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ON TYPE-2 FUZZY SETS AND TYPE-2 FUZZY SYSTEMS
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Abstract. One of the advantages of systems based on fuzzy logic (fuzzy systems) is the possibility

of a soft switch from one set of values of input parameters of the system to another, when different

conclusions are drawn for different sets of these values. A fuzzy set of type 2 is a direct generalization of

an ordinary fuzzy set. In this paper, we review some branches of the theory of type-2 fuzzy sets and the

theory of type-2 fuzzy systems. We discuss operations on type-2 fuzzy sets, type-2 fuzzy relations, and

the centroids of type-2 fuzzy sets and describe type-2 functional fuzzy systems and type-2 relational

fuzzy systems.
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Introduction. In classical set theory, for any subset of a certain set (called the universal set), the

membership degree of an element of the universal set in the subset considered can be either 0 (the
element does not belong to the subset) or 1 (the element belongs to the subset). In the theory of fuzzy
set, the membership degree of an element of the universal set in a fuzzy subset (fuzzy set) can be

arbitrary real number from [0; 1]. In the theory of fuzzy sets of type 2, the membership degree itself of
an element of the universal set is not an unambiguously number: it is a fuzzy number whose support
belongs to the segment [0, 1].

The theory of fuzzy sets is of great theoretical and practical importance in mathematical modeling
of uncertainty; there is an extensive literature on this scientific direction (see, e.g., [12, 19] and the
references therein). This theory allows one to study a different kind of uncertainty than probability

theory. In probability theory, a certain probability is assigned to each group of values of an unknown
quantity. In the theory of fuzzy sets, the values themselves are determined ambiguously. The theory
of type-2 fuzzy sets and type-2 fuzzy systems is a scientific direction that is in a state of intensive

development and has great practical significance (see, e.g., [1, 15]).
Type-2 fuzzy sets were introduced in [28]. The theory of these sets was further developed in [16, 17].

Reviews of the theory and its applications in various applied fields are given, for example, in [2, 7, 9,
13, 23, 25]. Various results related to the theory of type-2 fuzzy systems are presented, in particular,

in [8, 10, 14, 26, 30], as well as in many other works.
By fuzzy systems, fuzzy control systems are often understood. Such systems are considered, for

example, in [5, 6, 11, 24, 27, 29]. (A classic example of a fuzzy control system is as follows. If an

obstacle is close and the speed is high, then one must brake sharply; if an obstacle is far or the speed
is low, then one must slow down smoothly. Two fuzzy rules and six fuzzy sets are used here, namely,
the following three “bunches” of fuzzy sets: close obstacle—distant obstacle, low speed—high speed,

and smooth braking—sharp braking. For example, the membership degree of the speed 40 km/h to a
fuzzy set of high speeds, depending on the task, can be taken equal to 0.3, but it can also be taken
equal to 0.8 in another problem. The membership degree of the speed 60 km/h to the fuzzy set of

high speeds for various problems can be, respectively, 0.5 and 0.9. Thus, the ambiguity of the concept
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(value) “high speed” can be taken into account. Such bunches are called linguistic variables. Of course,

a bunch can include more than two fuzzy sets.) However, the term “fuzzy system” is still broader than
“fuzzy control system.” For example, a software package designed for study the stock market and
developing trading strategies is presented in [3, 4]; this package is based on fuzzy systems, but the
controls are not included in the model. Similar econometric fuzzy systems were also considered by

other authors. Fuzzy systems are also called systems based on fuzzy logic. One of the advantages of
this approach is the ability to gently switch. So, in the example considered, a soft switch is made from
a situation with a close obstacle to a situation with a distant obstacle.

If fuzzy rules are based on type-2 fuzzy sets, then we speak of fuzzy systems of type-2. This mod-
ification allows one to achieve better results in a number of problems. Type-2 fuzzy systems, like
ordinary fuzzy systems, are divided into two classes:functional and relational. There are few reviews

on the theory of type-2 fuzzy systems in Russian; for example, we indicate [20, Chap. 5] and [18].
However, none of these two papers discuss, for example, functional type-2 fuzzy systems. This review
partially fills the gap.

