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DEFINABILITY OF COMPLETELY DECOMPOSABLE TORSION-FREE
ABELIAN GROUPS BY SEMIGROUPS OF ENDOMORPHISMS
AND GROUPS OF HOMOMORPHISMS

T. A. Pushkova UDC 512.541

Abstract. Let C be an Abelian group. A class X of Abelian groups is called a CE
•H-class if for any groups

A,B ∈ X, it follows from the existence of isomorphisms E•(A) ∼= E•(B) and Hom(C,A) ∼= Hom(C,B)
that there is an isomorphism A ∼= B. In this paper, conditions are studied under which the class �ad

cd

of completely decomposable almost divisible Abelian groups and class �∗
cd of completely decomposable

torsion-free Abelian groups A where Ω(A) contains only incomparable types are CE
•H-classes, where C is

a completely decomposable torsion-free Abelian group.

The well-known result of R. Baer [2] and I. Kaplansky [4] about determinability of periodic Abelian
groups by their endomorphisms ring in the class of periodic groups initiated multiple researches in this
direction. A class X of Abelian groups is called an E-class if for any groups A, B ∈ X it follows
from the existence of an isomorphism E(A) ∼= E(B) that there is an isomorphism A ∼= B. There
is the same question both for rings of endomorphisms E(A) of the group A and for its multiplicative
semigroup E•(A), which is called an endomorphism semigroup of the group A. P. Puusemp [6] and
A. M. Sebeldin [11] researched the problem of determinability of Abelian groups by their multiplicative
semigroups. In connection with the above, it is logical to search the problems of determinability of Abelian
groups by their endomorphism semigroups together with the supplementary condition of isomorphism of
homomorphism groups.

Let C be an Abelian group. A class X of Abelian groups is called an CE•H-class if for any groups
A, B ∈ X, it follows from the existence of isomorphisms E•(A) ∼= E•(B) and Hom(C, A) ∼= Hom(C, B)
that there is an isomorphism A ∼= B. In this paper, we describe necessary and sufficient conditions on
a completely decomposable torsion-free Abelian group C for a given specified class of torsion-free Abelian
groups to be a CE•H-class.

Introduce the following notation: Ω is the set of distinct types of torsion-free Abelian groups of rank 1;
τ(A) is the type of a torsion-free Abelian group A of rank 1; Ω(A) is the set of distinct types of the direct
summands of rank 1 of a torsion-free Abelian group; Ω0 is the set of all types in Ω , whose characteristics
do not contain the symbol ∞; Ω0(A) is the set of all types in Ω(A), whose characteristics do not contain
the symbol ∞; ℵ0 is the least infinite cardinal; |M | is the cardinality of the set M .

The set Ω can be split like that:

Ω = Ω̄ ∪ Ω∗, Ω̄ ∩ Ω∗ = ∅,

where Ω∗ is the set of all types of almost divisible torsion-free groups of rank 1. We similarly have that
any completely decomposable torsion-free Abelian group A can be represented in the form A = Ā ⊕ A∗,
where Ā does not contain almost divisible groups of rank 1.

Theorem 1. Let C be a completely decomposable torsion-free Abelian group. The class 	ad
cd of completely

decomposable almost divisible torsion-free Abelian groups is a CE•H-class if and only if the group C
satisfies one of the following conditions:

(1) Ω0(C) 
= ∅;
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(2) Ω0(C) = ∅ and for any almost divisible type τ0 there is a type τ ′ ∈ Ω(C) such that τ ′ ≤ τ0.

Proof. Sufficiency. Let

A =
⊕

τ∈Ω(A)

⊕

i∈I(τ)

Ai = A1 ⊕ A2,

B =
⊕

τ∈Ω(B)

⊕

j∈J(τ)

Bj = B1 ⊕ B2,

where

A1 =
⊕

τ∈Ω1(A)

A(τ), A2 =
⊕

τ∈Ω2(A)

A(τ), A(τ) =
⊕

i∈I(τ)

Ai,

B1 =
⊕

τ∈Ω1(B)

B(τ), B2 =
⊕

τ∈Ω2(B)

B(τ), B(τ) =
⊕

j∈J(τ)

Bj ,

and

Ω1(A) = {τ ∈ Ω(A) : |I(τ)| = 1}, Ω2(A) = {τ ∈ Ω(A : |I(τ)| > 1},
Ω1(B) = {τ ∈ Ω(B) : |J(τ)| = 1}, Ω2(B) = {τ ∈ Ω(B) : |J(τ)| > 1}.

