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BRANCHING RANDOM WALKS
WITH ALTERNATING SIGN INTENSITIES OF BRANCHING SOURCES

D. M. Balashova UDC 519.21

Abstract. We consider a continuous-time symmetric branching random walk on a multidimensional lattice
with a finite set of particle generation centers, i.e., branching sources. The existence of a positive eigenvalue
of the evolutionary operator means the exponential growth of the first moment of the total number of
particles both at an arbitrary point and on the entire lattice. Branching random walks with positive or
negative intensities of sources that have a simplex configuration are presented in the paper. It is established
that the amount of positive eigenvalues of the evolutionary operator, counting their multiplicity, does not
exceed the amount of the branching sources with positive intensity, while the maximal eigenvalue is simple.
For branching random walk with different positive intensities of sources and arbitrary configuration for
both finite and infinite variance of jumps, the critical values of sources’ intensities are found, which allows
us to prove the existence of positive eigenvalues of the evolutionary operator.

1. Introduction

We consider a branching random walk with continuous time on the multidimensional lattice Zd, d ≥ 1,
with a finite number of branching sources on it. Walk is assumed to be homogeneous in time and space,
symmetric and irreducible. Branching random walks are widely used to describe the population dynamics
of objects with non-overlapping generations, for example, for describing the spread of viral infections [1,5],
simulating the epidemic and vaccination [7], various physical, biological, and genetic systems [10].

Branching random walks on Z
d with continuous time in recent decades have been considered in

a number of publications, see, for example, [4,11,13,14,16]. Evolution equations for transition probabilities
and moments of particle numbers are often conveniently represented as linear differential equations in
Banach spaces. By virtue of their linearity, the investigation of the asymptotic behavior of the solutions
as t → ∞ leads to the study of the spectrum of the corresponding operators. In particular, the presence
of a positive eigenvalue in the spectrum of the evolutionary operator ensures an exponential growth of
the particle numbers both at each point and the entire lattice. Branching random walks with exponential
growth of particle numbers are called supercritical.

Analysis of the evolutionary operator of branching random walk with several sources in general form
was performed in [14], where it was noted, in particular, that the presence of branching sources can lead
to the appearance of positive eigenvalues of the operator. In [2] it was proved that for the case of equal
source intensities and finite variance of jumps, the number of eigenvalues (counting multiplicity) does not
exceed the number of sources N and the multiplicity of each eigenvalue of the operator does not exceed
N − 1. In [15], for sources with equal intensities in the case of an infinite variance of jumps, it is shown
that the appearance of several lower eigenvalues in the spectrum of the evolution operator can be caused
by a simplicial configuration of sources.

The structure of the work is as follows. In Sec. 2, a formal description of the model of branching
with several branching sources is presented, basic definitions and equations for the average particle num-
bers are introduced, it is shown that the asymptotic behavior of the particle numbers is related to the
spectra of the corresponding operators. In Sec. 3, models with sources that can have both positive and
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negative intensities forming simplicial configurations are considered. In Sec. 4, critical values are found
for intensities of the sources in an arbitrary configuration.

2. Model Description

We consider branching random walk on the multidimensional lattice Z
d, d ≥ 1, in which branching

(birth or death) occurs in the sources x1, x2, . . . , xN . We assume that random walk is given by a matrix
of transient intensities A =

(
a(x, y)

)
x,y∈Zd , with the properties a(x, y) = a(y, x) = a(0, y − x) = a(y − x),

for all x and y. Thus, a random walk is symmetric and spatially homogeneous. Moreover, we assume
that the regularity properties

∑

z∈Zd

a(z) = 0 and irreducibility are fulfilled, i.e., for all z ∈ Z
d there exists

a set of vectors z1, z2, . . . , zk ∈ Z
d such that z =

k∑

i=1
zi and a(zi) �= 0 for i = 1, 2, . . . , k.

The transition probability p(t, ·, y) is conveniently considered as a function p(t) in l2(Zd), depending
on the time t and parameter y. For h → 0, the following equalities hold:

p(h, x, y) = a(x, y)h + o(h) for y �= x,

p(h, x, x) = 1 + a(x, x)h + o(h).
(1)

As is known from [6], the transition probabilities satisfy the system of inverse Kolmogorov equations:

∂p(t, x, y)
∂t

=
∑

x′
a(x, x′)p(t, x′, y), p(0, x, y) = δ(x − y),

where δ is the discrete δ-function of Kronecker on Z
d.

