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CONSTRUCTION OF APPROXIMATION FUNCTIONALS
FOR MINIMAL SPLINES

E. K. Kulikov∗ and A. A. Makarov∗ UDC 519.6

This paper presents formulas for constructing quadratic minimal splines, which explicitly depend
on the components of a generating vector function. Formulas for various approximation function-
als for minimal splines used as coefficients in local approximation methods are obtained. Examples
of special cases of approximation schemes, known as quasi-interpolation, are provided. Results of
numerical experiments on approximating a circular arc by minimal splines are considered. Bibli-
ography: 37 titles.

1. Introduction

One of the most important tasks of spline approximation is determining the coefficients at
the basis functions. In solving an interpolation problem with polynomial splines of odd order,
the set of interpolation points and the grid used in constructing the splines usually coincide,
whereas for splines of even order they are different. In general, the solution of an interpo-
lation problem is a plain polynomial spline of maximal smoothness. In order to compute
such splines, it is necessary to solve a system of linear algebraic equations; its order coincides
with the number of interpolation points. There are two classical approaches to solving an
interpolation problem with parabolic splines, which are due to Subbotin and Marsden. Sub-
botin suggested to select the nodes of a spline grid as the midpoints of the intervals between
neighboring interpolation points, whereas Marsden considered a spline grid to be known and
selected the interpolation points as the midpoints of the spline grid intervals. On a uniform
grid, these two approaches yield the same construction. However, on a nonuniform grid, we
have two different approximation constructions, possessing different properties, which can be
used in solving specific problems (see [1, 2] for more detail).

In the last few decades, local approximation methods have actively been studied. Their
main feature is that the coefficients at the basis functions are determined as values of the
approximation functionals, which are, for example, linear combinations of values of the func-
tion and those of its derivatives at some points (see [3–9] for more detail). Local methods
allowing one to obtain the maximal order of accuracy are called quasi-interpolation meth-
ods, and the functionals used in constructing them are called quasi-interpolation functionals
or quasi-interpolants. These functionals have been constructed for different spline functions,
see [10–17]. Approximation approaches based on quasi-interpolation are widely used in solving
boundary-value problems of mathematical physics [18–21], in numerical differentiation and in-
tegration methods [22], in computer-aided geometric design systems, etc. In particular, circles
and circular arcs are widely used in such systems; various methods for approximating these
curves were studied in a number of publications (see, e.g., [23–27] and the references therein).

The goal of this paper is to construct the approximation functionals (quasi-interpolants) for
minimal splines. Splines obtained from the so-called approximation relations using a complete
chain of vectors and a generating vector function and having a minimal support are called
minimal splines (see, e.g., [28–30]). A special approach to choosing the above-mentioned
chain of vectors allows one to consider the minimal splines of maximal smoothness and to
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establish the uniqueness of the space of these splines [31]. Minimal splines provide a nice tool
for approximation because they are obtained from the approximation relations.

It turns out that the approaches used in quasi-interpolation with quadratic polynomial
splines are similar to Subbotin’s and Marsden’s methods. Grebennikov [10], similarly to Sub-
botin, considered averaging local methods and selected spline grid points in between known
function values. Later, Sablonniere [12], similarly to Marsden, selected the points for quasi-
interpolation in between the nodes of a given spline grid. These approaches can be regarded
as special cases of the methods developed in the present paper, where a polynomial generating
vector function is used. Moreover, the ideas of these two approaches can be combined, which
leads to n-point quasi-interpolation. In this case, given a spline grid, the quasi-interpolation
points are selected either at the grid nodes or at some auxiliary points, located in between
the spline nodes. This approach was studied, for example, in [13]. In the present paper, we
generalize this approach to the case of minimal splines using the three-point method.

This paper continues the research initiated in [32,33], where a system of biorthogonal func-
tionals for minimal splines of small orders was constructed. An approximation approach based
on these functionals was successfully used in a number of practical applications, such as ap-
proximation of transcendental curves [34], circular arcs [27], and also some functions with
large gradients in a boundary layer, which frequently occur in solving singularly perturbed
boundary-value problems [35, 36]. The paper presents results of numerical experiments on
approximation of a circular arc by minimal splines generated by various vector functions, the
coefficients at them being computed as values of the approximation functionals. Also we pro-
vide formulas for de Boor–Fix type functionals, which are used in the numerical experiments.

