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Abstract. This paper is a brief review of results in the theory of covering mappings of metric spaces
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1. Introduction. One of the main tools for proving solvability conditions for explicit ordinary
differential equations (i.e., equations resolved with respect to the derivative of the desired function) are

fixed-point theorems. These statements are also used to obtain estimates of solutions, stability studies,
approximate integration of equations, etc. A similar role in the study of implicit differential equations
can be played by theorems on coincidence points of two mappings and theorems on Lipschitzian

perturbations of covering mappings. In this paper, we present a brief review of modern results and
propose new results on the theory of covering mappings of metric and vector metric spaces and its
applications to implicit differential equations.

2. Covering mappings of metric spaces and their applications to the study of the Cauchy
problem.

2.1. Operator equations in metric spaces. Let X = (X, ρX ) and Y = (Y, ρY ) be two metric spaces.
We denote by BX(x0, r) the closed ball {x ∈ X : ρX(x, x0) ≤ r} of radius r ≥ 0 centered at x0 ∈ X.

Definition 2.1. Let a number α > 0 be given. A mapping Ψ : X → Y is called an α-covering if

BY (Ψ(x0), αr) ⊂ Ψ(BX(x0, r))

for all x0 ∈ X and all r ≥ 0.

Definition 2.2. Let a number κ ≥ 0 be given. A mapping Ψ : X → Y is called (metrically) κ-regular
if for all x0 ∈ X and y ∈ Y , there exists x ∈ X such that Ψ(x) = y and

ρX(x, x0) ≤ κρY (y,Ψ(x0)).

These two properties are equivalent: a mapping Ψ is an α-covering if and only if it is κ-regular

with κ = α−1. Here we use the term “covering mapping,” but in the next section, a vector analog of
the regularity property will be more convenient for mappings of vector metric spaces. The property
of being a covering and the metric regularity of mappings were investigated in detail in works of
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E. R. Avakov, A. V. Arutyunov, B. D. Gelman, L. M. Graves, A. V. Dmitruk, A. D. Ioffe, A. A. Mi-

lyutin, B. S. Mordukhovich, N. P. Osmolovsky, A. Uderzo, and others. Here we state results that have
applications to differential equations.

Let two mappings Ψ,Φ : X → Y be given. Their coincidence point is an element x ∈ X such that
Ψ(x) = Φ(x). A. V. Arutyunov proved the following theorem on coincidence points.

Theorem 2.1 (see [1]). Assume that a space X is complete, a mapping Ψ : X → Y is a continuous
α-covering, and a mapping Φ : X → Y satisfies the Lipschitz condition with a constant β < α. Then

for arbitrary x0 ∈ X, there is a coincidence point ξ = ξ(x0) ∈ X of the mappings Ψ and Φ for which

ρX(ξ, x0) ≤ (β − α)−1ρY
(
Ψ(x0),Φ(x0)

)
.

Proof. Introduce a sequence {xi} ⊂ X such that

Ψ(xi) = Φ(xi−1), ρX(xi+1, xi) ≤ β

α
ρX(xi, xi−1), i = 1, 2, . . . . (1)

This sequence is fundamental and converges in the complete space X to the coincidence point ξ of the
given mappings. �

The iterations (1) can be used for approximate calculation of coincidence points. Application of this

method requires the study of the influence of errors that arise when finding elements xi on the limit
of the iterative sequence. This problem was examined in [2, 9].

The result was refined by A. V. Arutyunov and other authors, various modifications of the covering

condition were used (the most general statements were obtained in [3], and a comparative analysis
of various definitions of coverings was performed in [14]). We introduce the notion that allows one to
combine various definitions of the covering property.

Definition 2.3. The α-covering set of a mapping Ψ : X → Y is the set of all pairs (u, y) ∈ X × Y
for which there exists x ∈ X such that

Ψ(x) = y, ρX(x, u) ≤ α−1ρY (y,Ψ(u)).

Let us denote the α-covering set of the mapping Ψ : X → Y by Bα(Ψ).