As far as Hom(C, A) ∼= Hom(C, B), since [3, Theorem 43.1], [9], we obtain
∏

k∈K

⊕

i∈I

Hom(Ck, Ai) ∼=
∏

k∈K

⊕

j∈J

Hom(Ck, Bj).

Show that Ω(A) = Ω(B). Let us consider a random τ(Ai) ∈ Ω(A).
(1) Let the group C satisfy the first condition of the theorem, i.e., there is a group Ck in the decom-

position of the group C such that τ(Ck) ∈ Ω0(C). Then, since Ai is almost divisible, we obtain

τ
(
Hom(Ct, Ai)

)
= τ(Ai) − τ(Ct) = τ(Ai)

and then Ω(A) ⊂ Ω
(
Hom(C, A)

)
.

(2) Let the group C satisfy the second condition of the theorem, i.e., there is a group Ct in the
decomposition of the group C such that τ(Ct) ≤ τ(Ai). Then, since Ai is almost divisible, we obtain

τ
(
Hom(Ck, Ai)

)
= τ(Ai) − τ(Ck) = τ(Ai)

and then Ω(A) ⊂ Ω
(
Hom(C, A)

)
. On the other hand, due to the fact that Ai is almost divisible, we

have Hom(Ck, Ai) ∼= Ai or Hom(Ck, Ai) = 0. This means that Ω
(
Hom(C, A)

) ⊂ Ω(A). Therefore,
Ω

(
Hom(C, A)

)
= Ω(A). Similarly, Ω

(
Hom(C, B)

)
= Ω(B). Then it follows form the existence of the

isomorphism Hom(C, A) ∼= Hom(C, B), that there is Ω(A) = Ω(B). Then A1
∼= B1.

E•(A1) ∼= E•(B1) and E•(A2) ∼= E•(B2) [10] follow from E•(A) ∼= E•(B). Hence, we obtain A2
∼= B2

according to [5, 7]. So, A ∼= B.
Necessity. Arguing by contradiction, assume that Ω0(C) = ∅ and there is τ∗ ∈ Ω∗ such that τ∗ 
≥ τ

for all τ ∈ Ω(C). Consider two distinct almost divisible type τ1 and τ2, for which |P∞(τ1)| = |P∞(τ2)| =
|P∞(τ∗)| − 1 and P∞(τ1) ⊂ P∞(τ∗), P∞(τ2) ⊂ P∞(τ∗). It is clear that for any τ ∈ Ω(C)τ1 
≥ τ and
τ2 
≥ τ . Then there are two nonisomorphic groups of rank 1 A and B from 	ad

cd , whose types are equal to
τ1 and τ2, respectively. On the other hand, E•(A) ∼= E•(B) and Hom(C, A) = Hom(C, B) = 0. Therefore,
	ad

cd is not CE•H-class. A contradiction. The theorem is proved.

Theorem 2. Let C be a completely decomposable torsion-free Abelian group. The class 	∗
cd of com-

pletely decomposable torsion-free Abelian groups A, where Ω(A) contains only noncomparable types, is
CE•H-class if and only if the group C satisfies the condition:

for any type τ0 ∈ Ω̄ in the decomposition of the group C̄ there is a non-empty finite set of groups
of rank 1 of idempotent types that is smaller than type τ0.
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Proof. Sufficiency. Let

A =
⊕

τ∈Ω(A)

⊕

i∈I(τ)

Ai = A1 ⊕ A2,

B =
⊕

τ∈Ω(B)

⊕

j∈J(τ)

Bj = B1 ⊕ B2,

where

A1 =
⊕

τ∈Ω1(A)

A(τ), A2 =
⊕

τ∈Ω2(A)

A(τ), A(τ) =
⊕

i∈I(τ)

Ai,

B1 =
⊕

τ∈Ω1(B)

B(τ), B2 =
⊕

τ∈Ω2(B)

B(τ), B(τ) =
⊕

j∈J(τ)

Bj ,

and

Ω1(A) = {τ ∈ Ω(A) : |I(τ)| = 1}, Ω2(A) = {τ ∈ Ω(A) : |I(τ)| > 1},
Ω1(B) = {τ ∈ Ω(B) : |J(τ)| = 1}, Ω2(B) = {τ ∈ Ω(B) : |J(τ)| > 1}.