We assume that the branching occurs in the sources xi and is determined by the infinitesimal gener-
ating functions

fi(u) =
∞∑

n=0

bi,nun, 0 ≤ u ≤ 1,

where
∑

n
bn(xi) = 0, bn(xi) ≥ 0 for n �= 1 and b1(xi) < 0, f

(r)
i (1) < ∞ for all r ∈ N.

Definition 1. The intensity of the source xi is the quantity

βi = f ′(1, xi) =
∑

n

nbn(xi) = −(
b1(xi)

)
( ∑

n�=1

n
bn(xi)

−(
b1(xi)

) − 1
)

,

characterizing the average number of descendants that are born in it.

Let μt(y) denote the number of particles at time t at the point y and let m1(t, x, y) :=Exμt(y) denote
the expected value of the number of particles at the point y at time t under the condition that at the
initial instant of time t = 0 there was one particle in the system located at the point x. Then, according
to [6],

∂m1(t, x, y)
∂t

=
∑

x′
a(x, x′)m1(t, x′, y) +

N∑

i=1

βiδ(x − xi)m1(t, x, y), m1(0, x, y) = δ(x − y). (2)

On the set of functions u(x), x ∈ Z
d, we consider the operator

(Au)(x) =
∑

x′∈Zd

a(x − x′)u(x′)

and for each of the sources xi ∈ Z
d, the operators

(Δxiu)(x) = δ(x − xi)u(x),
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where δ(·) is the discrete δ-function of Kronecker on Z
d. The operator A, as an operator in the Hilbert

space l2(Zd), is self-adjoint, the operators Δxi act in each of the function spaces lp(Zd), p ∈ [1,∞]
(see [14]).

The behavior of the mean number of particles both at an arbitrary point and on the entire lattice
can be described in terms of an evolutionary operator of a special type

Hβ1,...,βN
= A +

N∑

i=1

βiΔxi , xi ∈ Z
d, (3)

which is a perturbation of the generator A of the symmetric random walk. This operator can be treated
as a linear bounded operator acting in each of the function spaces lp(Zd), p ∈ [1,∞] (see [14]).

According to [14] the evolution equations for the transition probabilities (1) and the moments of
particle numbers (2) can be represented as the following differential equation in the space l2(Zd) and
lp(Zd), p ∈ [1,∞], respectively:

dp(t, x, y)
dt

=
(Ap(t, ·, y)

)
(x), p(0, x, y) = δ(x − y),

dm1(t, x, y)
dt

=
(Hβ∞,...,βN m1(t, ·, y)

)
(x), m1(0, x, y) = δ(x − y).

The Green function of the operator A can be represented as the Laplace transform of the transition
probability p(t, x, y):

Gλ(x, y) :=

∞∫

0

e−λtp(t, x, y) dt =
1

(2π)d

∫

[−π,π]d

ei(θ,y−x)

λ − φ(θ)
dθ, λ ≥ 0, (4)

where
φ(θ) =

∑

z∈Zd

a(z)ei(θ,z)

for θ ∈ [−π, π]. For further research, the value G0 := G0(0, 0) plays an important role.
If the inequality

∑

z∈Zd

|z|2a(z) < ∞, (5)

where |z| is the Euclidean norm of the vector z, is fulfilled, then the variance of jumps is finite and G0 = ∞
for d = 1 and d = 2 and G0 < ∞ for d ≥ 3 [16].

In the other case, if for sufficiently large (of the norm) z ∈ Z
d, the asymptotic relation

a(z) ∼ H(z/|z|)
|z|d+α

, α ∈ (0, 2), (6)

holds, where H(·) is a continuous positive function symmetric on the sphere Sd−1 = {z ∈ Rd : |Z| = 1},
then G0 = ∞ for d = 1, α ∈ [1, 2) and G0 < ∞ for d = 1, α ∈ (0, 1) or for d ≥ 2, α ∈ (0, 2) [12].
Condition (6) leads to the divergence of the series

∑

z∈Zd

|z|2a(z) and to the infinity of the variance of
jumps.