In [4, 7], the operator equation (with respect to the unknown x ∈ X)

F (x) = y (2)

was examined by using the covering property; here F : X → Y is a given mapping, y ∈ Y . Conditions

of the solvability, correct solvability, and estimates of solutions of Eq. (2) obtained in the above-
mentioned papers; these results were applied to the study of the Cauchy problem for an implicit
differential equation. We present statements about Eq. (2) similar to the corresponding theorems

from [4, 7] under somewhat less restrictive assumptions using Definition 2.3.

Theorem 2.2. Let a metric space X be complete, x0 ∈ X, α > β ≥ 0, r = (α − β)−1ρY (F (x0), y),

and let the mapping F : X → Y be representable in the form

F (x) = Υ(x, x)

for all x ∈ X, where the mapping Υ : X2 → Y satisfies the following conditions:

∀x ∈ BX(x0, r) : (x, y) ∈ Bα (Υ(·, x)) ; (3)

∀x, x̂ ∈ BX(x0, r) : Υ(x̂, x) = y ⇒ ρY (Υ(x̂, x̂), y) ≤ βρX(x̂, x); (4)

∀{xi} ⊂ BX(x0, r), ∀ξ ∈ X xi → ξ, ∀i = 1, 2, . . . : Υ(xi, xi−1) = y ⇒ Υ(ξ, ξ) = y. (5)

Then there exists a solution of Eq. (2) in the ball BX(x0, r).
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Proof. As in the proof of Theorem 2.1, we use the iterative sequence constructed as follows. By virtue

of (3), the following statement is valid:

∃x1 ∈ X : Υ(x1, x0) = y, ρX(x1, x0) ≤ ρY (y,Υ(x0, x0))

α
.

Obviously, x1 ∈ BX(x0, r). According to (3), the following inequality holds:

ρY (Υ(x1, x1), y) ≤ βρX(x1, x0),

and according to (4),

∃x2 ∈ X : Υ(x2, x1) = y, ρX(x2, x1) ≤ ρY (y,Υ(x1, x1))

α
.

Thus,

ρX(x2, x1) ≤ β

α
ρX(x1, x0),

ρX(x2, x0) ≤
(
1 +

β

α

)
ρX(x1, x0) ≤

(
1 +

β

α

)
ρY (y,Υ(x0, x0))

α
≤ r.

Similarly, for any i = 3, 4, . . ., we can prove the existence of xi such that

Υ(xi, xi−1) = y, ρX(xi, xi−1) ≤ β

α
ρX(xi−1, xi−2),

ρX(xi, x0) ≤
(
1 +

β

α
+ . . .+

βi−1

αi−1

)
ρY (y,Υ(x0, x0))

α
≤ r.

Due to the assumption β < α, the sequence constructed is a Cauchy sequence; this follows from the
inequality

ρX(xi, xi+j) ≤
(
1 +

β

α
+ . . .+

βj−1

αj−1

)
ρX(xi, xi+1) ≤

(
1 +

β

α
+ . . .+

βj−1

αj−1

)
βi

αi
ρX(x0, x1).

According to (5), the sequence {xi} ⊂ BX(x0, r) converges to a solution of Eq. (2). �
From Theorem 2.2 we derive the well-posedness conditions for Eq. (2). Let a sequence of mappings

Υi : X
2 → Y , i = 1, 2, . . ., and elements x0 ∈ X, y ∈ Y be given. Consider the sequence of equations

Fi(x)
def
= Υi(x, x) = y, i = 1, 2, . . . . (6)

We are interested in conditions that ensure the convergence of the sequence of solutions of Eqs. (6)

to x0 ∈ X if the sequence Fi(x0) converges to y.

Corollary 2.1. Assume that the metric space X is complete, the mappings Υi : X
2 → Y , i = 1, 2, . . .,

satisfy the conditions of Theorem 2.2, i.e., the numbers αi > βi ≥ 0 and ri = (αi − βi)
−1ρY (F (x0), y)

are given and the relations (3), (4), and (5) are fulfilled for them. If ri → 0 as i → ∞, then for any i,
there exists a solution x = ξi of Eq. (6) such that ξi → x0.

