
𝛾1+𝛾2

2

(
v1

v2

) 𝛾2−𝛾1
𝛾1+𝛾2

dv2 dv1 ≲

N

�
N1∕2

lnN

dv1

v2
1

= O(1).

|||||
sin(v

�1
�1+�2

1
v

�2
�1+�2

2
t−� )

|||||
≤ v

�1
�1+�2

1
v

�2
�1+�2

2
t−�

|||||
sin(v

�1
�1+�2

1
v

�2
�1+�2

2
t−� )

|||||
≤ (v

�1
�1+�2

1
v

�2
�1+�2

2
t−� )�

13
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and choosing an appropriate �.
Let finally N

1∕2

lnN
≤ v1 ≤ N and 1

N1∕2
≤ v2 ≤ 1

v
�

1

 . We now treat the integral

in a different way. Integrating by parts, we get for the next estimates the bounds 1
V
 and

The latter, in turn, reduces to

The first value times 1

v

�2
�1+�2
1

1

v

�1
�1+�2
2

 gives 1

v1v2
 and ln2 N  in general. The second one, times the same value, leaves the 

integral

to be estimated. It is controlled by

which is small enough even for 𝛾 < 1.
In conclusion, for V ≤ 1 , the Fourier integral that replaced the initial sum is of the desired O(N

1

2 ) growth.
Estimates for the case V > 1  Here, the Stationary Phase Method will be applied to the inner integral in

We mention that this integral is in the form equivalent to (3.3) used for V ≤ 1 ; it will be more convenient to deal with it 
just in this form. The version of the Stationary Phase Method we are going to apply reads, for any dimension n, as follows 
(it can be found in [11]).

Theorem 3.1 For the integer k ≥ 1 , the following asymptotic formula is valid

(v1∕v2)
�2

�1+�2

∫
(v1∕v2)

�2
�1+�2 (2N)−1

eiVte
iV

t� dt

(v1∕v2)
�2

�1+�2

∫
(v1∕v2)

�2
�1+�2 (2N)−1

t−1−� dt.

(
v1

v2
)
−

�1
�1+�2 (2N)� .

N�

N

∫
N1∕2

lnN

1

v1

1

v
�
1

∫
1

N1∕2

dv2 dv1

N�

N

∫
N1∕2

lnN

dv1

v
1+�

1

,

(3.4)∫
N� 2

+

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

||||

(v1∕v2)
�2

�1+�2

∫
(v1∕v2)

�2
�1+�2 (2N)−1

eiv
�1

�1+�2
1

v

�2
�1+�2
2

(t±t−� ) dt
|||| dv.
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where v0 = (v0
1
, v0

2
,… , v0

n−1
) is a stationary point of S;  S′′ is the Hessian matrix of the second derivatives of S such that 

S��(v0) ≠ 0; �(v0) is a real number depending on det S��(v0); and aj are some (complex) numbers.

In our case, it is rather simple. Calculating the first and the second derivatives of the function t ± 1

t�
 , we mainly see that 

the second one does not vanish. Therefore, the worst possible estimate is of the order V−
1

2 . We thus have to estimate

We observe that both v1 and v2 in the denominators are in the power less than 1. Being integrated, they give

and

both now in positive powers. Obviously, the maximum of their product is attained at v1 = v2 = N . This gives

which completes the proof for the above estimate of the Lebesgue constants of double hyperbolic partial sums.

Double Bochner‑Riesz type means

We continue our calculations for the general Bochner-Riesz type means.

Passage to the Fourier transform continued

We first estimate the case m2 = 0. Of course, it may cause no serious problem. We have to estimate

It suffices to use a simple bound Λ(t) = O(t−1−�). This yields the estimate O(N−�) for the remainder term on the right-
hand side. Actually, this is the case for any individual m2, or a finite number of m2-s. So, we should have the same good 
estimate for

(3.5)

Qn(R) = ∫
ℝ

n−1
+

�(v)eiRS(v)dv

= (2�)
n−1

2 R
1−n

2 ei(RS(v0)+�(v0)) × | det S��(v0)|−
1

2

(
�(v0) + O(R−1)

)

+ R
1−n

2 eiRS(v0)
k−1∑
j=1

ajR
−j + O(R

1−n

2
−k),

∫
N� 2

+ ,V>1

1

v

𝛾2
𝛾1+𝛾2

+
𝛾1

2(𝛾1+𝛾2)