3. Simplicial Configuration of Sources

3.1. Three Branching Sources with Different Intensities. We consider branching random walk
on Z

d, d ≥ 3, with three branching sources with arbitrary intensities β1, β2, and β3, located at the
vertices of some simplex, |x1−x2| = |x1−x3| = |x2−x3|. Simplexes of this kind on Z

d exist, for example,
as their vertices one can select points (0, 0, t, 0, 0, . . .), (0, t, 0, 0, 0, . . .), (t, 0, 0, 0, 0, . . .), t ∈ Z. Denote
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Fig. 1. Ranges of the parameters values β1, β2, and β3.

G̃λ :=Gλ(xi, xj) for i �= j, it does not depend on i, j because of the simplicial configuration of the sources.
In this case, the operator (3) takes the form

Hβ1,β2,β3 = A + β1Δx1 + β2Δx2 + β3Δx3 .

Note that λ is an eigenvalue of the operator Hβ1,β2,β3 if and only if

β1β2β3(3G̃2
0G0 − 2G̃3

0 − G3
0) + (β1β2 + β1β3 + β2β3)(G2

0 − G̃2
0) − (β1 + β2 + β3)G0 + 1 = 0 (7)

(see [14, Theorem 6]).
Figure 1 shows the ranges of the parameters β1, β2, and β3 by the number of eigenvalues of the

operator Hβ1,β2,β3 in space l2(Z3). On this figure, the coordinates of the sources are: x1 = (0, 0, 1),
x2 = (0, 1, 0), and x3 = (1, 0, 0), operator A is the standard Laplacian, i.e., a(0) = −1, a(z) = 1/6 for
z = {z1, z2, z3} such that |z1| + |z2| + |z3| = 1 and a(z) = 0 otherwise. As a result of modeling in the
Wolfram� Alpha values G0 = 1.1564 and G̃0 = 0.0414 were obtained.

The area V1 represents the range of the parameters {β1, β2, β3}, for which the operator Hβ1,β2,β3 has
no positive eigenvalues. The area V2 corresponds to a single, V3 to two, and V4 to three eigenvalues
counting multiplicity.

In the case of the equal intensities β := β1 = β2 = β3, we denote by βc and βc1 critical values for
the intensity β such that for β ≤ βc, the spectrum of the operator Hβ does not contain eigenvalues, for
β ∈ (βc, βc1), the operator has single and for β ≥ βc1 , more than one eigenvalue. The equation (7) in this
case has the form

β3(3G̃2
0G0 − 2G̃3

0 − G3
0) + 3β2(G2

0 − G̃2
0) − 3βG0 + 1 = 0,

consequently,

βc =
1

G0 + 2G̃0

, βc1 =
1

G0 − G̃0

.

The calculations performed in the system Wolfram� Alpha lead to the following results: βc = 0.8070,
βc1 = 0.8969, the solution is illustrated on Fig. 2.
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Fig. 2. Values βc and βc1 .

3.2. Alternating Sign Intensities of the Sources. We consider the branching random walk with p
positive intensity sources β > 0 and n negative intensity sources (−β) < 0, located at the vertices of the
simplex, |xi − xj | = const for i �= j. Denote G̃λ := Gλ(xi, xj) = Gλ(0, |xi − xj |) for i �= j. Sources with
positive intensities indicate points where the birth rate prevails over the degree of death, and in sources
with negative intensity it is the other way around.

Theorem 1. The number of eigenvalues λ > 0 counting their multiplicity of the evolution operator
Hβ1,...,βp+n, where β1 = · · · = βp = β and βp+1 = · · · = βp+n = −β, does not exceed the number of
branching sources with positive intensity, the maximum of these eigenvalues is simple.

Proof. According to (3) the operator Hβ1,...,βp+n has the form

Hβ1,...,βp+n = A + βΔx1 + βΔx2 + · · · + βΔxp − βΔxp+1 − βΔxp+2 − · · · − βΔxp+n .

Note that λ is an eigenvalue of the operator Hβ1,...,βp+n if and only if the system of linear equations
with respect to variables X1, . . . , Vp+n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−X1 + βGλX1 + βG̃λX2 + · · · + βG̃λXp+n = 0,

−X2 + βG̃λX1 + βGλX2 + · · · + βG̃λXp+n = 0,

. . .

Xp+1 + βG̃λX1 + βG̃λX2 + · · · + βG̃λXp+n = 0,

. . .