As far as Hom(C, A) ∼= Hom(C, B), by [3, Theorem 43.1] and [9], we obtain
∏

k∈K

⊕

i∈I

Hom(Ck, Ai) ∼=
∏

k∈K

⊕

j∈J

Hom(Ck, Bj). (∗)

Show that Ω(A) = Ω(B). It follows from the conditions of the theorem that, for any group Ai from
the decomposition of the group A in the decomposition of the group C̄, there is a group Ck that has
idempotent type τ(Ck) ≤ τ(Ai). Then Hom(Ck, Ai) ∼= Ai. Hence by [1] and (∗), we obtain that for any
group Ai from A there will be a group Hom(Ct, Bj) from Hom(C, B) such that Ai

∼= Hom(Ct, Bj). Hence,
by [8, Corollary 1], τ(Bj) ≥ τ(Ai). Similarly, for a group Bj there will be a group Hom(Ck, Al) from
Hom(C, A) such that Bj

∼= Hom(Ck, Al). Then τ(Bj) ≤ τ(Al). Next, τ(Ai) ≤ τ(Bj) ≤ τ(Al). Since all
types from Ω(A) are noncomparable, we have that Ai

∼= Bj . Hence Ω(A) ⊂ Ω(B).
Similarly, for any group Bj from B there is a group Ai from A such that Bj

∼= Ai. Therefore,
Ω(A) = Ω(B). Then A1

∼= B1.
Let us represent A2 and B2 in the form A2 = Ā2 ⊕ A∗

2, B2 = B̄2 ⊕ B∗
2 . E•(A) ∼= E•(B) implies

E•(A∗
2) ∼= E•(B∗

2)andE•(Ā2) ∼= E•(B̄2) [10]. Hence, according to [5, 7], we obtain A2
∼= B2 and E(Ā2) ∼=

E(B̄2). Suppose that Ā2 
∼= B̄2, i.e., there is a type τ1 ∈ Ω(A) = Ω(B) such that |I(τ1)| 
= |J(τ1)|.
According to the condition of the theorem in the decomposition group C̄ there are only finite set of
cardinality of m groups Ct of rank 1 of idempotent types such that τ(Ct) ≤ τ1. Then in Hom(C, A), the
cardinality of the set of groups of rank 1 of the type τ1 is m|I(τ1)|, and in Hom(C, B) is m|J(τ1)|. Since
|I(τ1)| 
= |J(τ1)|, we have that m|I(τ1)| 
= m|J(τ1)|, i.e., cardinalities of sets of direct summands of rank 1
of the type τ1 in Hom(C, A) and Hom(C, B) are different. This means that Hom(C, Ā) 
∼= Hom(C, B̄).
The contradiction. Therefore, Ā2

∼= B̄2. Hence A ∼= B.
Necessity. Let the group C does not satisfy the condition of the theorem. Then there are two cases:

(1) there is not almost divisible type τ such that in the decomposition of the group C̄ there is no
summand of the idempotent type smaller than the type τ ;

(2) there is a type τ̄ ∈ Ω̄ such that in the decomposition of the group C̄ there is an infinite set of
groups of rank 1, whose types are idempotent and smaller than the type τ̄ .

Let us consider the first case. It is obvious that τ(Z) /∈ Ω(C). Let us assume that

Ω(01) = {τ ∈ Ω0 : τ � (. . . , hτ
p , . . .), (0, 0, 0, . . .) < (. . . , hτ

p , . . .) < (1, 1, 1, . . .)},
Ω(01)(C) = Ω0(C) ∩ Ω(01).
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Note that Ω(01)(C) 
= ∅. Indeed, let Ω(01)(C) = ∅. Take any two incomparable types τ1, τ2 ∈ Ω(01). Let
us consider the torsion-free Abelian groups A and B of rank 1 of the type τ(A) = τ1, τ(B) = τ2. Then
E(A) ∼= E(B), Hom(C, A) = Hom(C, B) = 0, but A 
∼= B. Then Ω(01)(C) 
= ∅.