The widespread use of type-1 fuzzy systems in various applied fields is largely due to the fact that
such systems are universal approximators (see, e.g., [22]). The dependence between input and output
variables of the system may have a nonlinear character, not known in advance. Fuzzy systems allow

one to give correct approximations for a wide class of such dependencies. Of course, type-2 fuzzy
systems are also universal approximators since they are form a wider class of systems than type-1
fuzzy systems. The development of the theory of type-2 fuzzy systems and applications of this theory

is a promising scientific field.
This paper is organized as follows. Section 1 provides necessary definitions of the theory of type-2

fuzzy sets. In Sec. 2, the centroid of a type-2 fuzzy set is described and functional type-2 fuzzy systems

are considered. Section 3 contains definitions related to type-2 fuzzy relations, extended t-norms, and
the t-conorm; also relational type-2 fuzzy systems are considered. Definitions and historical references
related to ordinary fuzzy sets are not discussed in this paper; they can be found, for example, in the

review [21].

1. Type-2 fuzzy sets. LetX be a certain universal set. For an ordinary fuzzy set A, the membership
degree of an element x ∈ X in this fuzzy set is a real μA(x) from the segment [0, 1].

However, in many applications it remains unclear how to determine the membership degree of each
element x in a fuzzy set A. Therefore, the idea arose that the membership degree is a fuzzy set whose
support belongs to the segment [0, 1]. It turns out that this approach allows one to get the best results

in a number of applied problems.
Consider the function μ : X × [0, 1] → [0, 1].

Definition 1. The graph of the function μ, i.e., the set of pairs
(
(x,w), μ(x,w)

)
, x ∈ X, w ∈ [0, 1],

is called a type-2 fuzzy set (FS2).

Below, ordinary fuzzy set will be called type-1 fuzzy sets (FS1).

Remark. Type-2 fuzzy sets can be considered as type-1 fuzzy sets with the universal set X × [0, 1].

However, this approach is not convenient, for example, when introducing the operations of union,
intersection, and complement for FS2. In addition, in the sense of the considered applied problems,
the universal set is X, not X × [0, 1]. We denote by μA the function μ for an FS2 A.

Let A be an FS2; for any x ∈ X, we consider the set

Jx =
{
w ∈ [0, 1] : μA(x,w) > 0

}
.
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In Definitions 2–7 below, A is an FS2.

Definition 2. The primary membership function for A is a set-valued function, which assigns the

set Jx ti each element x ∈ X.

Definition 3. The lower membership function for A is the function μ
A
: X → [0, 1] defined by the

relation

μ
A
(x) = inf Jx, x ∈ X.

Definition 4. The upper membership function for A is the function μA : X → [0, 1] defined by the
relation

μA(x) = supJx, x ∈ X.

Definition 5. If for any x ∈ X there exists a unique element wx ∈ [0, 1] for which μA(x,wx) = 1,
then the function, which assigns the element wx to an element x, is called the principal membership
function for A.

Definition 6. For fixed x ∈ X, the function μA(x,w) considered as a function of the argument w is

called the secondary membership function for A.

Definition 7. The figure of uncertainty of A is the set

FOU(A) =
{
(x,w) : x ∈ X, w ∈ Jx

}
.

Definition 8. A type-2 fuzzy set A is called an interval type-2 fuzzy set (IFS2) if μA(x,w) = 1 for
all x ∈ X, w ∈ Jx.

Definition 9. A type-1 fuzzy set C with an universal set X is said to be imbedded in an FS2 A if

μ
A
(x) ≤ μC(x) ≤ μA(x)

for all x ∈ X.

Remark. We can also consider type-3 fuzzy sets, when for any x ∈ X and w ∈ [0, 1], the value μ(x,w)
is not a real number, but FS1 with a support belonging to the segment [0, 1], as well as fuzzy sets of
higher types. However, the practical value of such mathematical constructions is much less than the

practical value of fuzzy sets of types 1 and 2.

In the study of FS2, we use the following notation customary for FS1:

A =

∫

x∈X

∫

w∈[0,1]

μA(x,w)

(x,w)
;

moreover, the sign
∫

is often used instead of the sign
∑

even in the cases where each of the sets X

and Jx contains only a finite number of elements. Sometimes, it is more convenient to write the last
formula in the form

A =

∫

x∈X

( ∫

w∈[0,1]

μA(x,w)

w

)/

x,

emphasizing that with each x, a certain FS1 is associated whose support belongs to the segment [0, 1].
For 0 < η ≤ 1, we consider the η-shears of the FS2 A:

Aη =
{
(x,w) : μA(x,w) ≥ η

}
.