Xp+n + βG̃λX1 + βG̃λX2 + · · · + βGλXp+n = 0

(8)

has a nontrivial solution (see [14, Theorem 6]). Let Sp,n denote the matrix of the system (8):

Sp,n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βGλ − 1 βG̃λ βG̃λ βG̃λ . . . . . . βG̃λ

βG̃λ βGλ − 1 βG̃λ βG̃λ . . . . . . βG̃λ

. . . . . . . . . . . . . . . . . . . . .

βG̃λ . . . . . . βGλ − 1 βG̃λ . . . βG̃λ

βG̃λ βG̃λ . . . βG̃λ βGλ + 1 . . . βG̃λ

. . . . . . . . . . . . . . . . . . . . .

βG̃λ βG̃λ βG̃λ βG̃λ βG̃λ . . . βGλ + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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We prove in this case by induction the following equality:

|Sp,n| = (βGλ − βG̃λ − 1)p−1(βGλ − βG̃λ + 1)n−1

× (
(βGλ)2 + (p + n − 2)β2GλG̃λ − (p + n − 1)(βG̃λ)2 + (p − n)βG̃λ − 1

)
. (9)

A direct calculation shows that

|Sp,1| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βGλ − 1 βG̃λ βG̃λ . . . . . . . . .

βG̃λ βGλ − 1 βG̃λ . . . . . . . . .

βG̃λ βG̃λ βGλ − 1 . . . . . . . . .
. . . . . . . . . . . . . . . . . .

βG̃λ βG̃λ βG̃λ . . . βGλ − 1 βG̃λ

βG̃λ βG̃λ βG̃λ . . . . . . βGλ + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βGλ − 1 − βG̃λ 0 . . . βG̃λ − βGλ + 1 0
0 βGλ − 1 − βG̃λ . . . βG̃λ − βGλ + 1 0
0 0 . . . βG̃λ − βGλ + 1 0

. . . . . . . . . . . . . . .

βG̃λ βG̃λ . . . βGλ − 1 βG̃λ

βG̃λ βG̃λ . . . . . . βGλ + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βGλ − 1 − βG̃λ . . . . . . . . . 0 0
0 . . . . . . . . . 0 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

βG̃λ . . . . . . . . . βGλ − 1 + (p − 1)βG̃λ βG̃λ

βG̃λ . . . . . . . . . . . . βGλ + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (βGλ − βG̃λ − 1)p−1 · ((βGλ)2 + (p − 1)β2GλG̃λ − p(βG̃λ)2 + (p − 1)βG̃λ − 1
)
.

We proceed by induction:

|Sp,n+1| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βGλ − 1 βG̃λ βG̃λ . . . . . . . . .

βG̃λ βGλ − 1 βG̃λ . . . . . . . . .

βG̃λ βG̃λ βGλ − 1 . . . . . . . . .

βG̃λ βG̃λ βG̃λ βGλ − 1 . . . . . .
. . . . . . . . . . . . . . . . . .

βG̃λ βG̃λ βG̃λ . . . . . . βGλ + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βGλ − 1 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

βG̃λ . . . βGλ − 1 . . . . . . . . .

βG̃λ . . . . . . βGλ + 1 . . . . . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . βGλ + 1 βG̃λ

0 . . . . . . . . . βGλ − βG̃λ + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (βGλ − βG̃λ + 1) · |Sp,n| + (βGλ − βG̃λ + 1) · (βGλ − βG̃λ − 1)p

× (βGλ − βG̃λ + 1)n−1 · βG̃λ = (βGλ − βG̃λ − 1)p−1(βGλ − βG̃λ + 1)n

× (
(βGλ)2 + (p + n − 1)β2GλG̃λ − (p + n)(βG̃λ)2 + (p − n − 1)βG̃λ − 1

)
.

The inductive transition is carried out, therefore, the required equality (9) is proved.

447



Let us return to the question of the existence of eigenvalues of the operator, which is equivalent to the
existence of a nontrivial solution for the system of linear equations (8) and the equality of the determinant
of its matrix to 0. We get

(βGλ − βG̃λ − 1)p−1(βGλ − βG̃λ + 1)n−1

× (
(βGλ)2 + (p + n − 2)β2GλG̃λ − (p + n − 1)(βG̃λ)2 + (p − n)βG̃λ − 1

)
= 0.