1

1

v

𝛾1
𝛾1+𝛾2

+
𝛾2

2(𝛾1+𝛾2)

2

dv2 dv1.

v
1−

�2
�1+�2

−
�1

2(�1+�2)

1

v
1−

�1
�1+�2

−
�2

2(�1+�2)

2
,

N
1−

�2
�1+�2

−
�1

2(�1+�2)N
1−

�1
�1+�2

−
�2

2(�1+�2) = N
1

2 ,

�
� 2

||||
∑

1≤|m1|≤N
eim1x1

(
�

|t|>𝜋N𝛾1∕𝛾2+1|m1|−𝛾∕𝛾2
Λ(t) dt − 1

)|||| dx

= 𝜔2 logN + O

( ∑
1≤|m1|≤N

|||| �
|t|>𝜋N𝛾1∕𝛾2+1|m1|−𝛾1∕𝛾2

Λ(t) dt
||||
)
.
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where for the simplifying notation M, Φ , and other, see (2.4) and further remarks. Integrating by parts (for simplicity and 
without loss of generality, only over [�M,∞) ), we have

For the last integral in (4.1), we use (2.7). This leads to estimating, with � =
�1
�2

,

For the integrated term on the right-hand side of (4.1), we similarly obtain, using (2.7),

This is “too good” to be taken into account.
Denoting Ψ(z) = z(1 − z2)�

+
 , we have to estimate

We continue with the first summand on the right-hand side of (4.3). Integrating by parts, we obtain

For the first summand on the right-hand side of the last relation, the estimate O( 1

t2+�
) follows immediately, since both 

functions are Lip� . For the second one, the same assertion needs a somewhat more delicate analysis. We rewrite it as

{ N∑
m=1

∑
|k−M|≤1

|||| �
|t|>𝜋M

Φ(t)e−ik
t

M dt
||||
2
} 1

2

,

(4.1)

∞

∫
�M

Φ(t)e−ik
t

M dt =
M

ik
Φ(�M) +

M

ik

∞

∫
�M

Φ�(t)e−ik
t

M dt.

(4.2)
{ N∑

m=1

M−2𝛼

} 1

2

= N−𝛼(1+𝛾)

{ N∑
m=1

m2𝛼𝛾

} 1

2

≲ N
1

2
−𝛼 .

{ N∑
m=1

M−2(1+𝛼)

} 1

2

≲ N
−

1

2
−𝛼 .

(4.3)

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
�M

Φ�(t)e−ik
t

M dt
||||
2
} 1

2

≤
{ N∑

m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
�M

[Φ�(t) −
(
�

2

)�

Ψ(t)]e−ik
t

M dt
||||
2
} 1

2

+
(
�

2

)�
{ N∑

m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
�M

Ψ(t)e−ik
t

M dt
||||
2
} 1

2

.

Φ�(t)−
(
�

2

)�

Ψ(t) =

1

∫
0

[z(1 − z�)� −
(
�

2

)�

z(1 − z2)�] sin tz dz

=
1

t

1

∫
0

[(1 − z�)� −
(
�

2

)�

(1 − z2)�] cos zt dz

+
1

t

1

∫
0

��[
(
�

2

)�−1

z2(1 − z2)�−1 − z�(1 − z�)�−1] cos zt dz.
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Since, by l’Hôpital’s rule, the limit of the value in brackets as z → 1 is 0, the singularity � − 1 is neutralized and we again 
live in Lip� . Therefore, we have Φ�(t) − (

�

2
)�Ψ(t) = O(t−2−�) , which gives after integration O(M−1−�) . Finally,

the desired bound.
Since (see [4, Ch. II, §2.3, (9)])

what remains to estimate in (4.3) is

We need the following properties of the Bessel function J� (see, e.g., [3, §7.2.8(50),(51); §7.13.1(3); §7.12(8)]):

Since

it remains to estimate

��z�(1 − z�)�−1

[(
�

2

)�−1

z2−�
(
1 − z2

1 − z�

)�−1

− 1

]
.

{ N∑
m=1

∞∑
k=1

M2

k2
M−2−2�

} 1

2

=

{ N∑
m=1

N−2�−2��m2��

} 1

2

= O(N
1

2
−�),

1

∫
0

z(1 − z2)� sin tz dz = 2�−
1

2

√
�Γ(� + 1)t−�−

1

2 J�+ 3

2

(t),

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
�M

t
−�−

1

2 J�+ 3

2

(t)e−ik
t

M dt
||||
2
} 1

2

.