We have

μA(x,w) = sup
η∈(0,1]

η · IAη(x,w)
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for all x ∈ X, w ∈ [0, 1], where IAη is the indicator of the set Aη . The proof of this formula is the same

as the proof of a similar formula for FS1.
Let A and B be two FS2 with the same universal set X.

Definition 10. The union of A and B is the FS2

A ∪B =

∫

x∈X

( ∫

w∈[0,1]

sup
u∈[0,1], v∈[0,1]: u∨v=w

μA(x, u) ∧ μB(x, v)

w

)/

x,

where ∧ and ∨ mean the minimum and the maximum, respectively.

Definition 11. The intersection of A and B is the FS2

A ∩B =

∫

x∈X

( ∫

w∈[0,1]

sup
u∈[0,1], v∈[0,1]: u∧v=w

μA(x, u) ∧ μB(x, v)

w

)/

x.

Definition 12. The complement of A is the FS2

A =

∫

x∈X

( ∫

w∈[0,1]

μA(x,w)

1− w

)/

x.

2. Centroid of a type-2 fuzzy set and functional fuzzy systems. Let the universal set X be
a finite set whose elements are real numbers, X = {x1, . . . , xm}.

Recall that if A is an FS1, then the centroid of A is the real number
(

m∑

i=1

xiμA(xi)

)/(
m∑

i=1

μA(xi)

)

.

Let A be an FS2 and let each of the sets Jxi , i = 1, . . . ,m, contain a finite number of elements.

Construct an FS1, which can serve as the centroid of A.
Assume that the support of the desired FS1 is the set of all real numbers of the form

(
m∑

i=1

xiwi

)/(
m∑

i=1

wi

)

, (1)

where w1 ∈ Jx1 , . . . , wm ∈ Jxm . This is the union of the centroids of all imbedded FS1. If the set Jxi

contains ni elements, then the total number of the numbers of the form (1) may be equal to
m∏

i=1
ni.

However, some of these numbers can coincide.

For a real number of the form (1), its membership degree in the centroid A is assumed to be

μA(x1, w1) ∧ · · · ∧ μA(xm, wm). (2)

Note (see [10]) that in this case, we cannot use the product instead the minimum. If an element of the
support admits several distinct representations of the form (1), then, in accordance with the expansion
principle, one need to take the maximum of the numbers (2) as its membership degree in FS1. The

centroid of the FS2 A constructed by this way is denoted by CA; as was already mentioned, it is a FS1.
If A is an IFS2, then each of the numbers (2) is equal to 1.
Now we pass to the case where each of sets Jxi , i = 1, . . . ,m, is a segment of a real line (belonging

to the segment [0, 1]); A is an IFS2. We construct an FS1, which can serve as the centroid of A.
Assume that the support of the desired FS1 is the set of real numbers of the form (1), where

w1 ∈ Jx1 , . . . , wm ∈ Jxm. It is easy to see that the support constructed by this way is a segment of

the real number; we denote it by [yl, yr].
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Indeed, if

y′ =

(
m∑

i=1

xiw
′
i

)/(
m∑

i=1

w′
i

)

, y′′ =

(
m∑

i=1

xiw
′′
i

)/(
m∑

i=1

w′′
i

)

,

then for any y ∈ [y′, y′′], the segment connecting the points (w′
1, . . . , w

′
m) and (w′′

1 , . . . , w
′′
m) contains a

point (w1, . . . , wm) for which the value of the fraction (1) is equal to y since the function (1) considered
as a function of the argument (w1, . . . , wm) is continuous on this segment. The boundedness of the

function (1) considered as a function of the argument (w1, . . . , wm) for fixed x1, . . . , xm is obvious.
The closedness of the set of all values of the function (1) for (w1, . . . , wm) ∈ Jx1 × · · · × Jxm is also
obvious. The case where 0 ∈ Jx1 , . . . , 0 ∈ Jxm must be considered separately. In this case, if each of

the segments Jx1 , . . . , Jxm has a nonzero length, then [yl, yr] =
[

min
1≤i≤m

xi, max
1≤i≤m

xi

]
. At the point

(0, . . . , 0), the function (1) is undefined.

To complete the construction of the centroid CA, we set μCA
(y) = 1 for any y ∈ [yl, yr].