Here the first factor has at most p − 1 roots counting their multiplicity, the second factor has no roots
due to Gλ > G̃λ, the third factor has no more than one root. Thus, the operator Hβ1,...,βp+n has no more
than p eigenvalues. To simplify the subsequent calculations, we denote

Dλ := (Gλ − G̃λ)
(
Gλ + +G̃λ(n + p − 1)

)
.

The eigenvalues of the operator Hβ1,...,βp+n are found from the equations

1
β

= Gλ − G̃λ,

1
β

=
2Dλ

(n − p)G̃λ +
√

(n − p)2(G̃λ)2 + 4Dλ

. (10)

Note that Gλ − G̃λ monotonically decreases with λ [15], while
2Dλ

(n − p)G̃λ +
√

(n − p)2(G̃λ)2 + 4Dλ

> Gλ − G̃λ.

Consequently, the leading eigenvalue λ0 is found from the equation (10) and has a unit multiplicity.
Recall that we denoted by βc := βc(n, p), p ≥ 2, the minimal positive value of the intensity of the

sources that for β > βc the spectrum of the operator Hβ1,...,βp+n has positive eigenvalues, and βc1 > βc

such that for β ∈ (βc, βc1) it has single eigenvalue λ0(β). Then

βc =
(n − p)G̃0 +

√
(n − p)2(G̃0)2 + 4D0

2D0
, βc1 =

1
G0 − G̃0

.

The theorem is proved.

4. Arbitrary Configuration of Branching Sources with Positive Intensities

We consider branching random walk with N sources with arbitrary positive intensities β1, . . . , βN ,
which are in an arbitrary configuration. We denote βmin := min

i
{βi} and βmax := max

i
{βi} and assume

that there exist values βcmin and βcmax such that for βmin > βcmin , the operator Hβ1,...,βN
contains pos-

itive eigenvalues, one or more, and for βmax < βcmax , the operator Hβ1,...,βN
does not contain positive

eigenvalues.

Theorem 2. Let branching random walk satisfy the conditions (5) or (6). If G0 = ∞, then βcmin = 0 for
N ≥ 1. If G0 < ∞, then βcmin = βcmax = G−1

0 for N = 1, 0 < βcmin and 0 < βcmax < G−1
0 for N > 1.

Proof. According to (3) the operator Hβ1,...,βN
has the form

Hβ1,...,βN
= A +

N∑

i=1

βiΔxi .

Note that λ > 0 is an eigenvalue of the operator Hβ1,...,βN
if and only if the system of linear equations

Vi −
N∑

j=1

βjGλ(x − I, xj)Vj = 0, i = 1, . . . , N,
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has a nontrivial solution with respect to the variables Vi (see [14]). Thus, the determinant of corresponding
matrix Γβ1,...,βN

(λ) − I equals 0, where

Γβ1,...,βN
(λ) = [βiGλ(xi, xj)].

This matrix is not symmetric due to βi are different in different rows of the matrix Γβ1,...,βN
(λ), but if each

ij element is decomposed into
√

βi and multiplied by
√

βj , then we obtain a symmetric matrix Γβ(λ)− I,
where

Γβ(λ) = [
√

βiβjGλ(xi, xj)].
Note that

det(Γβ1,...,βN
(λ) − I) = 0

if and only if
det(Γβ(λ) − I) = 0,

thus 1 is an eigenvalue of the matrix Γβ(λ). Consider the matrix D(λ1, λ2) := Γβ(λ1) − Γβ(λ2). From
the representation of the Green function (4) it follows that the elements of the matrix D(λ1, λ2) have the
form

Dij(λ1, λ2) =

√
βiβj(λ2 − λ1)

(2π)d

∫

[−π,π]d

ei(θ,xi−xj)

(
λ1 − φ(θ)

)(
λ2 − φ(θ)

) dθ.

Let s = max
θ∈[−π,π]d

{−φ(θ)}. Then

1
(
λ1 − φ(θ)

)(
λ2 − φ(θ)

) ≥ 1
(λ1 + s)(λ2 + s)

> 0.

Denote D̃(λ1, λ2) = [D̃ij(λ1, λ2)], where

D̃ij(λ1, λ2) =
∫

[−π,π]d

ei(θ,xi−xj)

(
λ1 − φ(θ)

)(
λ2 − φ(θ)

) dθ.

