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ABELIAN GROUPS ISOMORPHIC TO A PROPER FULLY INVARIANT
SUBGROUP

S. Ya. Grinshpon and M. M. Nikolskaya UDC 512.541

Abstract. The present paper is a survey of the authors’ results related to studying groups containing
a proper fully invariant subgroup isomorphic to the group.

Introduction

In the theory of Abelian groups, the study of groups containing a proper subgroup isomorphic to the
group is one of research lines.

R. A. Beaumont studied such groups in [1]. He called them I-groups. In [1], it was proved that each
primary Abelian group that can be decomposed into an infinite sum of cocyclic groups is an I-group.
I-modules were studied in [2] by R. A. Beaumont and R. S. Pierce. In particular, in [2] it was proved
that a torsion-free R-module M that is not divisible is an I-module, and a torsion module M of finite
rank is not an I-module. In [3], in addition to I-groups, they considered IP-groups (groups isomorphic to
a proper pure subgroup) and ID-groups (groups isomorphic to a proper direct summand).

In [5], P. Crawley constructs an example of an infinite primary Abelian group that does not contain
elements of infinite height and is not isomorphic to a proper subgroup.

In [19], P. Hill and Ch. Megibben present a more general and simple construction of primary groups
without proper isomorphic subgroups as compared to that by P. Crawley. In their work, they also show
that an infinite reduced primary group is a group without proper subgroups isomorphic to the group only
if this group is unbounded, uncountable, and has finite Ulm–Kaplansky invariants.

In [23], G. S. Monk studies Abelian p-groups not containing proper pure dense subgroups, isomorphic
to the group.

In recent time, the interest in the groups containing a proper subgroup isomorphic to the group does
not wane. In particular, in [8] B. Goldsmith, S. Óhógáin, and S. Wallutis study quasi-minimal groups
(groups isomorphic to each of their subgroups of the same cardinality as the groups), pure quasi-minimal
groups (groups isomorphic to each of their pure subgroups of the same cardinality as the groups), and
direct quasi-minimal groups (groups isomorphic to each of their direct summand of the same cardinality
as the groups).

The present article is a review. It presents our results concerning to the research of groups containing
a fully invariant subgroup isomorphic to the group.

All groups in the article are Abelian.

1. Basic Definitions and Known Results

In this section, basic definitions and known results used below are given.
Let A be a torsion group. By Ap we define the subgroup of the group A, containing all the elements

a ∈ A, whose order is a prime power p. The subgroup Ap is called the p-component of the group A.

Theorem 1.1 ([6, Sec. 8]). A torsion group A is a direct sum of the p-group Ap belonging to different
primes p. The groups Ap are uniquely defined by the group A.
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If the group A is not a torsion group, then by the p-component of this group the p-component of its
periodic part T (A) is meant.

A group D is called divisible if nD = D for each natural number n. We recall some properties of
divisible groups.

Theorem 1.2 ([6, Sec. 20]).
(1) If Di (i ∈ I) are divisible subgroups of the group A, then also

∑
Di is a divisible subgroup of the

group A.
(2) A direct sum and a direct product are divisible groups if and only if each component is a divisible

group.

Theorem 1.3 ([6, Sec. 23]). Any divisible group D is a direct sum of quasi-cyclic groups and groups
isomorphic to the full rational group. The cardinality of the component sets Z(p∞) (for each p) and Q

form a complete and independent system of invariants of the group D.

A group C is called reduced if it has no nonzero divisible subgroups.

Theorem 1.4 ([6, Sec. 21]). Any group A is a direct sum of a divisible group D and a reduced group C,
A = D ⊕ C. The subgroup D of A is defined here uniquely and the subgroup C is defined uniquely up to
an isomorphism.

Consider direct sums of cyclic groups. The following result of L. Ya. Kulikov is a criterion allowing
one to establish when a given p-group is decomposable into a direct sum of cyclic p-groups.

Theorem 1.5 ([22]). The p-group A is a direct sum of cyclic groups if and only if A is a union of the
ascending sequence of the subgroups

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ . . . ,
∞⋃

n=1

An = A,

where heights of nonzero elements entering into An are less then a fixed number kn.

Two important results follow from this theorem.

Theorem 1.6 ([6, Sec. 17]). A bounded group is a direct sum of cyclic groups.

Theorem 1.7 ([6, Sec. 17]). A countable p-group is a direct sum of cyclic groups if and only if this group
has no nonzero elements of infinite height.

If the group A is decomposable into a direct sum of cyclic groups, then this group can have many
decompositions. However, when considering only the components’ orders, the uniqueness holds.

Theorem 1.8 ([6, Sec. 17]). Any two decompositions of a group into a direct sum of cyclic groups of
infinite orders and of orders that are equal to a prime degree are isomorphic.

A subgroup B of the group A that is mapped into itself under every endomorphism of A is said to
be a fully invariant subgroup of A. We consider fully invariant subgroups of a direct sum of groups.

Theorem 1.9. If
A =

⊕

i∈I

Ai

and S is a fully invariant subgroup of the group A, then

S =
⊕

i∈I

(S ∩ Ai),

where S ∩ Ai is a fully invariant subgroup of the group Ai for each i ∈ I.

This theorem can be proved by generalizing the reasonings presented in [6] in the proof of Lemma 9.3.
The following result describes fully invariant subgroups of direct sums of cyclic p-groups.
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Theorem 1.10 ([4]). Let

B =
⊕

k∈N
Bk,

where
Bk =

⊕
Z(pk).

L is a fully invariant subgroup of the group B if and only if

L =
⊕

k∈N
pnkBk,

where
(1) nk ≤ k for all k ∈ N;
(2) nk ≤ nk+r ≤ nk + r for all k ∈ N, r ∈ N.

Basic subgroups introduced by L. Ya. Kulikov play an important role when studying p-groups. A sub-
group B of a p-group A is called basic if this group satisfies the following conditions:

(1) B is a direct sum of cyclic p-groups;
(2) B is a pure subgroup of the group A;
(3) A/B is a divisible group.
The following theorem is valid.

Theorem 1.11 ([6, Secs. 32 and 35]).
(1) Any p-group contains basic subgroups.
(2) Any two basic subgroups of this p-group are isomorphic.

Sometimes it is convenient to speak about a basic subgroup of a torsion-free group A. By this we
mean a direct sum

⊕

p
Bp of subgroups Bp that are basic in p-components of the group A.