2. The space of minimal quadratic splines

Let Z be the set of integers, Z+ := {j | j ≥ 0, j ∈ Z}, R
1 be the set of reals. The

linear (vector) space of three-dimensional column vectors is denoted by R
3; vectors of this

space are identified with one-column matrices, and the usual matrix operations are applied
to these vectors. In particular, given two vectors a,b ∈ R

3, the expression aTb denotes the
Euclidean inner product of the vectors. A square matrix with columns a0, a1,a2 ∈ R

3 (in
the order indicated) is denoted by (a0,a1,a2), and det(a0,a1,a2) is its determinant. The
vector components are denoted by square brackets and indexed by integers; for instance,
a = ([a]0, [a]1, [a]2)

T . For an arbitrary number S ∈ Z+ we denote CS[a, b] := {u | u(i) ∈ C[a, b],
i = 0, 1, . . . , S}, setting C0[a, b] := C[a, b]. We write u ∈ CS [a, b] if the components of a vector
function u ∈ R

3 are S times continuously differentiable on an interval [a, b].
On [a, b] ⊂ R

1, we consider a grid X,

a = x−2 = x−1 = x0 < x1 < · · · < xn−1 < xn = xn+1 = xn+2 = b. (1)

Denote Ji,k := {i, i+1, . . . , k}, i, k ∈ Z, i < k. An ordered set A := {aj}j∈J−2,n−1 of vectors

aj ∈ R
3 is called a vector chain. A chain A is said to be complete if det(aj−2,aj−1,aj) �= 0 for

all j ∈ J0,n−1.
The union of elementary grid intervals is denoted by M := ∪j∈J0,n−1(xj , xj+1). By X(M)

we denote the linear space of real-valued functions defined on M . We set Sj := [xj , xj+3],
j ∈ J−2,n−1.

Consider a three-component (column) vector function ϕ : [a, b] → R
3 with components in

the space C 2[a, b] and nonzero Wronskian determinant W (t),

W (t) := det(ϕ(t),ϕ′(t),ϕ′′(t)) �= 0, t ∈ [a, b]. (2)

Let A be a complete vector chain. Assume that functions ωj ∈ X(M), j ∈ J−2,n−1, satisfy
the relations
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k∑

j′=k−2

aj′ ωj′(t) ≡ ϕ(t), t ∈ (xk, xk+1), k ∈ J0,n−1,

ωj(t) ≡ 0, t ∈ M\Sj , j ∈ J−2,n−1.

(3)

For every fixed t ∈ (xk, xk+1) and all k ∈ J0,n−1, relations (3) can be regarded as a system
of linear algebraic equations in the unknowns ωj(t). Since, by assumption, the vector chain A
is complete, system (3) has a unique solution. Using Cramer’s rule, we find

ωj(t) =
det

(
{aj′}j′∈Jk−2,k,j′ �=j ‖ ′j ϕ(t)

)

det
(
ak−2,ak−1,ak

) , t ∈ (xk, xk+1), j ∈ Jk−2,k,

where the symbolic notation ‖ ′j means that the determinant in the numerator is obtained
from that in the denominator by replacing the column aj with the column ϕ(t) (the column
order being preserved). It follows that suppωj ⊂ Sj.

The linear span of the functions ωj(t) is called the space of quadratic minimal coordinate
(A,ϕ)-splines. We denote it by

S(X,A,ϕ) :=

⎧
⎨

⎩u(t) : u(t) =
n−1∑

j=−2

cj ωj(t), cj ∈ R
1, t ∈ [a, b]

⎫
⎬

⎭ .

Identities (3) are called the approximation relations. The vector function ϕ is called the
generating vector function.

Given a vector-valued function ϕ ∈ C1[a, b] and its derivatives, we set

ϕj := ϕ(xj), ϕ′
j := ϕ′(xj), j ∈ J−2,n+2,

and consider the vectors dj ∈ R
3 determined by the identity

dT
j x ≡ det(ϕj,ϕ

′
j ,ϕ

′′
j , x), x ∈ R

3. (4)

Define the vector chain A = AN := {aNj }j∈J−2,n−1 by the formula

aNj := ϕj+1 − αj+1ϕ
′
j+1, (5)

where αj+1 :=
dT
j+2ϕj+1

dT
j+2ϕ

′
j+1

.

As is known [31], if the condition

|W (t)| ≥ c = const > 0, t ∈ [a, b],

is fulfilled, then, for a sufficiently small hX := sup
j∈J0,n−1

(xj+1 − xj), the chain of vectors {aNj },
j ∈ J0,n−1, is complete, and ωj ∈ C1[a, b] for all j ∈ J−2,n−1. Moreover, if ϕ = ϕ1 and the
vector function ϕ1 is such that [ϕ1(t)]0 ≡ 1, then the partition of unity property is valid:

n−1∑

j=−2

ωj(t) = 1, t ∈ [a, b].

In this case, the functions ωj(t) are called the normalized quadratic minimal coordinate

Bϕ-splines, and the corresponding space is denoted by S(X) := S(X,AN ,ϕ1). The following
theorem is known [32].
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Theorem 1 ([32]). The function ωj ∈ C1[a, b] and its derivative are determined by the fol-
lowing formulas (i = 0, 1):

ω
(i)
j (t) =

dT
j ϕ

(i)(t)

dT
j a

N
j

, t ∈ [xj , xj+1), (6)

ω
(i)
j (t) =

dT
j ϕ

(i)(t)

dT
j a

N
j

− dT
j a

N
j+1

dT
j a

N
j

dT
j+1ϕ

(i)(t)

dT
j+1a

N
j+1

, t ∈ [xj+1, xj+2), (7)

ω
(i)
j (t) =

dT
j+3ϕ

(i)(t)

dT
j+3a

N
j

, t ∈ [xj+2, xj+3). (8)

Remark 1. For ϕ(t) := (1, t, t2)T , the functions ωj(t) coincide with the following known
quadratic polynomial B-splines ωB

j (t) of the third order:

ωB
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(t− xj)
2

(xj+1 − xj)(xj+2 − xj)
, t ∈ [xj , xj+1),

1

xj+1 − xj

(
(t− xj)

2

xj+2 − xj
− (t− xj+1)

2(xj+3 − xj)

(xj+2 − xj+1)(xj+3 − xj+1)

)
, t ∈ [xj+1, xj+2),

(t− xj+3)
2

(xj+3 − xj+1) (xj+3 − xj+2)
, t ∈ [xj+2, xj+3).