Then there are two subcases.
(a) Ω(01)(C) contains minimal types.
Let τ0 be a minimal type in Ω(01)(C). Take two noncomparable types τ1 and τ2 such that τ1, τ2 < τ0.

Let us consider torsion-free groups A and B of rank 1 whose types are τ(A) = τ1 and τ(B) = τ2. It is
obvious that E•(A) ∼= E•(B) and Hom(C, A) = Hom(C, B) = 0, but A 
∼= B. The contradiction.

(b) Ω(01)(C) does not contain minimal types, i.e., for any type τ ∈ Ω(01) there is a type τ ′ ∈ Ω(01)(C)
such that τ ′ 
= τ(Z) and τ ′ < τ . Let us take a random type τ0 ∈ Ω(01)(C). Let us consider the set Ω(01)(τ0)
of all noncomparable types that contains the type τ0. Let τ∗ ∈ Ω(01)(τ0), τ∗ 
= τ0. Let us consider the
group

A =
⊕

τ∈Ω(01)(τ0)

⊕

r(C)

Q(τ), B =
⊕

τ∈Ω(01)(τ0), τ �=τ∗

⊕

r(C)

Q(τ),

where Q(τ) is a rational group of the type τ . It is obvious that E(A) ∼= E(B). Show that

Ω
(
Hom

(
C,Q(τ∗)

)) ⊂ Ω
(
Hom(C, B)

)
.

Let us take

τ ′ ∈ Ω
(
Hom

(
C,Q(τ∗)

))
.

Then τ ′ = τ∗ − τ(C0), where τ(C0) ∈ Ω(01)(C). Let τ∗ � (. . . , α∗
p, . . . ), τ(C0) � (. . . , γp, . . . ), and

τ ′ � (. . . , α∗
p − γp, . . . ). Let us assume for the type τ containing characteristic (. . . , hp, . . . ) that

P0(τ) = {p ∈ P : hp = 0}, P1(τ) = {p ∈ P : hp = 1}.
Let us consider a type τ1 such that P1(τ1) = P0(τ∗) and P0(τ1) = P1(τ∗). According to the assumption,
in Ω(01)(C) there is a type τC

1 such that τC
1 
= τ(Z) and τC

1 < τ1. Then P1(τC
1 ) ⊂ P1(τ1) and |P1(τ1) \

P1(τC
1 )| = ℵ0 and |P1(τC

1 )| = ℵ0. Let us consider the type τ2 ∈ Ω(01) such that P1(τ2) = P1(τC
1 ) ∪ P1(τ ′).

Note that τ2 is not compared with τ∗, so τ2 ∈ Ω(B). Then τ ′ ∈ Ω
(
Hom(C, B)

)
, since τ2 − τC

1 = τ ′. Thus,

Ω
(
Hom

(
C,Q(τ∗)

)) ⊂ Ω
(
Hom(C, B)

)
.

Let us take τ ∈ Ω
(
Hom(C, A)

)
. Let |TA(τ)| and |TB(τ)| be cardinalities of sets of direct summands

of rank 1 of the type τ in Hom(C, A) and Hom(C, B), respectively. Then

|TA(τ)| = r(C)mB(τ), |TB(τ)| = r(C)
(
mB(τ) + m(τ∗)

)
,

where mB(τ) is the cardinality of the set of direct summands of Ck of rank 1 of the group C, for which
in Ω(τ0) there are types τk 
= τ∗ such that τk − τ(Ck) = τ ; m(τ∗) is the cardinality of the set of direct
summands Cr of rank 1 of the group C so that τ∗ − τ(Cr) = τ . Since Ω(01)(C) does not contain minimal
types, we have that r(C) ≥ ℵ0, which means that |TA(τ)| = |TB(τ)|. Therefore, Hom(C, A) ∼= Hom(C, B),
E•(A) ∼= E•(B) but A 
∼= B. The contradiction.

Let us consider the second case. There is a type τ̄ ∈ Ω̄ such that in the decomposition of the group C̄
there is an infinite set of cardinality α of groups of rank 1, whose types are idempotent relative to the
type τ̄ .