A fully invariant subgroup L of a p-group A is called a large subgroup if L + B = A for each basic
subgroup B of the group A [24]. The following statements are true for large subgroups:

(1) 0 is a large subgroup of the group A if and only if A is a bounded group;
(2) any fully invariant subgroup of a bounded group is a large subgroup;
(3) if L is a large subgroup of the group A, then pnL for each n is also a large subgroup.
The following interesting result is connected with the factor group of the group by its subgroup.

Theorem 1.12 ([7, Sec. 67]). If L is a large subgroup of the p-group A, then A/L is a direct sum of cyclic
groups.

Let us present a result showing the interconnection between divisible and reduced subgroups of an
Abelian group and its fully invariant subgroup. Let A be a p-group. As usual [6, Sec. 1], we denote by
A[pk], where k is an integer non-negative number, next subgroup of the group A: {a ∈ A | pka = 0}; if
k = ∞, then set A[p∞] = A. If a is an element of the order pk of the group A, then let its exponent be
denoted as e(a), i.e., e(a) = k.

Theorem 1.13 ([10]). Let A be a group,

A = R ⊕ D0 ⊕
(⊕

p

Dp

)

,

where R is a reduced group, D0 is a divisible torsion-free group, and Dp are divisible p-groups. A sub-
group S of the group A is a fully invariant subgroup in A if and only if it has one of the following
forms:
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(1) S = R′ ⊕
(⊕

p
Dp[pkp ]

)
, where R′ =

⊕

p
R′

p is a torsion fully invariant subgroup of the group R

(R′
p is a p-component of the group R′) and kp ≥ sup{e(r) | r ∈ R′

p} (kp is an integer non-negative
number or a symbol ∞);

(2) S = R′ ⊕ D0 ⊕
(⊕

p
Dp

)
, where R′ is a fully invariant subgroup of the group R.

Given a in A; the greatest non-negative integer number r for which the equation prx = a is solvable
in A is called the p-height hp(a) of a. If prx = a is solvable whatever r is, then a is an element of infinite
p-height, hp(a) = ∞. The zero is of infinite height at every prime. If it is completely clear from the
context which prime p is meant, we call hp(a) simply the height of a and write h(a).

A sequence of the non-negative integer number and symbols of ∞ is called a characteristic. We denote
by X the set of this sequences. If χ1 = (k1, . . . , kn, . . .) and χ2 = (l1, . . . , ln, . . .), then we suppose that
χ1 ≤ χ2 if and only if kn ≤ ln for all n ∈ N.

Let A be a torsion-free group and a ∈ A. The sequence of p-heights

χ(a) = (hp1(a), . . . , hpn(a), . . .),

where p1, . . . , pn, . . . is the sequence of all prime numbers ordered by increasing magnitude, is said to be
the characteristic or the height-sequence of a. Since this depends on A, we sometimes write χA(a) to
emphasize the role of A.

If χ1 = (k1, . . . , kn, . . .) and χ2 = (l1, . . . , ln, . . .) are characteristics, then their sum is defined as
a characteristic

χ1 + χ2 = (k1 + l1, . . . , kn + ln, . . .),

where, naturally, the sum of ∞ and anything is ∞. A difference χ1 − χ2 of two characteristics χ1 ≥ χ2

is defined as a characteristic
χ1 − χ2 = (k1 − l1, . . . , kn − ln, . . .),

here, we set ∞− k = ∞ for each k. A characteristic χ is called idempotent if χ + χ = χ. Note, for these
operations for characteristics in [7] is used the multiplicative notation, but for our research the additive
notation is the most conveniently.

Two characteristics (k1, . . . , kn, . . .) and (l1, . . . , ln, . . .) are be considered as equivalent if kn 
= ln holds
only for a finite number of n if and only if kn and ln are finite. An equivalence class of characteristics is
called a type. If χ(a) belongs to the type t, then we say that an element a is of type t and write t(a) = t
or tA(a) = t if it is necessary to indicate that the type of a is computed in A.

We shall represent a type by a characteristic in this class. In other words, we write

t = (k1, . . . , kn, . . .)

and keep in mind that the characteristic (k1, . . . , kn, . . .) can be replaced by an equivalent one. For two
types t1 and t2 it is set t1 ≤ t2 if there exist two characteristics χ1 and χ2 belonging to the types t1 and
t2, respectively, such that χ1 ≤ χ2.

Since the addition of characteristics is matched with the equivalence relation in the set of characteris-
tics, one can naturally introduce a sum and difference of types in the type set, as well as the concept of the
idempotent type t (t = t+ t). We note that the inequality t(a) ≤ t

(
ϕ(a)

)
holds for every homomorphism

ϕ : A → B and the element a ∈ A.
A torsion-free group A in which all nonzero elements have the same type t is called a homogeneous

group (of the type t). If a homogeneous group has a type t, one writes t(A) = t. It is clear that any
torsion-free group of rank 1 is a homogeneous group.

A type t is called pk-divisible (pk ∈ Π, where Π is the set of all prime numbers enumerated in the
order of increasing) if for each characteristic v = (v(1), v(2), . . . , v(n), . . .) belonging to the type t, we have
v(k) = ∞. If A is a homogeneous group of the type t and the type t is a pk-divisible, then pkA = A.
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Let A be an arbitrary group. A finite system {a1, a2, . . . , ak} of nonzero elements of a group A is
called linearly independent or briefly independent if

n1a1 + n2a2 + · · · + nkak = 0 (ni ∈ Z)

implies
n1a1 = n2a2 = · · · = nkak = 0.

This means ni = 0 if the order of the element ai is infinite; if the order of the element ai is finite, then ni

is divisible by the order of the element ai.
A system of elements is dependent if it is not independent.
An infinite system L = {ai}i∈I of elements of A is called independent if every finite subsystem of L

is independent.
An independent system M of A is called maximal if there is no independent system in A containing

M properly. By Zorn’s lemma, every independent system in A can be extended to a maximal one.
The rank r(A) of a group A is the cardinal number of a maximal independent system containing only

elements of infinite and prime power orders. If we restrict ourselves to elements of infinite order in A,
i.e., we select an independent system which contains elements of infinite order only and which is maximal
with respect to this property, then the cardinality of this system is called the torsion-free rank r0(A) of A.
If we select an independent system that contains elements whose orders are powers of a fixed prime p
only and is maximal with respect to this property, then the cardinality of this system is called the p-rank
rp(A) of A. It is clear from these definitions that the following equality holds true for every group A:

r(A) = r0(A) +
∑

p

rp(A).