(4.4)
d

dt

[
t±�J�(t)

]
= ±t±� J�∓1 (t);

(4.5)

J�(t) =

√
2

�t
cos

(
t −

��

2
−

�

4

)

+

√
2

�

1 − 4�2

8
t
−

3

2 sin
(
t −

��

2
−

�

4

)

+ O
(
t
−

5

2

)
as t → ∞;

(4.6)J� = O(t�) for small t.

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
𝜋M

t−𝛼−2 dt
||||
2
} 1

2

≲

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2
M−2𝛼−2

} 1

2

= O(N
1

2
−𝛼),

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2

k2

||||

∞

�
�M

t−�−1e
it(1−

k

M
)
dt
||||
2
} 1

2

.
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Needless to say that, as above, the case where we have e−it and e−ik
t

M runs along the same lines, with simpler estimates. 
Integrating by parts, without loss of generality, in the integral

we obtain

which gives the value

to be estimated. This implies

Passing from sums to integrals, we can easily calculate that

which yields (4.2). Similarly,

Now, we have to pass from the discrete parameter m1 to the corresponding continuous in

Using (3.2), we have to estimate the difference

∞

∫
M

e
it(1−

k

M
)

t1+�
dt,

∞

∫
M

1

t�+1
e
it(1−

k

M
)
dt = −

M

i(M − k)M1+�
e−i�(M−k)

+
(1 + �)M

i(M − k)

∞

∫
M

1

t2+�
e
it(1−

k

M
)
dt,

1

|M − k|M�

{ N∑
m=1

∑
1≤k≤M−2,

k≥M+2

M2−2�

k2
1

|M − k|2
} 1

2

.

∑
1≤k≤M−2

M2

k2
1

|M − k|2 = O(1),

{ N∑
m=1

∑
k≥M+2

M2−2𝛼

k2
1

|M − k|2
} 1

2

≲

{ N∑
m=1

M−2𝛼
∑

k≥M+2

1

|M − k|2
} 1

2

=

{ N∑
m=1

M−2𝛼

} 1

2

= O(N
1

2
−𝛼).

�
� 2

||||
∑

1≤|m1|≤N
eim1x1N�1∕�2+1|m1|−�1∕�2Λ(x2N�1∕�2+1|m1|−�1∕�2 )

|||| dx.
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Substituting u → m1 + u and applying simple inequalities, and then the Cauchy-Schwarz inequality, Parseval’s identity, 
and mean-value theorem, we estimate this difference via

Substituting t |m1|�
N1+�

→ t in the first integral under the sign of absolute value and t |m1+u|�
N1+�

→ t in the second one, we then 
have to deal with

for any u ∈ [−
1

2
,
1

2
] . The latter value is equal to

Integrating by parts in both inner integrals, we get (omitting the constants unnecessary for the estimates)

�
� 2

||||
∑

1≤|m1|≤N

m1+1∕2

�
m1−1∕2

eix1u du

{
�

|t|≤N�1∕�2+1|m1|−�1∕�2
(1 − |m1|�1 |t|�2N−�1−�2 )�eix2t dt

− �
|t|≤N�1∕�2+1|u|−�1∕�2

(1 − |u|�1 |t|�2N−�1−�2 )�eix2tdt

}|||| dx.

�
�

dx2

1∕2

�
−1∕2

du
||||

∑
1≤m1|≤N

eix1(m1+u)

{
�

|t|≤N�1∕�2+1|m1|−�1∕�2
(1 − |m1|�1 |t|�2N−�1−�2 )�eix2t dt

− �
|t|≤N�1∕�2+1|m1+u|−�1∕�2

(1 − |m1 + u|�1 |t|�2N−�1−�2 )�eix2tdt

}||||

≤
1∕2

�
−1∕2

�
�

{ ∑
1≤|m1|≤N

|||| �
|t|≤N�+1|m1|−�

(1 − |m1|�1 |t|�2N−�1−�2)�eix2t dt

− �
|t|≤N�+1|m1+u|−�

(1 − |m1 + u|�1 |t|�2N−�1−�2)�eix2t dt
||||
2
}1∕2

dx2 du.