(9)

Theorem 2. Let g ∈ S(X), i.e., assume that the spline g(t) on an interval [a, b] can be

represented as g(t) =
n−1∑
j=−2

cj ωj(t), cj ∈ R
1. Then the following assertions are valid:

(1) if t ∈ [xk, xk+1) for a certain k, 0 ≤ k ≤ n− 1, then g(t) =
k∑

j=k−2

cj ωj(t);

(2) g(a) = c−2 and g(b) = cn−1.

Proof. In order to prove the first assertion, we consider the location of the supports suppωj =
[xj , xj+3] of the spline functions for different values of j.

Prove the second assertion. As is known (see [37] for more detail), if x∗ := xj = xj+1 =
xj+2 < xj+3, then ωj(x

∗) = 1 and ωj′(x
∗) = 0 for j′ �= j. Thus, in accordance with the first

assertion of the theorem, the equalities g(a) = g(x0) = c−2 ω−2(x0)+c−1 ω−1(x0)+c0 ω0(x0) =
c−2 are valid. The equalities g(b) = g(xn) = cn−1 are proved similarly. �

Let ϕ(t) := (1, ρ(t), σ(t))T , where ρ, σ ∈ C2[a, b]. By using the notation (see [33])

Δj(ρ, σ) :=

∣∣∣∣
ρj ρ′j
σj σ′

j

∣∣∣∣ ,

where ρj := ρ(xj) and σj := σ(xj), from (4) we obtain

dj = (Δj(ρ, σ),−σ′
j , ρ

′
j)

T . (10)

Denote

Sj(ρ, σ, τ) := −

∣∣∣∣
Δj(ρ, σ) Δj+1(ρ, σ)

τj τj+1

∣∣∣∣
∣∣∣∣
ρj ρj+1

σj σj+1

∣∣∣∣
,

where τ ∈ C1[a, b], τj := τ(xj).
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Then, by using (5), for the vector aNj we obtain

aNj =
(
1, Sj+1(ρ, σ, ρ

′), Sj+1(ρ, σ, σ
′)
)T

. (11)

In accordance with (10) and (11), we have

dT
j ϕ(t) =

∣∣∣∣
ρ′j ρ(t)− ρj
σ′
j σ(t)− σj

∣∣∣∣ , (12)

dT
j a

N
k =

∣∣∣∣
ρ′j Sk+1(ρ, σ, ρ

′)− ρj
σ′
j Sk+1(ρ, σ, σ

′)− σj

∣∣∣∣ . (13)

Now, by using (12), (13), and (6)–(8), we obtain the following closed-form expressions for
the minimal quadratic normalized Bϕ-splines:

if t ∈ [xj, xj+1), then

ωj(t) =

∣∣∣∣∣
ρ′j ρ(t)− ρj

σ′
j σ(t)− σj

∣∣∣∣∣
∣∣∣∣∣
ρ′j Sj+1(ρ, σ, ρ

′)− ρj

σ′
j Sj+1(ρ, σ, σ

′)− σj

∣∣∣∣∣

; (14)

if t ∈ [xj+1, xj+2), then the following string of equalities is valid:

ωj(t) =
dT
j+1a

N
j+1 d

T
j ϕ(t)− dT

j a
N
j+1 d

T
j+1ϕ(t)

dT
j a

N
j dT

j+1a
N
j+1

=

∣∣∣∣∣
dT
j ϕ(t) dT

j a
N
j+1

dT
j+1ϕ(t) dT

j+1a
N
j+1

∣∣∣∣∣

dT
j a

N
j dT

j+1a
N
j+1

=

∣∣∣∣∣∣∣∣

ρ′j Sj+2(ρ, σ, ρ
′)− ρj ρ(t)− ρj 0

σ′
j Sj+2(ρ, σ, σ

′)− σj σ(t)− σj 0

0 Sj+2(ρ, σ, ρ
′)− ρj+1 ρ(t)− ρj+1 ρ′j+1

0 Sj+2(ρ, σ, σ
′)− σj+1 σ(t)− σj+1 σ′

j+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣
ρ′j Sj+1(ρ, σ, ρ

′)− ρj

σ′
j Sj+1(ρ, σ, σ

′)− σj

∣∣∣∣∣

∣∣∣∣∣
ρ′j+1 Sj+2(ρ, σ, ρ

′)− ρj+1

σ′
j+1 Sj+2(ρ, σ, σ

′)− σj+1

∣∣∣∣∣

; (15)

if t ∈ [xj+2, xj+3), then

ωj(t) =

∣∣∣∣∣
ρ′j+3 ρ(t)− ρj+3

σ′
j+3 σ(t)− σj+3

∣∣∣∣∣
∣∣∣∣∣
ρ′j+3 Sj+1(ρ, σ, ρ

′)− ρj+3

σ′
j+3 Sj+1(ρ, σ, σ

′)− σj+3

∣∣∣∣∣

. (16)