The following theorem holds.

Theorem 1.14 ([6, Sec. 16]). The ranks r(A), r0(A), and rp(A) of a group A are invariants of this group.

A group A is called separable if any finite subset of its elements can be embedded into a direct
summand of the group A which is a direct sum of groups of rank 1. By virtue of their structure, all
divisible groups are separable, and it is easy to establish that a group is separable if and only if its
reduced part is separable. The following result is true.

Theorem 1.15 ([7, Sec. 65]). A reduced p-group is separable if and only if it contains no nonzero elements
of infinite height.

Let A be a reduced p-group and σ be an ordinal number. By pσA we denote the subgroup of the
group A defined by induction as follows: p0A = A, pσ+1A = p(pσA), and pσA =

⋂

ρ<σ
pρA if σ is a limit

ordinal number. The least ordinal number τ for which pτA = 0 is called the length λ(A) of the group A;
by the σth Ulm–Kaplansky invariant fA(σ) of the group A we denote the cardinal number equal to the
rank of the factor group (pσA)[p]/(pσ+1A)[p] [6, Sec. 37].

2. α-Copies of Separable p-Groups

In this section, we use I. Kaplansky’s description of fully invariant subgroups of a class of p-groups in
the language of sequences of ordinal numbers and symbols ∞ and investigate connections between some
properties of an increasing sequence α of non-negative integers and properties of a reduced separable
p-group A when the group A is isomorphic to its fully invariant subgroup S defined by the sequence α.

Let α = (α0, α1, . . . , αn, . . .) be an increasing sequence of non-negative integers and symbols ∞ (for
any pair of indices (i, j), where i < j, αi < αj if αi 
= ∞, and αi = αj if αi = ∞). If αi +1 < αi+1, then it
is said that the sequence α has a jump in αi+1. Denote by N0 the set of all non-negative integers. By the
length λ(α) of the sequence α we mean the least number i ∈ N0 such that αi = ∞; and also we suppose
λ(α) = ∞ if and only if αi < ∞ for all i ∈ N0.
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An increasing sequence α = (α0, α1, . . . , αn, . . .) of non-negative integers and symbols ∞ is called
a U -sequence for a reduced separable p-group A if for every αi 
= ∞ we have αi < λ(A) and anytime when
there exist a jump in αn, the αn−1th Ulm–Kaplansky invariant of the group A is different from zero [20].
Denote by A(α) the following subgroup of the group A:

A(α) = {a ∈ A | h(pna) ≥ αn for each n ∈ N0}.
It is clear that A(α) is a fully invariant subgroup of the group A. It follows from I. Kaplansky’s results
[20, pp. 56–66] that every fully invariant subgroup S of the reduced separable p-group A has the form
A(α) for some U -sequence α; the group S is represented in this form uniquely. We need the following
result.

Theorem 2.1 ([28]). Let S = A(α) be an unbounded fully invariant subgroup of a reduced separable
p-group A, where α = (α0, α1, . . . , αn, . . .) is a U -sequence for the group A. Then for all i ∈ N0,

fS(i) =
ki∑

j=0

fA(αi + j), ki = αi+1 − 1 − αi. (1)

Definition 2.2. Let α = (α0, α1, . . . , αn, . . .) be an increasing sequence of non-negative integers and
symbols ∞. We say that a reduced separable p-group A has an α-copy if α is a U -sequence for the
group A and A ∼= A(α).

Consider α-copies of unbounded reduced separable p-groups. Note that if A is an unbounded reduced
separable p-group and A has an α-copy, then λ(α) = ∞, i.e., the sequence α has no symbols ∞. Let W
denote the set of all increasing sequences of non-negative integers.

Theorem 2.3. Let α ∈ W and A be an unbounded reduced separable p-group having an α-copy. Then
(1) if the sequence α for some i ∈ N0 has a jump in αi+1, then fA(i) 
= 0 and fA(i) ≥ fA(αi);
(2) if it has no jump in αi+1, then fA(i) = fA(αi).

Proof. Since the group A has an α-copy, we have A ∼= A(α) and hence fA(i) = fA(α)(i) for any i ∈ N0.
Using Theorem 2.1, we obtain that for each i ∈ N0,

fA(i) =
ki∑

j=0

fA(αi + j), where ki = αi+1 − 1 − αi. (2)

We consider each case separately.
(1) If the sequence α for some i ∈ N0 has a jump in αi+1, then αi + 1 < αi+1, and, by definition of

the U -sequence, we have fA(αi) 
= 0. Hence, fA(i) 
= 0 and the right-hand part of equality (2) contains
not less than two summands (the first summand is fA(αi), the last summand is fA(αi+1− 1)). Therefore,
fA(i) ≥ fA(αi).

(2) If the sequence α has no jump in αi+1, then αi + 1 = αi+1 and from (2) we obtain

fA(i) = fA(αi).

Let W0 denote the set of all increasing sequences consisting of non-negative integers and beginning
from zero.

Theorem 2.4. Let α ∈ W0 and A be an unbounded reduced separable p-group whose all Ulm–Kaplansky
invariants are finite. Then if α has at least one jump, then the group A has no α-copy.

Proof. Suppose that the group A has an α-copy. Let α have the first jump in αt+1. Then

α = (0, 1, . . . , t, t + 2 + n1, t + 3 + n2, . . . , t + m + 1 + nm, . . .),

where 0 ≤ n1 ≤ n2 ≤ . . . .
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By Theorem 2.1, we obtain that for each i ∈ N0

fA(i) =
ki∑

j=0

fA(αi + j), where ki = αi+1 − 1 − αi. (3)

Using (3), we find fA(t). We have αt = t, αt+1 = t+2+n1, kt = αt+1−1−αt = t+2+n1−1− t = n1+1.
Thus,

fA(t) = fA(t) + fA(t + 1) + · · · + fA(t + 1 + n1). (4)

Similarly, for each j ∈ N, we obtain

fA(t + j) = fA(t + j + 1 + nj) + fA(t + j + 2 + nj) + · · · + fA(t + j + 1 + nj+1). (5)

From (4), with allowance for the finiteness of Ulm–Kaplansky invariants of the group A, we have

fA(t + 1) + · · · + fA(t + 1 + n1) = 0,

and, hence,
fA(t + 1) = 0.