Let us consider the set

Ω̃(C̄) = {τ ∈ Ω(C̄) : P∞(τ) ⊂ P∞(τ̄) and τ is not idempotent relative to the type τ̄}.
There are possible subcases.
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(1) Ω̃(C̄) = ∅. In Ω there are two noncomparable types τ (1) and τ (2) such that P∞
(
τ (1)

)
= P∞

(
τ (2)

)
=

P∞(τ̄). Let us assume A = A1 ⊕ A1 ⊕ A2, B = A1 ⊕ A2 ⊕ A2, where τ(A1) = τ (1), τ(A2) = τ (2). Let us
consider Hom(C, A) and Hom(C, B). We have

Hom(C, A) = Hom(C, A1) ⊕ Hom(C, A1) ⊕ Hom(C, A2) ∼=
∏

α

A1 ⊕
∏

α

A1 ⊕
∏

α

A2
∼=

∏

α

A1 ⊕
∏

α

A2.

Similarly,
Hom(C, B) ∼=

∏

α

A1 ⊕
∏

α

A2.

Thus, A 
∼= B but E(A) ∼= E(B), Hom(C, A) ∼= Hom(C, B). A contradiction.
(2) Ω̃(C̄) 
= ∅. Let us bring the type τ0 containing characteristic (. . . , α0

p, . . . ) in compliance with
each type τ ∈ Ω̃ containing characteristic (. . . , αp, . . . ), where α0

p = 0 if p ∈ P∞(τ̄)andα0
p = αp in other

cases. The set of all such types τ0 forms a Ω̃0. There are two variants.
(a) Ω̃0 contains the minimal types. Let τ0 be one of the minimal types in Ω̃0. Let us take two

noncomparable types τ
(1)
0 , τ

(2)
0 < τ0, where τ

(1)
0 � (

. . . , h
(1)
p , . . .

)
and τ

(2)
0 � (

. . . , h
(2)
p , . . .

)
. Let us

consider the types τ1 and τ2 containing the characteristics
(
. . . , α

(1)
p , . . .

)
and

(
. . . , α

(2)
p , . . .

)
, respectively,

where α
(1)
p = α

(2)
p = ∞ if p ∈ P∞(τ̄) and α

(1)
p = h

(1)
p , α

(2)
p = h

(2)
p in other cases. Let us assume

A = A1 ⊕ A1 ⊕ A2, B = A1 ⊕ A1 ⊕ A2,

where τ(A1) = τ1 and τ(A2) = τ2. Then as in the case (1) we will obtain a contradiction.
(b) Ω̃0 does not contain the minimal types. Let us take any type τ∗ such that P∞(τ∗) = P∞(τ̄),

P1(τ∗) ∪ P0(τ∗) = P \ P∞(τ∗), and |P1(τ∗)| = |P0(τ∗)| = ℵ0. Let us assume that

Ω(τ∗) = {τ ∈ Ω: P∞(τ) = P∞(τ∗), τ is not compared with τ∗,
τ � (. . . , βp, . . .), where βp = 0 or βp = 1 for all p /∈ P∞(τ)}.

Let us consider the group
A =

⊕

τ∈Ω(τ∗)

Q(τ), B = A ⊕Q(τ∗).

The proof that Ω
(
Hom(C, A)

)
= Ω

(
Hom(C, B)

)
is similar to the case (1)(b). Let us prove that for any τ

from Ω
(
Hom(C, A)

)
, there is an equality |TA(τ)| = |TB(τ)|. Let τ ∈ Ω(τ∗). Then τ ∈ Ω

(
Hom(C, A)

)

and |TA(τ)| = |TB(τ)| = α. If τ ∈ Ω
(
Hom(C, A)

) \ Ω(τ∗), i.e., τ = τ0 − τ(Ck), where τ0 ∈ Ω(τ∗),
τ(Ck) ∈ Ω(C). As was shown above (the case (1)(b)), in Ω(τ∗), there is an infinite set of τi, for which
in Ω̃0 there are types τk such that τi − τk = τ . Thus, |TA(τ)| = |TB(τ)| ≥ ℵ0. This means that
Hom(C, A) ∼= Hom(C, B), E(A) ∼= E(B), but A 
∼= B. A contradiction. The theorem is proved.
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