3. On the approximation approach

We consider the approach to approximating a given function f : [a, b] → R
1 by splines from

the space S(X) described by the following algorithm:

(1) Choose a subinterval I = [xμ, xν ] ⊂ [a, b] such that I∩(xj, xj+3) �= �. By f I we denote
the restriction of the function f to the interval I, i.e., f I := f |[xμ, xν ].

(2) Using a local approximation method P I , we determine an approximation gI of f I in
the form

gI = P If I =

ν−1∑

i=μ−2

bi ωi, bi ∈ R
1. (17)
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(3) Denote the approximation of the function f on [a, b] by

Pf =

n−1∑

j=−2

cj ωj, cj ∈ R
1. (18)

The value of bj obtained at the previous step is taken as the coefficient cj of the global
approximation, i.e., we set cj = bj.

Let S(XI) denote the restriction of S(X) to the interval I. Then the suggested approxima-
tion approach possesses the following property.

Theorem 3. If a local approximation approach P I reproduces all functions in the space S(XI),
then the approximation Pf reproduces all functions in S(X).

Proof. Consider f ∈ S(X). Then, in accordance with (18), f =
n−1∑
j=−2

cj ωj, whence the restric-

tion f I can be written in the form f I =
ν−1∑

j=μ−2
cj ωj.

If the method P I reproduces a function f I , then, in view of (17), we have

f I = P If I =
ν−1∑

i=μ−2

bi ωi.

Thus,
ν−1∑

i=μ−2
ci ωi =

ν−1∑
i=μ−2

bi ωi. From the linear independence of the functions {ωi} on the

interval I it follows that ci = bi for all i ∈ Jμ−2,ν−1. Since this property holds for all values
of j ∈ J−2,n−1, we conclude that Pf = f , which proves that the approximation considered
reproduces the space S(X). �

4. Three-point approximation functionals

Consider an interval I = [xj+1, xj+2] ⊂ [a, b]. We need to construct a local approximation
method P I reproducing functions f ∈ {[ϕ]i | i = 0, 1, 2}. For example, as P I we can use
interpolation at arbitrary three distinct points xj+1, xj+3/2 := xj+1 + θ(xj+2 − xj+1), where
θ ∈ (0, 1), and xj+2 of the interval I.

Represent (17) in the form

P If(t) := αωj−1(t) + β ωj(t) + γ ωj+1(t), t ∈ I, (19)

where α, β, γ ∈ R
1.

Then, in order to determine the coefficients in (19), we must solve the following three
simultaneous linear equations in three unknowns, which express the coincidence of P If and f
at the points xj+1, xj+3/2, and xj+2:

⎧
⎪⎨

⎪⎩

αωj−1(xj+1) + β ωj(xj+1) + γ ωj+1(xj+1) = f(xj+1),

α ωj−1(xj+3/2) + β ωj(xj+3/2) + γ ωj+1(xj+3/2) = f(xj+3/2),

α ωj−1(xj+2) + β ωj(xj+2) + γ ωj+1(xj+2) = f(xj+2).

(20)

In accordance with the approach (18) described above, the value of the approximation
functional cj can be obtained as the value of β in representation (19).

From the location of the support of the function ωj(t) it follows that

ωj−1(xj+2) = ωj+1(xj+1) = 0.
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Then, by expressing the coefficients α and γ from the first and third equations in (20), respec-
tively, and substituting them into the second one, we obtain

β =
f(xj+3/2)− f(xj+1)

ωj−1(xj+3/2)

ωj−1(xj+1)
− f(xj+2)

ωj+1(xj+3/2)

ωj+1(xj+2)

ωj(xj+3/2)− ωj(xj+1)
ωj−1(xj+3/2)

ωj−1(xj+1)
− ωj(xj+2)

ωj+1(xj+3/2)

ωj+1(xj+2)

. (21)

Note that on every grid interval (14)–(16), the function ωj(t) is represented as a fraction
whose denominator is independent of t. Therefore, the denominators of the representations of
the function ωj−1(t) at the points xj+1 and xj+3/2, as well as those of the function ωj+1(t) at the
points xj+3/2 and xj+2, coincide. The corresponding numerators are denoted (depending on

an interval) by ωl
j(t), ω

c
j(t), and ωr

j (t) for formulas (14), (15), and (16), respectively. Replacing

the ratios on the right-hand side of (21) with the ratios of their numerators and multiplying
the numerator and denominator of the right-hand side of (21) by ωr

j−1(xj+1)ω
l
j+1(xj+2), we

obtain

β = Δ−1
(
λ〈1〉f(xj+1)− λ〈3/2〉f(xj+3/2) + λ〈2〉f(xj+2)

)
.