Proof. According to Theorem 2.2, for any i, there exists a solution ξi of Eq. (6) belonging to the ball
BX(x0, ri); therefore, ξi → x0. �

Corollary 2.1 is a more general statement than [4, Theorem 2].
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2.2. Covering properties of the Nemytsky operator. In order to apply the properties of covering

mappings proved in Sec. 2.1 to various functional (including differential) equations, it is necessary to
verify the conditions of these statements for specific operators in various functional spaces. Covering
properties of the Nemytsky operator are of the greatest interest.

Let f : [0, τ ] × R
m → R

l be a function satisfying the Carathéodory conditions (that is, measurable

with respect to the first argument and continuous with respect to each component of the second
argument, which is a vector of Rm). The Nemytsky operator assigns the measurable function

[0, τ ] � t −→ (Nfx)(t)
def
= f(t, x(t)) ∈ R

l

to each measurable function x : [0, τ ] → R
m. For Nemytsky operators acting in spaces of essentially

bounded functions, the following fact was proved in [4, 7]: if a function f(t, ·) is an α-covering for
almost all t ∈ [0, τ ], then the Nemytsky operator Nf is also an α-covering. For an operator Nf acting

in spaces of summable functions, conditions of being a covering were obtained in [12].
We give a statement about the Nemytsky operator, which allows one to verify the validity of the

relation (3) for various functional equations.

Lemma 2.1. Let
u : [0, τ ] → R

m, y : [0, τ ] → R
l, α : [0, τ ] → R+

be measurable functions. Assume that for almost every t ∈ [0, τ ], there exists a point x ∈ R
m such that

f(t, x) = y(t), |x− u(t)| ≤ 1

α(t)
|y(t)− f(t, u(t))| . (7)

Then there exists a measurable function x̂ : [0, τ ] → R
m satisfying the relations

(Nf x̂)(t) = y(t), |x̂(t)− u(t)| ≤ 1

α(t)
|y(t)− (Nfu)(t)| a.e. on [0, τ ]. (8)

Proof. We set

R(t) =
1

α(t)
|f (t, u(t))− y(t)| , U(t) = BRm (u(t), R(t)) , t ∈ [0, τ ].

The function R : [0, τ ] → R is measurable; therefore, the multi-valued mapping U : [0, τ ] ⇒ R
m is

measurable. By the assumption (7), the inclusion y(t) ∈ f
(
t, U(t)

)
holds. According to Filippov’s

lemma (see, e.g., [8, Sec. 1.5.2]), there exists a measurable section x̂ : [0, τ ] → R
m of the mapping U

such that y(t) = f (t, x̂(t)), t ∈ [0, τ ]. Thus, y = Nf x̂. The second relation in (8) directly follows from
the inclusion x̂(t) ∈ U(t). �

As usual, we denote by Lm
p = Lp([0, τ ],R

m) the space of functions v : [0, τ ] → R
m that are summable

with power p ∈ [0,∞) with the norm

‖v‖Lm
p
=

⎛

⎝
τ∫

0

|v(t)|pdt
⎞

⎠

1/p

;

also, we denote by Lm∞ = L∞([0, τ ],Rm) the space of essentially bounded functions v : [0, τ ] → R
m

with the norm
‖v‖Lm∞ = vrai sup

t∈[0,τ ]
|v(t)|.

Lemma 2.1 allows one to formulate conditions of being a covering (with respect to the corresponding
metrics) for Nemytsky operators acting in specific spaces of measurable functions. Thus, important

results related to Nemytsky operators in Lebesgue spaces can be obtained (see [4, 7, 12]). For example,
if

(y −Nf u) ∈ Ll
p, α0 = vrai inf

t∈[0,τ ]
α(t) > 0,
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then by virtue of (8), we have (x̂− u) ∈ Lm
p and

‖x̂− u‖Lm
p
≤ 1

α0
‖y −Nf u‖Ll

p
.

This means that for an essentially bounded function α, the inclusion

(u(t), y(t)) ∈ Bα(t) (f(t, ·)) ⊂ R
m × R

l

implies the inclusion

(u, y) ∈ Bα0(Nf ) ⊂ Lm
p × Ll

p.

Similarly, if (y −Nf u) ∈ Ll
p and

α0 =

⎛

⎝
τ∫

0

1

α(t)q
dt

⎞

⎠

−1/q

< ∞,
1

p
+

1

q
= 1, (9)

then (x̂− u) ∈ Lm
1 and

‖x̂− u‖Lm
1
≤ 1

α0
‖y −Nf u‖Ll

p
.