Let m ∈ N and m ≥ 2. Suppose that for all i < m (i ∈ N) fA(t+ i) = 0. Let us prove that fA(t+m) = 0.
Considering equalities (5) for all j varying from 1 to m − 1, we obtain the following system of equations:

0 = fA(t + 2 + n1) + · · · + fA(t + 2 + n2),
. . .

0 = fA(t + m + nm−1) + · · · + fA(t + m + nm).

⎫
⎪⎬

⎪⎭
(6)

fA(t + m) enters into the right-hand side of a certain equality in system (6) having a zero left-hand side;
therefore, fA(t + m) = 0. Thus, fA(t + i) = 0 for each i ∈ N; this contradicts the fact that the group A is
unbounded.

3. Some Properties of IF-Groups

We study groups containing proper fully invariant subgroups isomorphic to the group.

Definition 3.1. A group is called an IF-group if it isomorphic to some proper fully invariant subgroup.

At first, we consider a case of bounded group.

Theorem 3.2. Every bounded p-group is not an IF-group.

Proof. Let B be a bounded p-group and pm be the largest of element orders of the group B. Then

B =
m⊕

k=1

Bk, where Bk =
⊕

Z(pk) [6]. Let L be a fully invariant subgroup of the group B. Then by

Theorem 1.10
L = pn1B1 ⊕ pn2B2 ⊕ · · · ⊕ pnmBm,

where nk satisfies inequalities (1) and (2) of this theorem. If nm = 0, then by n1 ≤ n2 ≤ · · · ≤ nm = 0 we
obtain that L = B1 ⊕B2 ⊕ · · · ⊕Bm = B. Therefore, L is not a proper subgroup of the group B. Hence,
nm ≥ 1. We have pnmBm =

⊕
Z(pm−nm), whence the group L has no cyclic direct summand of order pm

and, therefore, L is not isomorphic to B.

The following Lemma is more useful to us for the study of IF-group that are direct sums.

Lemma 3.3. Let A =
⊕

i∈I

Ai and C =
⊕

i∈I

Ci =
⊕

i∈I

C ′
i, where Ci and C ′

i are subgroups of the group Ai for

each i ∈ I. Then Ci = C ′
i for each i ∈ I.
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Proof. Let us show that Ci ⊂ C ′
i. Let ci ∈ Ci. Then ci ∈ C and, hence, ci ∈ ⊕

i∈I

C ′
i. We have ci =

c′i1 + c′i2 + · · · + c′ik , where c′ij ∈ C ′
ij

, ij ∈ I, j = 1, k. Since Ci and C ′
i are subgroups of the group Ai

for each i ∈ I, we have that ci ∈ Ai, c′ij ∈ Aij . Taking into account that A is a direct sum of groups Ai

(i ∈ I), we obtain that for some j (j = 1, k) ij = i and c′ij = ci, and for all other j c′ij = 0. Hence, ci ∈ C ′
i.

Similarly, C ′
i ⊂ Ci for each i ∈ I. Therefore, Ci = C ′

i for each i ∈ I.

Theorem 3.4. Let B =
⊕

i∈I

Bi, where Bi is a fully invariant subgroup of the group B for each i ∈ I. B is

an IF-group if and only if there exists at least one index i ∈ I for which the group Bi is an IF-group.

Proof. Necessity. Let S be a proper fully invariant subgroup of the group B such that B ∼= S. We have
S =

⊕

i∈I

Si, where Si = S ∩ Bi is a fully invariant subgroup of the group Bi for each i ∈ I. Let ϕ is an

isomorphic mapping of the group B on S. ϕ can be considered as an endomorphism of the group B.
Let ϕi (i ∈ I) denote a restriction of the endomorphism ϕ on the group Bi. Since Bi is a fully invariant
subgroup of the group B, then ϕi is an endomorphism of the group Bi for each i ∈ I. Let b ∈ B,
b = bi1 + bi2 + · · · + bik , where bij ∈ Bij , ij ∈ I, j = 1, k. We have

ϕb = ϕ(bi1 + bi2 + · · · + bik) = ϕbi1 + ϕbi2 + · · · + ϕbik = ϕi1bi1 + ϕi2bi2 + · · · + ϕikbik .

Therefore, ϕB =
∑

i∈I

ϕiBi. Since ϕiBi ⊂ Bi,

∑

i∈I

ϕiBi =
⊕

i∈I

ϕiBi

(see [6]). Thus, S = ϕB =
⊕

i∈I

ϕiBi and S =
⊕

i∈I

Si, where ϕiBi and Si are subgroups of the group Bi

for each i ∈ I. By Lemma 3.3, ϕiBi = Si. Since ϕ is an isomorphism, then Kerϕ = 0, and, therefore,
Ker ϕi = 0 for each i ∈ I. Thus, ϕi is an isomorphic mapping of Bi on Si. Taking into account that
S 
= B, we obtain that there exists at least one index i0 ∈ I such that Bi0

∼= Si0 and Bi0 
= Si0 , i.e., the
group Bi0 is an IF-group.

Sufficiency. Let B =
⊕

i∈I

Bi, where Bi is a fully invariant subgroup of the group B for each i ∈ I. Let

for some i0 ∈ I Bi0 be an IF-group. Let us prove that B is an IF-group. Since Bi0 is an IF-group, there
exists a proper fully invariant subgroup Si0 of the group Bi0 such that Si0

∼= Bi0 . Let

S = Si0 +
(⊕

j∈I
j �=i0

Bj

)

.

By properties of direct sums [6], we obtain

S = Si0 ⊕
(⊕

j∈I
j �=i0

Bj

)

.

Since Si0 
= Bi0 , S is a proper subgroup of the group B. By virtue of the fact that Si0
∼= Bi0 , we obtain

S = Si0 ⊕
(⊕

j∈I
j �=i0

Bj

)
∼= Bi0 ⊕

(⊕

j∈I
j �=i0

sBj

)

=
⊕

i∈I

Bi = B,

i.e., S ∼= B. Let η be an arbitrary endomorphism of the group B and s ∈ S. Then s = si0+bi1+bi2+· · ·+bik ,
where bij ∈ Bij , ij ∈ I, j = 1, k, si0 ∈ Si0 . We have

ηs = η(si0 + bi1 + bi2 + · · · + bik) = ηsi0 + ηbi1 + ηbi2 + · · · + ηbik .
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Since Bij are fully invariant subgroups of the group B for each j = 1, k, ηbij ∈ Bij . Si0 is a fully invariant
subgroup of the group Bi0 , and Bi0 is a fully invariant subgroup of the group B. Thus, Si0 is a fully
invariant subgroup of the group B and, therefore, ηsi0 ∈ Si0 . We obtain that ηsi0 ∈ Si0 for an arbitrary
element s ∈ S, and hence S is a fully invariant subgroup of the group B. Thus, B contains a proper fully
invariant subgroup S such that S ∼= B, i.e., B is an IF-group.