Here, the following notation is used:

λ〈1〉 := ωr
j−1(xj+3/2)ω

l
j+1(xj+2),

λ〈3/2〉 := ωr
j−1(xj+1)ω

l
j+1(xj+2),

λ〈2〉 := ωr
j−1(xj+1)ω

l
j+1(xj+3/2),

Δ := λ〈1〉 ωj(xj+1)− λ〈3/2〉 ωj(xj+3/2) + λ〈2〉 ωj(xj+2).

Now it remains to find closed-form expressions for λ〈1〉, λ〈3/2〉, λ〈2〉, and Δ. By using (14)–
(16), we obtain

λ〈1〉 = −
∣∣∣∣∣
ρ′j+1 ρj+2 − ρj+1

σ′
j+1 σj+2 − σj+1

∣∣∣∣∣×
∣∣∣∣∣
ρ′j+2 ρj+2 − ρj+3/2

σ′
j+2 σj+2 − σj+3/2

∣∣∣∣∣ ,

λ〈3/2〉 = −
∣∣∣∣∣
ρ′j+1 ρj+2 − ρj+1

σ′
j+1 σj+2 − σj+1

∣∣∣∣∣×
∣∣∣∣∣
ρ′j+2 ρj+2 − ρj+1

σ′
j+2 σj+2 − σj+1

∣∣∣∣∣ ,

λ〈2〉 = −
∣∣∣∣∣
ρ′j+1 ρj+3/2 − ρj+1

σ′
j+1 σj+3/2 − σj+1

∣∣∣∣∣×
∣∣∣∣∣
ρ′j+2 ρj+2 − ρj+1

σ′
j+2 σj+2 − σj+1

∣∣∣∣∣ ,

Δ = λ〈1〉

∣∣∣∣∣
ρ′j ρj+1 − ρj

σ′
j σj+1 − σj

∣∣∣∣∣
∣∣∣∣∣
ρ′j Sj+1(ρ, σ, ρ

′)− ρj

σ′
j Sj+1(ρ, σ, σ

′)− σj

∣∣∣∣∣

+ λ〈2〉

∣∣∣∣∣
ρ′j+3 ρj+2 − ρj+3

σ′
j+3 σj+2 − σj+3

∣∣∣∣∣
∣∣∣∣∣
ρ′j+3 Sj+1(ρ, σ, ρ

′)− ρj+3

σ′
j+3 Sj+1(ρ, σ, σ

′)− σj+3

∣∣∣∣∣

−λ〈3/2〉

∣∣∣∣∣∣∣∣

ρ′j Sj+2(ρ, σ, ρ
′)− ρj ρj+3/2 − ρj 0

σ′
j Sj+2(ρ, σ, σ

′)− σj σj+3/2 − σj 0

0 Sj+2(ρ, σ, ρ
′)− ρj+1 ρj+3/2 − ρj+1 ρ′j+1

0 Sj+2(ρ, σ, σ
′)− σj+1 σj+3/2 − σj+1 σ′

j+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣
ρ′j Sj+1(ρ, σ, ρ

′)− ρj

σ′
j Sj+1(ρ, σ, σ

′)− σj

∣∣∣∣∣

∣∣∣∣∣
ρ′j+1 Sj+2(ρ, σ, ρ

′)− ρj+1

σ′
j+1 Sj+2(ρ, σ, σ

′)− σj+1

∣∣∣∣∣

.

Note that our conclusions are correct for the grid points xj+1 < xj+2, j ∈ J−1,n−2. For the
multiple points of the grid (1) the coefficients cj for j = −2 and j = n−1 in expansion (18) are

90



determined, in accordance with Theorem 2, from the equalities g(x0) = c−2 and g(xn) = cn−1

for an arbitrary spline g ∈ S(X). Therefore, we set c−2 = f(x0) and cn−1 = f(xn).
Thus, the approximation (18) of the function f can be written as

Pf =

n−1∑

j=−2

λj(f)ωj, (22)

where the approximation functional λj(f) is defined as follows:

λj(f) :=

⎧
⎪⎨

⎪⎩

f(x0), j = −2,

Δ−1
(
λ〈1〉f(xj+1)− λ〈3/2〉f(xj+3/2) + λ〈2〉f(xj+2)

)
, j = −1, . . . , n− 2,

f(xn), j = n− 1.

(23)

Remark 2. Our approach to constructing an approximation allows one to select the interval
I in a different way, say, one may set I = [xj , xj+1]. Then the local approximation (17) is
constructed in the form

P If(t) := α′ ωj−2(t) + β′ ωj−1(t) + γ′ ωj(t), t ∈ I,

where α′, β′, γ′ ∈ R
1, and the value of the functional is determined by the coefficient γ′ from

the equations that express the coincidence of P If and f at the points xj, xj+1/2, and xj+1.
However, the most concise representation of the functional is obtained if the interval I =
[xj+1, xj+2] is considered.