Thus, if the condition (9) is fulfilled, then the inclusion

(u(t), y(t)) ∈ Bα(t) (f(t, ·)) ⊂ R
m × R

l

implies the inclusion

(u, y) ∈ Bα0(Nf ) ⊂ Lm
1 × Ll

p.

2.3. Cauchy problem for an implicit differential equation. Introduce some function spaces used below.
Let y : [0, τ ] → R

l be a measurable function. We define the space W l
τ (y) = W (y, [0, τ ],Rl) of all

measurable functions v : [0, τ ] → R
l for which the difference vy is essentially bounded, and introduce

the function

ρW l
τ (y)

(v, v̂) = vrai sup
t∈[0,τ ]

|v(t) − v̂(t)|.

Obviously, the space W l
τ (y) is complete. Note that if a function y is essentially bounded, then the

space W l
τ (y) coincides with the “ordinary” space Ll∞ of essentially bounded functions.

Let y : R+ → R
l be a measurable function and f : R+ × R

m × R
m → R

l be a function satisfying
the Carathéodory conditions (i.e.,, measurable with respect to the first argument and continuous with

respect to each component of the second and third arguments). Let us consider the differential equation

f(t, x, ẋ) = y(t), t ≥ 0, (10)

with the initial condition

x(0) = γ, γ ∈ R
m. (11)

Let τ > 0. An absolutely continuous function on the interval on [0, τ ] satisfying the equation for almost
all t ∈ [0, τ ] is called a solution of Eq. (10) on [0, τ ].

Let x0 : R+ → R
m be a function, which is absolutely continuous on each finite segment [0, τ ],

τ > 0, and satisfies the condition x0(0) = γ. We set y0(t) = f (t, x0(t), ẋ0(t)), t ∈ R+. This function is
measurable; let R(t) = vrai sup

s∈[0,t]
|y(s)− y0(s)| < ∞ for any t > 0. Introduce the function

r(t) =

t∫

0

R(s)ds.
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Let α, ε > 0 be given. We introduce multi-valued mappings

Uαε : R+ ⇒ R
m, Uαε(t) = BRm

(
x0(t), α

−1r(t) + εt
)
,

Vαε : R+ ⇒ R
m, Vαε(t) = BRm

(
ẋ0(t), α

−1R(t) + ε
)
.

The mapping Uαε is continuous and the mapping Vαε is measurable.

Theorem 2.3. Assume that for some positive numbers α and ε and functions μ,M : R+ → R+ that
are essentially bounded on each finite segment, following relations hold for almost all t ∈ R+ and

arbitrary x, x̂ ∈ Uαε(t) and v ∈ Vαε(t):

(v, y(t)) ∈ Bα (f(t, x, ·)) ⊂ R
m × R

l, (12)

|f(t, x, v)− f(t, x̂, v)| ≤ μ(t)|x− x̂|, (13)

|f(t, x0(t), v) − f(t, x0(t), ẋ0(t))| ≤ M(t). (14)

Then there exists τ > 0 such that there exists a solution of the problem (10), (11) on [0, τ ].

Proof. We set

R̂ = vrai sup
t∈[0,1]

R(t), μ̂ = vrai sup
t∈[0,1]

μ(t), τ = min
{
1, 2−1R̂−1μ̂−1α2ε

}
(15)

and denote by Vτ the set of measurable sections of multi-valued mapping Vαε(·) defined on [0, τ ]. We

have Vτ ⊂ Wm
τ (ẋ0); therefore, we assume that Vτ is a metric space with a reduced metric. Introduce

the mapping

Υτ (z1, z2)(t) = f

⎛

⎝t, γ +

t∫

0

z2(s)ds, z1(t)

⎞

⎠ , t ∈ [0, τ ].