Corollary 3.5. A torsion group is an IF-group if and only if some of its p-components is an IF-group.

Proof. Indeed, let A be a torsion group. Then by Theorem 1.1 A =
⊕

p
Ap, where Ap are p-components

of the group A. Ap are fully invariant subgroups of the group A. By Theorem 3.4, we obtain our
corollary.

Theorem 3.6. Any bounded group is not an IF-group.

Proof. Let B be a bounded group. Then B is a torsion group. It is clear that any p-component of the
group B is also a bounded p-group. Since bounded p-groups are not IF-groups by Theorem 3.2, the
group B is not an IF-group by Corollary 3.5.

4. Nonreduced Torsion-Free IF-Groups

In this section, we find the conditions equivalent to the fact that a nonreduced torsion-free group is
an IF-group. It was proved that a divisible torsion-free group is not an IF-group.

Theorem 4.1. A nonreduced p-group A is an IF-group if and only if its reduced part is an IF-group.

Proof. Necessity. Let A be a nonreduced p-group. Then it has the form A = R ⊕ Dp, where Dp is
a divisible p-group and R is a reduced p-group. Let A be an IF-group. Then there exists a fully invariant
subgroup S of the group A such that S ∼= A and S 
= A. By Theorem 1.13, S has one of the following
forms forms:

(1) S = R′ ⊕Dp[pkp ], where kp ≥ sup{e(r) | r ∈ R′}, R′ is a fully invariant subgroup of the group R;
(2) S = R′ ⊕ Dp, where R′ is a fully invariant subgroup of the group R.
Consider the first case. Let kp 
= ∞, then

Dp[pkp ] = {d ∈ Dp | pkpd = 0}
is a bounded group; therefore, it has no divisible subgroups. Hence S is a reduced group. Since A is
a nonreduced group and S ∼= A, we have a contradiction.

If kp = ∞, then the first case coincides with the second case.
Consider the second case. Let S = R′ ⊕ Dp, where R′ is a fully invariant subgroup of the group R.

Since A = R⊕Dp and S ∼= A, we obtain that R′ ∼= R and R′ is a proper subgroup of the group R. Hence
R is an IF-group.

Sufficiency. Let A be a nonreduced p-group of the form A = R ⊕ Dp. Let R be an IF-group. Then
there exists a fully invariant subgroup R′ of the group R such that R′ ∼= R and R′ 
= R. Consider the
group S = R′ ⊕ Dp. S is a proper fully invariant subgroup of the group A and S ∼= A. Hence, A is an
IF-group.

Theorem 4.2. A divisible p-group is not an IF-group.

Proof. Let A be a divisible p-group, then A = Dp. Assume the contrary, let A be an IF-group. Then there
exists a fully invariant subgroup S of the group A such that S ∼= A and S 
= A. Then by Theorem 1.13
the following cases hold:

(1) S = Dp[pkp ], where kp is an arbitrary non-negative integer or ∞;
(2) S = Dp.
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Consider the first case. If kp 
= ∞, then

S = Dp[pkp ] = {d ∈ Dp | pkpd = 0}
is a bounded group; therefore, it is not a divisible group. Since A is a divisible p-group and S ∼= A, we
have a contradiction.

If kp = ∞, then S = Dp, and the first case coincides with the second case.
Consider the second case. Let S = Dp. Since A = Dp, S is not a proper subgroup of the group A.

Hence A is not an IF-group.

Theorem 4.3. A divisible torsion-free group is not an IF-group.

Proof. Let A be a divisible torsion-free group. Then A =
⊕

p
Ap, where Ap are divisible p-groups. By

Theorem 4.2 and Corollary 3.5, we obtain that A is not an IF-group.

Theorem 4.4. For a nonreduced torsion-free group A, the following conditions are equivalent :
(1) A is an IF-group;
(2) some p-component of the group A is not a divisible group and has a reduced part which is an

IF-group;
(3) a reduced part of the group A is an IF-group.

Proof. (1) =⇒ (2). Let A be a nonreduced torsion-free group, that is, an IF-group. Then by Corollary 3.5
some p-component of this group is an IF-group; by Theorem 4.2, this p-component is not a divisible group.
Applying Theorem 4.1, we obtain that the reduced part of this p-component is an IF-group.

(2) =⇒ (3). All of the p-component Ap of the group A can be written in the form Ap = Rp ⊕ Dp,
where Rp is a reduced p-group, and Dp is a divisible p-group. Then the reduced part R of the group A
can be written in the form R =

⊕

p
Rp. Since at least one of the groups Rp by condition (2) is an IF-group,

the group R is an IF-group by Corollary 3.5.
(3) =⇒ (1). Let Rp and Dp be the reduced and the divisible parts of the p-component Ap of the group

A, respectively, i.e., Ap = Rp ⊕ Dp. Then we have

A =
(⊕

p

Rp

)

⊕
(⊕

p

Dp

)

.

It is clear that
⊕

p
Rp is the reduced part of the group A. By Corollary 3.5 the group Rp is an IF-group

for some prime number p. By Theorem 4.1 we obtain that the group Ap is an IF-group for this prime
number p; by Corollary 3.5, the group A is an IF-group.

Theorems 4.3 and 4.4 reduce the research of the torsion-free IF-groups to studying reduced primary
IF-groups.

5. Primary IF-Groups

Now we turn to the research of the primary separable IF-groups. At first, consider the direct sum of
cyclic p-group. Since a bounded group is not an IF-group, we have to consider unbounded groups. We
introduce the following definition.