Since the function θ(φ) is even, the matrix D̃(λ1, λ2) is real and symmetric. Let us prove its positive
definiteness:

(D̃(λ1, λ2)zi, zj) =
N∑

i,j=1

∫

[−π,π]d

ei(θ,xi−xj)

(
λ1 − φ(θ)

)(
λ2 − φ(θ)

)zizj dθ

=
∫

[−π,π]d

1
(
λ1 − φ(θ)

)(
λ2 − φ(θ)

)
N∑

i=1

N∑

j=1

(
ei(θ,xi)zi

)(
e−i(θ,xj)zj

)

=
∫

[−π,π]d

|ei(θ,x1)z1 + · · · + ei(θ,xN )zN |2
(
λ1 − φ(θ)

)(
λ2 − φ(θ)

) ≥
∫

[−π,π]d

|ei(θ,x1)z1 + · · · + ei(θ,xN )zN |2
(λ1 + s)(λ2 + s)

> 0.

By the Sylvester criterion [3] all the angular minors of the matrix D̃(λ1, λ2) are positive, thus the
angular minors of the matrix D(λ1, λ2),

ΔD(λ1,λ2),i =

(λ2 − λ1)
i∏

j=1
βj × ΔD̃(λ1,λ2),i

(2π)d
, i = 1, . . . , N,

are positive and the matrix D(λ1, λ2) is positive-definite.
We denote by

ζ0(λ) ≥ ζ1(λ) ≥ · · · ≥ ζN−1(λ)
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the eigenvalues of the real Hermitian positive-definite matrix Γβ(λ) and by

γ0(λ) ≥ γ1(λ) ≥ · · · ≥ γN−1(λ)

the eigenvalues of the real Hermitian positive definite matrix Γ(λ) = [Gλ(xi, xj)]. The eigenvalues ζi(λ),
i = 0, . . . , N −1, by Weyl’s theorem [9, Theorem 4.3.1] satisfy the inequalities ζi(λ1) > ζi(λ2) for λ2 > λ1.
Therefore, each of the equations ζi(λ) = 1 has no more than one solution λ and the operator Hβ1,...,βN

has no more than N eigenvalues.
If G0 = ∞ and Gλ → ∞ for λ → 0, then ‖Γβ(λ)‖ → ∞ and ζ0(λ) → ∞ for λ → 0, then the equation

ζ0(λ) = 1 has a solution for any βi > 0, i = 1, . . . , N . Thus, βcmin = 0.
For the case G0 < ∞ and N = 1, the statement of the theorem βcmin = βcmax = G−1

0 is the corollary
of Theorem 3 from [16].

We now turn to the case G0 < ∞ for N > 1, G0(x, y) < ∞ for all x and y. In this case,

βmin‖Γ(λ)‖ ≤ ‖Γβ(λ)‖ ≤ βmax‖Γ(λ)‖ < ∞
and

Γβ(λ) → Γβ(0), Γ(λ) → Γ(0) for λ → 0,

there exists γ∗ < ∞ such that γ0(λ) ≤ γ∗ < ∞ for all λ. Then the equation βmaxγ0(λ) = 1 has no
solutions for βmax → 0. Therefore, βcmax > 0.

Consider the situation where β′ − δ < βi < β′ + δ, β′ ≥ G−1
0 , i = 1, . . . , N . Then

∀ε > 0 ∃ δ > 0: max
i,j

|Γβ1,...,βN ,ij(λ) − β′Gλ(xi, xj)| < ε,

Γβ1,...,βN
(λ) → [β′Gλ(xi, xj)].

According to [16, Theorem 3] for βi = β′ ≥ G−1
0 , i = 1, . . . , N , the operator

Hβ′ = A +
N∑

i=1

β′Δxi

has a positive eigenvalue. The eigenvalues of the difference of matrices Γβ1,...,βN
(λ) and [β′Gλ(xi, xj)] do

not exceed
‖Γβ1,...,βN

(λ) − [β′Gλ(xi, xj)]‖ → 0,

and by Weyl’s theorem [9, Theorem 4.3.1], the eigenvalues of the operator Hβ1,...,βN
converge to the

eigenvalues of the operator Hβ′ . Thus, Hβ1,...,βN
has positive eigenvalues and βcmax < G−1

0 . The theorem
is proved.
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