Functional fuzzy systems are also called Takagi–Sugeno fuzzy systems. Consider a system with real
numbers x01, . . . , x

0
n at the input and a real number y0 at the output. Let x01 ∈ X1, . . . , x

0
n ∈ Xn, and

y0 ∈ Y , where X1, . . . ,Xn and Y are certain subsets of the set of real numbers R.
The base consists of k fuzzy rules of the following form:

IF (x1 = Aj1) AND . . . AND (xn = Ajn) THEN y = fj(x1, . . . , xn),

where j = 1, . . . , k. We assume that Ajp is an IFS2 with the universal set Xp, p = 1, . . . , n, and
fj : X1 × · · · ×Xn → R, j = 1, . . . , k, are some functions for each j.

The essence of the fuzzy system is that for various domains of input parameter values (x01, . . . , x
0
n), it

is necessary to draw different conclusions (use different forms of dependence of the output parameters

on the input parameters) and ensure soft switching. If the activation degree of the fuzzy rule j for a
given set of input parameters is large, then the contribution of fj to the final general dependence is
also large, and vice versa, for a small activation degree of the fuzzy rule, the contribution is small.

A description of Takagi–Sugeno fuzzy systems for the case where Ajp, p = 1, . . . , n, are FS1, can be
found, e.g., in [19].

Remark. The most important case is the case where functions f1, . . . , fk are linear:

fj(x1, . . . , xn) = aj0 + aj1x1 + · · ·+ ajnxn,

where aj0, aj1, . . . , ajn are real numbers. Theoretically, we can also consider models for which aj0, aj1,
. . . , ajn are FS1, but in practice such models are apparently not yet used.

Let μ
Aj1

, . . . , μ
Ajn

and μAj1
, . . . , μAjn

are the lower and upper membership functions of IFS2

Aj1, . . . , Ajn, j = 1, . . . , k, respectively. For each j, 1 ≤ j ≤ k, consider the segments
[
τ j, τ j

]
, where

τ j = min
(
μ
Aj1

(
x01

)
, . . . , μ

Ajn

(
x0n

))
, τ j = min

(
μAj1

(
x01

)
, . . . , μAjn

(
x0n

))
,

or

τ j = μ
Aj1

(
x01

) · · ·μ
Ajn

(
x0n

)
, τ j = μAj1

(
x01

) · · · μAjn

(
x0n

)
.

Except for the minimum and the product, other t-norms can be used. (For the definitions of t-norms

and t-conorms, see, e.g., [20].) An FS1 with the support
[
τ j, τ j

]
is called the activation degree of the

jth fuzzy rule.
To determine the output of a fuzzy system, the activation degree of each fuzzy rule must be linked

with the output value for this fuzzy rule. Consider the segment [yl, yr] consisting of all points of the
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form (
k∑

j=1

τjfj
(
x01, . . . , x

0
n

)
)/(

k∑

j=1

τj

)

, (3)

where τj ∈
[
τ j, τ j

]
, j = 1, . . . , k. The proof of the fact that this set of points is a segment is similar to

the above. Thus,

yl = min
τj∈

[
τ j ,τ j

]
,

j=1,...,k

k∑

j=1
τjfj

(
x01, . . . , x

0
n

)

k∑

j=1
τj

, yr = max
τj∈

[
τ j ,τ j

]
,

j=1,...,k

k∑

j=1
τjfj

(
x01, . . . , x

0
n

)

k∑

j=1
τj

.

Further, y0 =
(
yl + yr

)
/2.

The method of finding y0 presented above is one of the most common. However, one can use a
simpler method in which y0 is defined by the formula (3), in which τj =

(
τ j + τ j

)
/2.

3. Type-2 fuzzy relations and relational fuzzy system. Let X and Y be two sets used as
universal sets below.

Definition 13. A type-2 fuzzy relation between the sets X and Y is an FS2 with the universal set
X × Y .

Let D1, . . . ,Dn be FS1 with the segment [0, 1] as the universal sets and μD1 , . . . , μDn are the

membership functions of these fuzzy sets.
Let Δ be a certain t-norm and ∇ be a certain t-conorm. As is known, for any numbers a1, . . . , an

from the segment [0, 1], a1Δ . . .Δan and a1∇ . . .∇an are also numbers from [0, 1]. Common examples

of t-norms are the product and minimum operations; an example of a t-conorm is the maximum
operation.