�
�

{ ∑
1≤|m1|≤N

||||
N1+�

|m1|� �
|t|≤1

(1 − |t|�2)�eitx2 N1+�

|m1 |� dt

−
N1+�

|m1 + u|� �
|t|≤1

(1 − |t|�2)�eitx2 N1+�

|m1+u|� dt
||||
2
}1∕2

dx2,

√
2�

�

� �
1≤�m1�≤N

����
N1+�

�m1��
1

�
0

(1 − t�2 )� cos tx2
N1+�

�m1�� dt

−
N1+�

�m1 + u��
1

�
0

(1 − t�2 )� cos tx2
N1+�

�m1 + u�� dt
����
2
�1∕2

dx2.
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We shall use the following well-known relation:

As above, the case |x2| ≥ 1 is very simple. We just have the bound

For |x2| ≤ 1 , we split the sum into two. For 1 ≤ |m1| ≤ N|x2|� , we obtain

which is O(N
1

2
−�) for any fixed 𝛽 > 0.

For |m1| > N|x2|𝛽 , we have to estimate

The value in the brackets can be expressed as

Changing the order of integration under the sign of absolute value, we have to estimate

�
�

{ ∑
1≤|m1|≤N

x−2
2

||||

1

�
0

t�2−1(1 − t�2)�−1 sin tx2
N1+�

|m1|� dt

−

1

�
0

t�2−1(1 − t�2)�−1 sin tx2
N1+�

|m1 + u|� dt
||||
2
}1∕2

dx2.

(4.7)

1

∫
0

t�2−1(1 − t�2 )�−1 sin yt dt ∼ |y|−� .

�
|x2|≥1

|x2|−1−�
{ ∑

1≤|m1|≤N
|m1|2��
N2�(1+�)

}1∕2

dx2 = O(N
1

2
−�).

�
|x2|≤1

{ ∑
1≤|m1|≤N|x2|𝛽

x−2
2

|m1|2𝛼𝛾
N2𝛼(1+𝛾)

}1∕2

dx2

≲ �
|x2|≤1

{
N2𝛾𝛼+1N−2𝛼(𝛾+1)|x2|−2+𝛽(2𝛼𝛾+1)

}1∕2

dx2

≲N
1

2
−𝛼 �

|x2|≤1
|x2|−1+𝛽(𝛼𝛾+

1

2
)
dx2,

�
|x2|≤1

{ ∑
|m1|>N|x2|𝛽

x−2
2

||||

1

�
0

t𝛾2−1(1 − t𝛾2)𝛼−1
[
sin tx2

N1+𝛾

|m1|𝛾

− sin tx2
N1+𝛾

|m1 + u|𝛾
]
dt
||||
2
}1∕2

dx2.

t

x2
N1+�

|m1 |�

∫
x2

N1+�

|m1+u|�

cos ts ds.
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It follows from (4.7) that it is dominated by

Representing the difference as

and fulfilling standard calculations, we get the bound

The integral in question is now dominated by

which is O(N
1

2
−�) provided −𝛼 − 𝛽 + 𝛽𝛾 + 𝛽𝛼𝛾 > −1 . The latter is true if � is chosen small enough.

Finally, all this means that the passage from the trigonometric sum to the Fourier transform is properly estimated.

Estimates for the Fourier transform

What has to be estimated now is the following integral

The two inner integrals are similar; it suffices to estimate one of them. Let it be, with the above notation in hand,

x2
N1+�

|m1 |�

∫
x2

N1+�

|m1+u|�

1

∫
0

t�2(1 − t�2 )�−1 cos ts dt ds.

|x2|1−�N(1−�)(1+�)
|||||

1

|m1 + u|(1−�)� −
1

|m1 + u|(1−�)�
|||||
.

1

|m1 |�

∫
1

|m1+u|�

s−� ds

|x2|1−�N(1−�)(1+�)|m1|��−(1+�).

�
|x2|≤1

{ ∑
|m1|>N|x2|𝛽

|x2|−2𝛼N2(1−𝛼)(1+𝛾)|m1|2𝛼𝛾−2(1+𝛾)
}1∕2

dx2

≲N
1

2
−𝛼 �

|x2|≤1
|x2|−𝛼−𝛽+𝛽𝛾+𝛽𝛼𝛾 dx2,

�
� 2

|||| �
1

2
≤|u|≤N+ 1

2

eix1u �
|t|≤ N�1∕�2+1

|u|�1∕�2

(
1 −

|u|�1 |t|�2
N�1+�2

)�

eix2t dt du

+ �
1

2
≤|t|≤N+ 1

2

eix2t �
|u|≤ N�2∕�1+1

|t|�2∕�1

(
1 −

|u|�1 |t|�2
N�1+�2

)�

eix1u du dt
|||| dx.