Definition 5.1. Let A be a separable p-group. A strictly increasing sequence of non-negative integers
i0, i1, . . . , in, . . . is said to be admissible for the group A if the system of equalities

fA(k) =
ik+1−1∑

i=ik

fA(i), k ∈ N0. (7)

is valid for the Ulm–Kaplansky invariants of this group.
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Theorem 5.2. Let B be an unbounded p-group and a direct sum of cyclic groups. The group B is an
IF-group if and only if exists admissible sequence, different from the sequence of all non-negative integers
ordered by increasing magnitude.

Proof. Necessity. Let the group B be an IF-group. Note that the the sequence of all non-negative integers
ordered by increasing magnitude is admissible for each separable p-group since the system of equalities (7)
which defines the admissible sequence has a trivial form in this case: fA(k) = fA(k), k ∈ N0. Assume that
the sequence of all non-negative integers ordered by increasing magnitude is a unique admissible sequence
for the group B. If L is a fully invariant subgroup of the group B, then, by Theorem 1.10, it has the
following form:

L =
⊕

pnkBk,

where nk satisfies inequalities (1) and (2) of Theorem 1.10. We have

fL(n) = r

( ⊕

k∈N
pnkBk | pnkBk =

⊕
Z(pn+1)

)

= r

( ⊕

k∈N
pnkBk | k − nk = n + 1

)

=
∑

k∈N
(r(pnkBk) | k − nk = n + 1) =

∑

k∈N
(r(Bk) | k − nk − 1 = n)

=
∑

k∈N
(fB(k − 1) | k − nk − 1 = n).

Thus,

fL(n) =
∑

k∈N
(fB(k − 1) | k − nk − 1 = n). (8)

Theorem 1.10 implies the following relations:

(k + 1) − nk+1 − 1 ≥ (k + 1) − (nk + 1) − 1 = k − nk − 1, (9)

(k + 1) − nk+1 − 1 ≤ (k + 1) − nk − 1 = (k − nk − 1) + 1. (10)

Let
in = min

k∈N
{k − 1 | k − nk − 1 = n}.

Then we obtain from (8)–(10)

fL(n) =
in+1−1∑

i=in

fB(i). (11)

Some sums in the right-hand side of equalities (11) can be degenerate, i.e., consisting of one summand
(this holds when in+1 = in + 1). Let L ∼= B. Then, by equality (11), for each non-negative integer n,

fB(n) = fL(n) =
in+1−1∑

i=in

fB(i).

The sequence i0, i1, . . . , in, . . . is admissible for the group B; therefore, under the condition of the theorem,
it follows that in = n for any n. Taking into account that

in = min
k∈N

{k − 1 | k − nk − 1 = n},

we obtain nk = 0 for any k, i.e., L = B. This contradicts the fact that B is an IF-group.
Sufficiency. Let us write the group B in the form B =

⊕

k∈N
Bk, where Bk =

⊕
Z(pk). Suppose

that there is an admissible sequence r0, r1, r2, . . . for the group B different from the admissible sequence
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0, 1, 2, . . . . Then for each m ∈ N0 we have

fB(m) =
rm+1−1∑

r=rm

fB(r). (12)

Two cases are possible:

(1) r0 
= 0;
(2) r0 = 0.

We consider all the cases.
(1) Let r0 
= 0. We construct a subgroup L of the group B in the following way:

L = pB1 ⊕ p2B2 ⊕ · · · ⊕ pr0Br0 ⊕ pr0Br0+1 ⊕ pr0+1Br0+2 ⊕ . . .

⊕ pr1−1Br1 ⊕ pr1−1Br1+1 ⊕ pr1Br1+2 ⊕ pr1+1Br1+3 ⊕ . . .

⊕ pr2−2Br2 ⊕ pr2−2Br2+1 ⊕ pr2−1Br2+2 ⊕ pr2Br2+3 ⊕ · · · ⊕ pr3−3Br3 ⊕ . . . ,

i.e.,

L =
⊕

pnkBk,

where nrj = nrj+1 = rj − j (j ∈ N0); nrj+k = rj − j +k−1 (1 < k < rj+1−rj +1). L is a proper subgroup
of the group B. Using Theorem 1.10, we obtain that L is a fully invariant subgroup of B. Moreover,
L ∼= B due to the fact that the corresponding Ulm–Kaplansky invariants are equal. Indeed, as follows
from the construction of the group L and equalities (7), we obtain for each m ∈ N0 that

fL(m) = fB(rm) + fB(rm + 1) + · · · + fB(rm+1 − 1) = fB(m).

This means that L ∼= B but L 
= B. Hence, B is an IF-group.
(2) Let r0 = 0. Denote by k + 1 (k ∈ N0) the smallest natural number for which rk+1 > k + 1.

Then r0 = 0, r1 = 1, . . . , rk = k, and the admissible sequence has the form 0, 1, . . . , k, rk+1, rk+2, . . . .
Equalities (12) for this sequence are written as follows:

fB(0) = fB(0),

fB(1) = fB(1),
. . .

fB(k − 1) = fB(k − 1),

fB(k) = fB(k) + fB(k + 1) + · · · + fB(rk+1 − 1),

fB(q) = fB(rq) + · · · + fB(rq+1 − 1) for each q > k (q ∈ N0).

(13)

The sum in the right-hand side of the (k + 1)th equality in (13) is the first non-degenerate sum, i.e.,
it contains more than one summand.

Consider the following subgroup L of the group B:

L = B1 ⊕ B2 ⊕ · · · ⊕ Bk ⊕ Bk+1 ⊕ pBk+2 ⊕ . . .

⊕ prk+1−k−1Brk+1
⊕ prk+1−k−1Brk+1+1 ⊕ prk+1−kBrk+1+2 ⊕ . . .

⊕ prk+2−k−2Brk+2
⊕ prk+2−k−2Brk+2+1 ⊕ prk+2−k−1Brk+2+2 ⊕ . . .

⊕ prk+3−k−3Brk+3
⊕ . . . .
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Using Theorem 1.10, we obtain that L is a fully invariant subgroup of B. As follows from the construction
of the group B, we have

fL(0) = fB(0),

fL(1) = fB(1),
. . .

fL(k − 1) = fB(k − 1),

fL(k) = fB(k) + fB(k + 1) + · · · + fB(rk+1 − 1),

fL(q) = fB(rq) + · · · + fB(rq+1 − 1) for each q > k (q ∈ N0).

(14)

Comparing (13) and (14), we obtain that L ∼= B. Since L 
= B, B is an IF-group.

Let us consider arbitrary separable p-groups.

Theorem 5.3. A separable p-group is not an IF-group if its basic subgroup is not an IF-group.