In the theory of type-2 fuzzy systems, the operations of extended t-norm
Δ∗ and extended t-conorm

∇∗ are used. The results of application of these operations to the membership functions μD1 , . . . , μDn ,
are also membership functions whose supports lie in [0, 1]. Let Δ be a t-norm, which can coincide or

not with the t-norm Δ.

Definition 14. The result of application of the extended t-norm
Δ∗ to the membership functions

μD1 , . . . , μDn is the membership function
(
μD1

Δ∗ . . .
Δ∗ μDn

)
(w) = sup

u1∈[0,1],...,un∈[0,1]:
u1Δ...Δun=w

μD1(u1)Δ . . .ΔμDn(un),

where w ∈ [0, 1].

Definition 15. The result of application of the extended t-conorm
∇∗ to the membership functions

μD1 , . . . , μDn is the membership function
(
μD1

∇∗ . . .
∇∗ μDn

)
(w) = sup

u1∈[0,1],...,un∈[0,1]:
u1∇...∇un=w

μD1(u1)Δ . . .ΔμDn(un),

where w ∈ [0, 1].

Let R be a type-2 fuzzy relation between sets X and Y , S be a type-2 fuzzy relation between sets Y

and Z, and A be an FS2 with the universal set X. Let
Δ∗ be a certain extended t-norm and

∇∗ be an
extended t-conorm.

Let Y be a finite set.
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Definition 16. The combination of the type-2 fuzzy relations R and S is the type-2 fuzzy relation

R ◦ S between the sets X and Z whose secondary membership functions has the form

μR◦S(x, z) =
∇∗

y∈Y

(
μR(x, y)

Δ∗ μS(y, z)
)
, x ∈ X, z ∈ Z.

Let X be a finite set and Y be an arbitrary set.

Definition 17. The combination of an FS2 A and a type-2 fuzzy relation R is the FS2 A ◦ R with
the universal set Y whose secondary membership functions have the form

μA◦R(y) =
∇∗

x∈X

(
μA(x)

Δ∗ μR(x, y)
)
, y ∈ Y.

We emphasize that in Definitions 16 and 17, the argument of all membership functions is w.

Let Ap be FS2 with the universal sets Xp, p = 1, . . . , n. We denote the secondary membership
functions of the FS2 Aj by μAj(xj), where xj ∈ Xj . Each of the functions μAj (xj) is a function of the
argument w, w ∈ [0, 1].

Definition 18. The Cartesian product of the FS2 A1, . . . , An is the FS2 A1×· · ·×An whose universal
set is X1 × · · · ×Xn and the secondary membership functions have the form

μA1×···×An

(
x1, . . . , xn

)
= μA1(x1)

Δ∗ . . .
Δ∗ μAn(xn),

where
Δ∗ is a certain extended t-norm.

Relational fuzzy systems are also called Mamdani fuzzy systems. Consider a system with real

numbers x01, . . . , x
0
m at the input and a real number y0 at the output. Let x01 ∈ X1, . . . , x

0
n ∈ Xn,

y0 ∈ Y , and let X1, . . . ,Xn, Y be certain subsets of the set of real numbers R.
The base consists of k fuzzy rules of the following form:

IF (x1 = Aj1) AND . . . AND (xn = Ajn) THEN (y = Bj),

where j = 1, . . . , k. We assume that Ajp are FS2 with the universal sets Xp, p = 1, . . . , n, and Bj are

FS2 with the universal set Y for each j.
A description of Mamdani fuzzy systems for the case where Aj1, . . . , Ajn, and Bj are FS1 can be

found, e.g., in [19].

Type-2 fuzzy relations Rj between the sets X = X1 × · · · ×Xn and Y , j = 1, . . . , k, are assumed to
be known.

At the fuzzification stage, we construct an FS2 A′ with the universal set X by the input data

x01 ∈ X1, . . . , x
0
n ∈ Xn. At the decision-making stage, we first find the FS2 B′

j = A′ ◦Rj, j = 1, . . . , k,

and then, using some extended t-conorm, we determine the FS2 B′ with the secondary membership
functions

μB′(y) = μB′
1
(y)

∇∗ . . .
∇∗ μB′

n
(y), y ∈ Y.

At the final stage, we first reduce the order of the FS2 B′ (for example, by constructing the cen-

troid CB′) and the we perform the defuzzification.
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