�
� 2

|||| �
1

2
≤|u|≤N+ 1

2

eix1u �
|t|≤ N�+1

|u|�

(
1 −

|u|�1 |t|�2
N�1+�2

)�

eix2t dt du
|||| dx.
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Without loss of generality, we can estimate the simpler integral

Substituting tu�

N�+1
→ t , we get

As in the case � = 0 , we can use a more convenient upper limit N in place of N +
1

2
 . Indeed, for 0 ≤ x2 <

1

N
 , we obtain 

the bound

For greater x2 , we have the bound

Thus, we proceed to

Integrating by parts, we obtain

Hence, we have to estimate

The next two steps correspond to two changes of variables: first

and then v1 = Nx1 and v2 = Nx2 . The estimated integral becomes

∫
�
2
+

||||

N+
1

2

∫
1

2

cos x1u

N�+1

u�

∫
0

(
1 −

u�1 t�2

N�1+�2

)�

cos x2t dt du
|||| dx.

∫
�
2
+

||||
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1

2

∫
1

2

N�+1

u�
cos x1u

1

∫
0

(
1 − t�2

)�

cos x2t
N�+1

u�
dt du

|||| dx.

1

N

∫
0

N+
1

2

∫
N

N�+1

u�
du dx2 = O(1).

�

∫
1

N

x−�−1
2

N+
1

2

∫
N

N�+1

u�
u�(�+1)

N(�+1)(�+1)
du dx2 = O(1).

∫
�
2
+

||||

N

∫
1

2

N�+1

u�
cos x1u

1

∫
0

(
1 − t�2

)�

cos x2t
N�+1

u�
dt du

|||| dx.

��2 ∫
�
2
+

1

x2

||||

N

∫
1

2

cos x1u

1

∫
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t�2−1
(
1 − t�2
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sin x2t
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dt du

|||| dx.

∫
�
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1
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(
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N

∫
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2

cos x1u sin x2t
N�+1
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1

1+�

1
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−

1
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2
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Further estimates will be undertaken for two different cases. Denoting again V = v

�1
�1+�2

1
v

�2
�1+�2

2
 , we consider separately V ≤ 1 and V > 1.

Estimates for the case V ≤ 1  We do not have the same approach to all � =
�1
�2

 . Let first � ≥ 1

2
+ � . The estimates are 

very similar to those for partial sums; the main difference is that we replace N
1

2 in the integrals by

(b1) The simplest part is 0 ≤ v1 ≤ AN

lnN
 , 1
N�

≤ v2 ≤ N . Since

we obtain

as requested.
(b2) Furthermore,

which is O(N
1

2
−�) provided � ≥ 1

2
+ � . Of course, the above calculations are true for � ≠ 1 . However, for � = 1 , the cor-

responding calculations are quite similar and even easier, as well as in what follows.
The last step is exactly the same as (a3) for the partial sums, just with AN in place of N

1

2 and resulting estimate O(N
1

2
−�) provided 

� ≥ 1

2
+ �.

∫
N� 2

+

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

||||

1

∫
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(
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cos v
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1
v
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2
s sin(tv

�1
�1+�2

1
v

�2
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2
s−� ) ds dt

|||| dv.

AN =

{
N

1

2
−𝛼 , if 𝛼 <

1

2
,

1, if 𝛼 ≥ 1

2
.

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

(
v1

v2

) �2
�1+�2

=
1

v2
,

AN

lnN

∫
0

N

∫
1

N𝛾

dv2

v2
dv1 ≲ AN ,

N

�
0

1

N�

�
0

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

(v1∕v2)
�2

�1+�2

�
(v1∕v2)

�2
�1+�2 (2N)−1

|||||
sin(v

�1
�1+�2

1
v

�2
�1+�2

2
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|||||
dt dv2 dv1

≤
N

�
0

1

N�

�
0

1

v

�2
�1+�2

1

1

v

�1
�1+�2

2

v

�1
�1+�2

1
v

�2
�1+�2

2

(v1∕v2)
�2

�1+�2

�
(v1∕v2)