Remark 3. For ϕ(t) = (1, t, t2)T and θ = 1/2, the functional (23) has the form

λj(f) = −1

2

(
f(xj+1)− 4f(xj+3/2) + f(xj+2)

)
, j = −1, . . . , n− 2,

and coincides with the well-known quasi-interpolation functional for the quadratic B-splines
(see, e.g., [13]).

5. Averaging approximation functionals

In this section, for convenience, all the necessary objects defined on the grid X are sup-
plied with the superscript X, i.e., we write ωX

j , SX
j (ρ, σ, τ), etc. Then, in accordance with

representation (11), in componentwise form the approximation relations (3) are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
j=−2

ωX
j (t) = 1,

n−1∑
j=−2

SX
j+1(ρ, σ, ρ

′)ωX
j (t) = ρ(t),

n−1∑
j=−2

SX
j+1(ρ, σ, σ

′)ωX
j (t) = σ(t).

(24)

Consider another grid Y with the nodes

yj :=

⎧
⎪⎨

⎪⎩

x0, j = −2,

xj+1 + θ(xj+2 − xj+1), θ ∈ [0, 1], j = −1, . . . , n− 2,

xn, j = n− 1.

(25)

We construct the approximation Pf of a function f in the form

Pf =

n−1∑

j=−2

μj(f)ω
X
j ,
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where the approximation functional μj(f) is defined as follows:

μj(f) :=

⎧
⎪⎨

⎪⎩

f(y−2), j = −2,

ajf(yj−1) + bjf(yj) + cjf(yj+1), j = −1, . . . , n− 2,

f(yn−1), j = n− 1.

(26)

As above, the approximation Pf must reproduce all functions f ∈ {[ϕ]i | i = 0, 1, 2}. This
time, this property is ensured by an appropriate choice of the coefficients aj, bj , cj of the
functional (26). From the reproduction conditions we obtain the following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
j=−2

(aj + bj + cj)ω
X
j (t) = 1,

n−1∑
j=−2

(ajρ(yj−1) + bjρ(yj) + cjρ(yj+1))ω
X
j (t) = ρ(t),

n−1∑
j=−2

(ajσ(yj−1) + bjσ(yj) + cjσ(yj+1))ω
X
j (t) = σ(t).

(27)

Upon equating the left-hand sides of the respective equations in (24) and (27), we obtain
the following system of equations for determining the coefficients aj , bj, cj :

⎧
⎪⎨

⎪⎩

aj + bj + cj = 1,

ajρ(yj−1) + bjρ(yj) + cjρ(yj+1) = SX
j+1(ρ, σ, ρ

′),
ajσ(yj−1) + bjσ(yj) + cjσ(yj+1) = SX

j+1(ρ, σ, σ
′).

Solving this system, we find

aj = 1− bj − cj .

bj =
(ρ(yj+1)− ρ(yj−1))(S

X
j+1(ρ, σ, σ

′)− σ(yj−1))

(ρ(yj+1)− ρ(yj−1))(σ(yj)− σ(yj−1))

− (SX
j+1(ρ, σ, ρ

′)ρ(yj−1))(σ(yj+1)− σ(yj−1))

(ρ(yj)ρ(yj−1))(σ(yj+1)− σ(yj−1))
,

cj =
(SX

j+1(ρ, σ, ρ
′)− ρ(yj−1))(σ(yj)− σ(yj−1))

(ρ(yj+1)− ρ(yj−1))(σ(yj)− σ(yj−1))

− (ρ(yj)− ρ(yj−1))(S
X
j+1(ρ, σ, σ

′)− σ(yj−1))

(ρ(yj)− ρ(yj−1))(σ(yj+1)− σ(yj−1))
.

Remark 4. In order to compute the value of μ−2(f), we must determine the additional node
y−3. However, this can be avoided because, by Theorem 2, every spline in the space S(X)
reproduces the first and last coefficients of the expansion at the ends of the interval [a, b].
Thus, we may set μ−2(f) := f(y−2). Similarly, μn−1(f) := f(yn−1).

Remark 5. For ϕ(t) := (1, t, t2)T and θ = 1/2, the functional (26) on the uniform grid has
the form

μj(f) = −1

8
(f(yj−1)− 10f(yj) + f(yj+1))

and coincides with the well-known quasi-interpolation functional for the quadratic B-splines
(see, e.g., [12]).
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Consider a grid Z with the nodes

zj :=

⎧
⎪⎨

⎪⎩

x0, j = −1, 0, 1,

xj−2 + θ(xj−1 − xj−2), θ ∈ [0, 1], j = 2, . . . , n+ 1,

xn, j = n+ 2, n + 3, n+ 4.

(28)

We construct the spline functions on the grid (28) using (14)–(16). All objects considered
on the grid Z are supplied with the superscript Z, e.g., ωZ

j , S
Z
j (ρ, σ, τ), etc.

Now we construct the approximation Pf of a function f in the form

Pf =
n+1∑

j=−1

νj(f)ω
Z
j ,

where the functional νj(f) is defined as follows:

νj(f) :=

⎧
⎪⎨

⎪⎩

f(x0), j = −1,

a′jf(xj−1) + b′jf(xj) + c′jf(xj+1), j = 0, . . . , n,

f(xn), j = n+ 1.