Proof. Let A be a separable p-group whose basic subgroup B is not an IF-group. Without loss of generality,
one can suppose that A is a reduced p-group. If A is a bounded group, then A is not an IF-group by
Theorem 3.2 (note that in this case the basic subgroup of the group A coincides with A). Let A be
a nonbounded group. Suppose that A is an IF-group. Then there exists a proper fully invariant subgroup S
of the group A such that S ∼= A. Since A is a reduced separable p-group, it does not contain elements of
infinite height [7, Sec. 65]. S is a nonbounded fully invariant subgroup of the group A and, therefore, S is
a large subgroup of the group A [4, p. 423]. Thus, S ∩ B is a basic subgroup of the group S [4, p. 422].

If S ∩ B = 0, then, taking into account the fact that the factor group of any p-group with respect to
its basic subgroup is a divisible group, we obtain that S is a divisible group. This is impossible because
A is a reduced group.

If S ∩B = B, then S contains a basic subgroup B of the group A. We have S +B = A as S is a large
subgroup of the group A; and the inclusion B ⊂ S implies S + B = S what is impossible because S is
a proper subgroup of the group A.

Thus, S ∩ B is a proper non-zero subgroup of the group B. Since S ∼= A, basic subgroups of the
groups S and A are also isomorphic, i.e., S ∩ B ∼= B. Since S is a large subgroup of the group A, S ∩ B
is a large subgroup of the group B [24, Corollary 2.8]. Thus, we obtain that the basic subgroup B of the
group A has a proper fully invariant subgroup S ∩ B isomorphic to B. Contradiction.

Theorem 5.4. If an unbounded separable p-group is an IF-group, then there exist an admissible sequence
for this group different from the sequence of all non-negative integers ordered by increasing magnitude.

Proof. Let A be an unbounded separable p-group being an IF-group, and let B be a basic subgroup of
the group A. Then B is an IF-group by Theorem 5.3. Applying Theorem 5.2, we obtain that there exists
an admissible sequence for the group B different from the sequence of all non-negative integers ordered
by increasing magnitude. Since fA(k) = fB(k) for each k ∈ N0 [24, p. 186], then the same sequence is
admissible for the group A.

A torsion complete p-group is the torsion part T (B̄) of the p-adic completion B̄ of a direct sum B
of cyclic p-groups [7, Sec. 68]. These groups were first studied by L. Ya. Kulikov; he called them closed
groups [21]. Such groups play a very important part in studying p-groups.

Theorem 5.5. For a torsion complete p-group A, the following conditions are equivalent :
(1) A is an IF-group;
(2) a basic subgroup of the group A is an IF-group;
(3) A is an unbounded group for which there exists an admissible sequence different from the sequence

of all non-negative integers ordered by increasing magnitude.
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Proof. (1) ∼ (2). By virtue of Theorem 5.3, one should prove only (2) =⇒ (1). Let A be a torsion complete
p-group and B be its basic subgroup being an IF-group. By Theorem 3.2 B is an unbounded group, so A
is also an unbounded group. Since B is an IF-group, then there exists a proper fully invariant subgroup S
of the group B such that B ∼= S. It is clear that S is a proper large subgroup of the group B. There
exists a proper large subgroup S∗ of the group A such that S∗ ∩B = S [4, Theorem 2.9], and S is a basic
subgroup of the group S∗ [4, p. 422]. The group S∗ is a torsion complete group as a large subgroup
of a torsion complete group [9]. Therefore, we obtain that, in the group A, there exists a proper fully
invariant subgroup S∗ such that the basic subgroup B of the group A isomorphic to the basic subgroup S
of the group S∗. Since A and S∗ are torsion complete groups, A ∼= S∗, i.e., A is an IF-group.

(2) =⇒ (3). Let B be a basic subgroup of the group A, and B be an IF-group. If A is a bounded
group, then A = B. Hence, B is a bounded IF-group, which contradicts to Theorem 3.6. If A is an
unbounded group, then B is unbounded. Taking into account Theorem 5.2 and the fact that for each
k ∈ N0 fA(k) = fB(k), we obtain that for the group A there exists an admissible sequence different from
the sequence of all non-negative integers ordered by increasing magnitude.

(3) =⇒ (1). Let A be an unbounded group for which there exists an admissible sequence different from
the sequence of all non-negative integers ordered by increasing magnitude; then the basic subgroup B of
the group A has the same property. Then by Theorem 5.2 B is an IF-group, and, by equivalence (2) ∼ (1),
the group A is also an IF-group.

We say that the sequence of the Ulm–Kaplansky invariants of an unbounded separable p-group A is
periodic if there exists k ∈ N such that the equality fA(n) = fA(n + k) holds for all n ∈ N0 .

Corollary 5.6. Let A be a torsion complete p-group. If the sequence of the Ulm–Kaplansky invariants of
the group A is periodic, then A is an IF-group.

Proof. Let A be a torsion complete p-group and let there exist k ∈ N such that the equality fA(n) =
fA(n + k) holds for all n ∈ N0. Then for this group the sequence k, k + 1, k + 2, . . . is admissible and then
by Theorem 5.5 A is an IF-group.

Corollary 5.7. If for a torsion complete p-group A there exists a cardinal number γ such that fA(n) = γ
for each n ∈ N0, then A is an IF-group.

Proof. Let A be a torsion complete p-group and let fA(n) = γ for each n ∈ N0, where γ is some cardinal
number. Then such a sequence of the Ulm–Kaplansky invariants is periodic because fA(n) = fA(n + 1)
for each n ∈ N0. Applying Corollary 5.6, we obtain that A is an IF-group.

6. Nonreduced and Divisible Torsion-Free Groups Containing Fully Invariant Subgroups
Isomorphic to the Group

Let us consider torsion-free groups that contain proper fully invariant subgroups isomorphic to the
group.

Theorem 6.1. The torsion-free group A contains the proper fully invariant subgroup isomorphic to the
group if and only if A is a non-divisible group.

Proof. Necessity. Let A be a torsion-free group that contains a proper fully invariant subgroup S isomor-
phic to the group A. Let us suppose that A is a divisible group. By Theorem 1.13 we obtain that S = A,
which contradicts to the fact that S is a proper subgroup of the group A.