�2
�1+�2 (2N)−1

t−� dt dv2 dv1
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N

�
0

1

N�

�
0

1

v

�2
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1

1

v

�1
�1+�2

2

v

�1
�1+�2

1
v

�2
�1+�2

2

(
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) �2−�1
�1+�2 |1 − (2N)�−1| dv2 dv1
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N

�
0

1

N�

�
0

|1 − (2N)�−1| dv2 dv1 = |1 − �|N1−� + O(1),
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Let now 𝛾 <
1

2
+ 𝛼 . The first step is exactly (a1), with 1

N�
 replaced by 1

N
1
2
+�

 . What remains is the domain AN

lnN
≤ v1 ≤ N and 

1

N
1
2
+�

≤ v2 ≤ 1

v
�

1

 . We manage it in the same way like for the case of the partial sums ( � = 0 ). The logarithmic estimate there 

is satisfactory. Arriving at

we see that it is just bounded.
Estimates for the case V > 1  Here, the Stationary Phase Method (Theorem 3.1) will be used for the inner integral in

We mention that this integral is in the form equivalent to that for V ≤ 1 ; it will be more convenient to deal with it just in this form.
On this stage, it is rather simple and similar to the case of partial sums. The difference is that we need a precise asymptotic formula 
to be applied to the integral in t rather than just the estimate O(V−

1

2 ) . Calculating the first and the second derivatives of the function 
S(s, t) = s +

t

s�
 (the sign is chosen for the most problematic case; s − t

s�
 is such when the rest of � 2 is considered), we mainly see 

that the second one does not vanish. The first derivative vanishes at s0 = (t�)
1

1+� . Correspondingly, we get

with � = �
1

1+� + �
−

�

1+� . The second derivative is �(� + 1)ts−�−2 ; at s0 it takes the value

Using the main term of the asymptotic relation, we now have to estimate

The estimates we will fulfil further also show that for the remainder term in the Stationary Phase Method the bounds are 
better. Now, for 𝛼 <

1

2
 , the worst possible estimate - along with the obtained V−

1

2 - is of the order V−
1

2
−� . We thus have to 

estimate

We observe that both v1 and v2 in the denominators are in the power less than 1. Being integrated, they give

N�

N

∫
AN

lnN

1

v1

1

v
�
1

∫
1

N1∕2+�

dv2 dv1,

(4.8)

∫
N� 2

+

1

v

�2
�1+�2

1

1

v
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�1+�2

2

||||

1

∫
0

t�2−1
(
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(v1∕v2)
�2

�1+�2

∫
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�2
�1+�2 (2N)−1

eiv
�1

�1+�2
1

v

�2
�1+�2
2

(s±ts−� ) ds dt
|||| dv.

S(s0, t) = (t�)
1

1+� +
t

(t�)
�

1+�

= �t
1

1+� ,

�(� + 1)
t

(t�)
�+2

1+�

= �
−

1

1+� (� + 1)t
−

1

1+� .

(4.9)

1

∫
0

t�2−1
(
1 − t�2

)�−1

t
1

2(1+�) ei�Vt
1

1+�
dt.

∫
N� 2

+ ,V>1

1

v

𝛾2
𝛾1+𝛾2

+(
1

2
+𝛼)

𝛾1
𝛾1+𝛾2

1

1

v

𝛾1
𝛾1+𝛾2

+(
1

2
+𝛼)

𝛾2
𝛾1+𝛾2

2

dv2 dv1.

v
1−

�2
�1+�2

−(
1

2
+�)

�1
�1+�2
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and

both now in positive powers. Obviously, the maximum of their product is attained at v1 = v2 = N . This gives

which completes the proof for the above estimate of the Lebesgue constants provided 𝛼 <
1

2
.

If 𝛼 >
1

2
 , then both v1 and v2 will be in the powers strictly less than −1 , which yields a constant bound. Here, the main term of 

the asymptotics comes from Theorem 1.2, which completes the case 3) in Theorem 1.1. For � =
1

2
 , we get v1 and v2 as 1

v1v2
 . 

Since we need asymptotic estimate, this upper estimate is not enough. However, treating (4.9) in an asymptotic manner, we 
see, on the one hand, that the remainder term leads to the final O(1) bound, and, on the other hand, that the leading term will 
contain, in addition to v1v2 in the denominator, trigonometric functions of v1 and v2 in the nominator. This leads to the classical 
asymptotics with ln2 N times a constant as the leading term, as desired in the case 2) in Theorem 1.1.
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