(29)

Since the approximation Pf must reproduce all functions f ∈ {[ϕ]i | i = 0, 1, 2}, we obtain
the system of linear equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=−1

(a′j + b′j + c′j)ω
Z
j (t) = 1,

n+1∑
j=−1

(a′jρ(xj−1) + b′jρ(xj) + c′jρ(xj+1))ω
Z
j (t) = ρ(t),

n+1∑
j=−1

(a′jσ(xj−1) + b′jσ(xj) + c′jσ(xj+1))ω
Z
j (t) = σ(t).

(30)

Then, on the grid Z, we can write the following equations, similar to (24):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=−1

ωZ
j (t) = 1,

n+1∑
j=−1

SZ
j+1(ρ, σ, ρ

′)ωZ
j (t) = ρ(t),

n+1∑
j=−1

SZ
j+1(ρ, σ, σ

′)ωZ
j (t) = σ(t).

(31)

On equating the coefficients at the spline functions in the left-hand sides of the respective
equations in (31) and (30), we again obtain a system of linear equations for determining the
coefficients a′j, b

′
j, c

′
j . Solving this system, we find the following closed–form expressions for
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the coefficients of the desired approximation functional:

a′j = 1− b′j − c′j ,

b′j =
(ρ(xj+1)− ρ(xj−1))(S

Z
j+1(ρ, σ, σ

′)− σ(xj−1))

(ρ(xj+1)− ρ(xj−1))(σ(xj)− σ(xj−1))

− (SZ
j+1(ρ, σ, ρ

′)− ρ(xj−1))(σ(xj+1)− σ(xj−1))

(ρ(xj)− ρ(xj−1))(σ(xj+1)− σ(xj−1))
,

c′j =
(SZ

j+1(ρ, σ, ρ
′)− ρ(xj−1))(σ(xj)− σ(xj−1))

(ρ(xj+1)− ρ(xj−1))(σ(xj)− σ(xj−1))

− (ρ(xj)− ρ(xj−1))(S
Z
j+1(ρ, σ, σ

′)− σ(xj−1))

(ρ(xj)− ρ(xj−1))(σ(xj+1)− σ(xj−1))
.

Remark 6. In order to compute ν−1(f), we can use the following string of equalities:

ν−1(f) = a′−1f(x−2) + b′−1f(x−1) + c′−1f(x0) = (a′−1 + b′−1 + c′−1)f(x0) = f(x0).

Similarly, νn+1(f) = f(xn).

Remark 7. For ϕ(t) := (1, t, t2)T and θ = 1/2, the functional (29) on the uniform grid has
the form

νj(f) = −1

8
(f(xj−1)− 10f(xj) + f(xj+1))

and coincides with the well-known quasi-interpolation averaging functional for the quadratic
B-splines (see [10]).

6. Biorthogonal functionals of de Boor–Fix type

Consider yet another type of linear functionals ξ
〈r〉
j , j = −2, . . . , n− 1, r = 0, 1, 2, which are

defined by the following formulas:

ξ
〈0〉
j (f) := f(xj) +

(
(ρj+1σ

′
j+1 − ρ′j+1σj+1)(ρ

′′
jσ

′
j+2 − ρ′j+2σ

′′
j )

+ (ρ′j+1σ
′
j+2 − ρ′j+2σ

′
j+1)(ρ

′′
jσj − ρjσ

′′
j ) + (ρj+2σ

′
j+2 − ρ′j+2σj+2)(ρ

′
j+1σ

′′
j − ρ′′jσ

′
j+1)

)

× f ′(xj)
(ρ′j+1σ

′
j+2 − ρ′j+2σ

′
j+1)(ρ

′
jσ

′′
j − ρ′′jσ

′
j)

+
(
(ρj+1σ

′
j+1 − ρ′j+1σj+1)(ρ

′
j+2σ

′
j − ρ′jσ

′
j+2)

+ (ρ′j+1σ
′
j+2 − ρ′j+2σ

′
j+1)(ρjσ

′
j − ρ′jσj) + (ρj+2σ

′
j+2 − ρ′j+2σj+2)(ρ

′
jσ

′
j+1 − ρ′j+1σ

′
j)
)

× f ′′(xj)
(ρ′j+1σ

′
j+2 − ρ′j+2σ

′
j+1)(ρ

′
jσ

′′
j − ρ′′jσ

′
j)
, f ∈ C2[a, b],

ξ
〈1〉
j (f) := f(xj+1) +

(σj+2 − σj+1)ρ
′
j+2 − (ρj+2 − ρj+1)σ

′
j+2

ρ′j+2σ
′
j+1 − ρ′j+1σ

′
j+2

f ′(xj+1), f ∈ C1[a, b] (32)

ξ
〈2〉
j (f) := f(xj+2) +

(σj+2 − σj+1)ρ
′
j+1 − (ρj+2 − ρj+1)σ

′
j+1

ρ′j+2σ
′
j+1 − ρ′j+1σ

′
j+2

f ′(xj+2), f ∈ C1[a, b]. (33)

As is known [33], the approximation

Pf =

n−1∑

j=−2

ξ
〈r〉
j (f)ωj
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of a function f reproduces all functions f ∈ {[ϕ]i | i = 0, 1, 2}, i.e., for these functions we

have Pf ≡ f . Moreover, for every fixed r = 0, 1, 2, the functionals ξ
〈r〉
j are biorthogonal to the

functions ωj′, i.e., ξ
〈r〉
j (ωj′) = δj,j′, where δj,j′ is the Kronecker symbol.