Sufficiency. Let A be a torsion-free group that is not a divisible group. There exist a natural
number n, different from 1, such that nA 
= A. Consider S = nA. Then S is a fully invariant subgroup of
the group A. Since A is a torsion-free group, then S ∼= A. This means that A contains a fully invariant
subgroup isomorphic to the group.

Thus, a torsion-free group A that is not divisible always contains a proper fully invariant subgroup
of the form nA isomorphic to the group. Below, we consider torsion-free groups that have a proper fully
invariant subgroup different from nA and isomorphic to the group A.
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Definition 6.2. A torsion-free group A is called IF-group if it contains a proper fully invariant subgroup
different from nA that is isomorphic to the group.

The result below follows from Theorem 6.1.

Theorem 6.3. A divisible torsion-free group is not an IF-group.

Consider nonreduced torsion-free groups.

Theorem 6.4. A nonreduced torsion-free group is an IF-group if and only if its reduced part is an
IF-group.

Proof. Necessity. Let A be a nonreduced torsion-free group. Then it has the form A = R⊕D0, where D0

is a divisible torsion-free group and R is a reduced torsion-free group. Let A be an IF-group. Then, there
exist a fully invariant subgroup S of the group A such that S ∼= A, S 
= A, and S 
= nA. By Theorem 1.13,
S has the following form: S = R′ ⊕ D0, where R′ is a fully invariant subgroup of the group R. Since
A = R ⊕ D0 and S ∼= A, we obtain that R′ ∼= R and R′ is a proper subgroup of the group R. S 
= nA;
therefore, R′ ⊕ D0 
= n(R ⊕ D0) = nR ⊕ D0. We obtain that R′ 
= nR. Hence R is an IF-group.

Sufficiency. Let A be a nonreduced torsion-free group. A = R⊕D0, where R is a reduced torsion-free
group, D0 is a divisible torsion-free group. Let R be an IF-group. Then there exists a fully invariant
subgroup R′ of the group R such that R′ ∼= R, R′ 
= R, and R′ 
= nR for each n ∈ N. Consider the group
S = R′ ⊕D0. S is a proper fully invariant subgroup of the group A, S ∼= A, and S 
= nA. Hence, A is an
IF-group.

7. Homogeneous χ-Groups

Below, by virtue of Theorems 6.3 and 6.4, we consider only reduced groups.
Let t be a type. Consider a characteristics v that satisfies the following conditions:
(a) v = (v(1), v(2), . . . , v(n), . . .) ≤ w for some characteristic w ∈ t;
(b) v(k) = ∞ if the type t is pk-divisible.
Let us denote by F(t) a set consisting of all characteristics satisfying the properties and characteristics

whose elements are only symbols ∞.
Let A be a torsion-free group. If v ∈ X, we denote by A(v) the following subgroup of the group A:

A(v) = {a ∈ A | χ(a) ≥ v}.
A(v) is a fully invariant subgroup of the group A. Note that if A is a reduced group and the characteristic v
consists only of symbols ∞, then A(v) = 0.

A reduced torsion-free group A is called a χ-group if each fully invariant subgroup S of the group A
is given by S = A(v), where v is a characteristic [10]. The reduced torsion-free group A is called
fully transitive if for any two elements a and b of its group such that χ(a) ≤ χ(b), there exists an
endomorphism ϕ of its group such that ϕ(a) = b [12].

Let A be a homogeneous χ-group of the type t. It is proved in [11] that each fully invariant
subgroup S of the group A is uniquely presented in the form S = A(v), where v is a characteris-
tic belonging to F(t). Note that if v ∈ F(t), where v =

(
v(1), v(2), . . . , v(n), . . .

)
, and v ≤ w, where

w =
(
w(1), w(2), . . . , w(n), . . .

) ∈ t, then the type of the group A(v) is defined by the characteristic

w − v =
(
w(1) − v(1), w(2) − v(2), . . . , w(n) − v(n), . . .

)
.

Let us prove main theorem of this section.

Theorem 7.1. Homogeneous χ-groups are not IF-groups.

Proof. Let A be a homogeneous χ-group of the type t. Let us suppose that A is an IF-group. Then there
exists a fully invariant subgroup S of the group A such that S ∼= A and S 
= nA. We have S = A(v),
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where v ∈ F(t). A(v) is a homogeneous group. As S ∼= A, A(v) ∼= A; hence the type of the group A(v) is
the same as the type of the group A.

Taking into account that v ∈ F(t), we prove the existence of a characteristic

w =
(
w(1), w(2), . . . , w(n), . . .

)

belonging to the type t such that v ≤ w. Let

I(w) =
{
i ∈ N | w(i) 
= 0 and w(i) 
= ∞}

.

At first, we consider the case when the type t is not idempotent. Then I(w) is an infinite set. Since
v ∈ F(t), v(i) = w(i) when i ∈ N \ I(w). Let I ′ is a subset of the set I(w), consisting of all natural
numbers i, for which v(i) 
= 0. Since A(v) is a proper subgroup of the group A, then I ′ 
= ∅. Then
w(i) − v(i) 
= w(i) for any i ∈ I ′. Taking into account that the type of the group A(v) is defined by
the characteristic w − v and t

(
A(v)

)
= t(A), we obtain that I ′ is a finite set. Let n =

∏

i∈I′
pv(i)

i . Then
S = A(v) = nA. Contradiction.

Let the type t be idempotent. Then the set I(w) is finite. Since v ∈ F(t) and v ≤ w, v(i) = w(i) when
i ∈ N \ I(w). Let

I ′ =
{
i ∈ N | v(i) 
= 0 and i ∈ I(w)

}
.

I ′ is an non-empty finite subset of the set I(w). Then S = A(v) = nA, where n =
∏

i∈I′
pv(i)

i . Contradiction.

Using the fact that any homogeneous fully transitive group is a χ-group and that any homogeneous
reduced separable group is a fully transitive group [12], we obtain the following results.

Corollary 7.2. A proper fully invariant subgroup S of a homogeneous fully transitive group A is isomor-
phic to the group A if and only if S = nA for some natural number n different from unity.

Corollary 7.3. A proper fully invariant subgroup S of a homogeneous reduced separable group A is
isomorphic to the group A if and only if S = nA for some natural number n different from unity.

The investigation was supported by the Ministry of Education and Science of the Russian Federation,
agreement No. 14.V37.21.0354 “Preservation of algebraic and topological invariants and properties by
mappings,” the work was also put through the theme 2.3684.2011 of Tomsk State University.
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