These functionals are known to reproduce all splines g ∈ S(X), and (in accordance with the
biorthogonality property) they yield the value of the coefficient cj at the function ωj in the
related expansion (18):

ξ
〈r〉
j (g) = ξ

〈r〉
j

⎛

⎝
n−1∑

j′=−2

cj′ ωj′

⎞

⎠ = cj .

Remark 8. For the polynomial generating vector function ϕ(t) = (1, t, t2)T , the functionals

ξ
〈r〉
j coincide with the well-known functionals of de Boor and Fix [32]:

ξ
〈0〉
j (f) = f(xj) +

(
xj+1 + xj+2

2
− xj

)
f ′(xj) +

1

2
(xj+1 − xj)(xj+2 − xj)f

′′(xj),

ξ
〈1〉
j (f) = f(xj+1) +

1

2
(xj+2 − xj+1)f

′(xj+1),

ξ
〈2〉
j (f) = f(xj+2)− 1

2
(xj+2 − xj+1)f

′(xj+2).

7. Numerical experiments

In this section, we study the error of approximating a circular arc by the B-splines and
minimal splines with various generating vector functions and approximation functionals.

We use the circular arc u(t) =
√
1− t2 as a test function, which is approximated on a

uniform grid on the interval [−0.5, 0.5], whereas the error is estimated using another uniform
grid that is ten times finer than the original one. The error is estimated by the absolute value
of the largest deviation of the constructed approximation uh from the value of the function u
at the nodes of the finer grid, i.e.,

E = max
t∈[−0.5, 0.5]

|uh(t)− u(t)|.

In Table 1, we present the results of numerical approximation of the considered circular arc
by the B-splines. The approximations were constructed for different numbers of grid nodes,
depending on the choice of the approximation functionals. The three-point functional (23) is
denoted by λj ; the averaging functionals (26) and (29) are denoted by μj and νj, respectively
(in both cases, the midpoints of the grid intervals were used as the nodes of the auxiliary grid).

The de Boor–Fix type functional (32) is denoted by ξ
〈1〉
j .

Table 1. The approximation error for the B-splines as a function of the node
number n.

Functional n = 10 n = 20 n = 30
λj 2.8× 10−5 3.4× 10−6 1.0 × 10−6

μj 3.6× 10−5 5.3× 10−6 1.7 × 10−6

ξ
〈1〉
j 1.2× 10−4 1.6× 10−5 5.0 × 10−6

Now consider approximation by the minimal splines. Tables 2, 3, and 4 provide the approx-
imation errors for different generating vector functions and for the averaging functionals (26),
(29) and de Boor–Fix type functional (32), respectively. Here, we select the nodes of the
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auxiliary grid as the midpoints of the intervals of the original grid. The results of our numer-
ical experiments show that the suggested approximation approach based on minimal splines
allows one to construct more accurate approximations of circular arcs using the approximation
functionals considered.

Table 2. The approximation error for the averaging functional (26) as a function
of the node number n.

ϕ(t) n = 10 n = 20 n = 30

(1, t, t2)T 3.6× 10−5 5.3× 10−6 1.7× 10−6

(1, sinh t, cosh t)T 2.8× 10−5 4.2× 10−6 1.3× 10−6

(1,
√
1− t,

√
1 + t)T 7.5× 10−6 1.1× 10−6 3.3× 10−7

Table 3. The approximation error for the averaging functional (29) as a function
of the node number n.

ϕ(t) n = 10 n = 20 n = 30

(1, t, t2)T 2.7× 10−5 3.4× 10−6 1.1× 10−6

(1, sinh t, cosh t)T 9.4× 10−6 1.5× 10−6 1.3× 10−7

(1,
√
1− t,

√
1 + t)T 5.1× 10−6 6.8× 10−7 2.2× 10−7

Table 4. The approximation error for the de Boor–Fix type functional (32) as
a function of the node number n.

ϕ(t) n = 10 n = 20 n = 30

(1, t, t2)T 1.2× 10−4 1.6× 10−5 5.0× 10−6

(1, sinh t, cosh, t)T 9.2× 10−5 1.3× 10−5 4.0× 10−6

(1,
√
1− t,

√
1 + t)T 2.3× 10−5 3.1× 10−6 9.6× 10−7

Remark 9. The quadratic minimal splines generated by the vector function

ϕ(t) = (1, sinh t, cosh t)T

are called the hyperbolic splines. For their properties and application to approximation of
catenary and other transcendental curves, see [34].

This work was supported by the Russian Foundation for Basic Research (project No. 20-
31-90095).

Translated by the authors.
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