For t ∈ [0, τ ], the problem (10), (11) can be represented as the equation

Υτ (z, z) = f (16)

for the unknown function z ∈ Vτ , which is the derivative of the solution of the problem (10), (11). �
Due to the assumptions (13) and (14), the mapping Υτ acts from Vτ×Vτ to W l

τ (y). The relation (13)

implies that for any z1 ∈ Vτ , the mapping Υτ (z1, ·) : Vτ → W l
τ (y) is Lipschitzian with coefficient

β = μ̂τ ≤ 2−1R̂−1α2ε; without loss of generality, we may assume that ε is sufficiently small so that the
inequality β ≤ 2−1α holds. Since the function f satisfies the Carathéodory conditions, the mapping

Υτ (·, z2) : Vτ → W l
τ (y) is closed for any z2 ∈ Vτ . According to Lemma 2.1, the assumption (12) implies

that for any z ∈ Vτ , the following inclusion holds:

(z, y) ∈ Bα (Υτ (·, z)) ⊂ Vτ ×W l
τ (y).

It remains to note that

Vαε(t) ⊂ BRm

(
ẋ0(t), (α − β)−1R(t)

)
;

thus, the conditions of Theorem 2.2 are satisfied. Therefore, Eq. (16) has a solution ẑ ∈ Vτ , and then

the absolutely continuous function

x̂(·) = γ +

(·)∫

0

ẑ(s)ds

is a solution of the problem (10), (11) defined on [0, τ ].
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Remark 2.1. The relation (15) determines the length of the existence interval of the solution of the

problem (10), (11). The solution x defined on this interval satisfies the inequality

vrai sup
t∈[0,1]

∣
∣ẋ(t)− ẋ0(t)

∣
∣ ≤ 2

α
R(t).

Note that the Cauchy problem for a special case of Eq. (10) of the form g(t, ẋ) = ϕ(t, x) was

considered in [5], where the theorem of coincidence points obtained in [1] was used.
We examine the problem on the continuous dependence of solutions of the problem (10), (11) on

the parameters (i.e., on the function f and the initial value γ).
Assume that for each natural i, the following data are defined:

(i) a function fi : R+ × R
m × R

m → R
l satisfying the Carathéodory conditions,

(ii) a measurable function yi : R+ → R
l,

(iii) and a vector γi ∈ R
m.

Consider the sequence of Cauchy problems

fi(t, x, ẋ) = yi(t), t ≥ 0, x(0) = γi, i = 1, 2, . . . . (17)

Let x0 : R+ → R
m, x0(0) = γ be a function absolutely continuous on each finite segment. We set

x0i(t) = γi +

t∫

0

ẋ0(s)ds, y0i(t) = fi (t, x0i(t), ẋ0(t)) , t ∈ R+.

We formulate the solvability conditions for the problem (17) for each i and the conditions of conver-
gence of the sequence of solutions to the function x0 : R+ → R

m (in the space of absolutely continuous
functions on each finite segment) provided that γi converges to γ and y0i uniformly converges to y.

We note the following. In Theorem 2.3, which establishes the solvability conditions for the Cauchy
problem, there are no restrictions on the covering coefficient α of the function f with respect to the
second argument and the Lipschitz coefficient μ(t) of this function with respect to the third argument.

The fact is that if we consider the corresponding operators in spaces of functions defined on [0, τ ],
the inequality β < α required in Theorem 2.2 holds for sufficiently small τ > 0. In the study of the
sequence of Cauchy problems, we must assume the existence of the coefficients α and μ(t) that are

common for all functions fi; otherwise, for each i we can obtain a solution defined on [0, τi] with τi → 0,
or on any segment [0, τ ] the sequence of solutions may turn out to be divergent.

Example 2.1. Consider the Cauchy problem for the simplest linear equation:

ẋ− ix = 1, t ≥ 0, x(0) = i−1, i = 1, 2, . . . . (18)

We set fi(t, x, v) = −ix + v, y(t) ≡ 1, γi = i−1, x0i(t) ≡ i−1. The function fi is 1-covering with
respect to the third argument and i-Lipschitzian with respect to the second argument. We have
fi (t, x0i(t), ẋ0i(t)) ≡ 1, γi → 0, and ẋ0i(t) ≡ 0 as i → ∞. The solution of the problem (18) is

xi(t) = i−1 exp(it)− i−1, and for any t > 0, we have xi(t) → ∞.
For ε > 0, i = 1, 2, . . ., we set

Uεi, Vεi : R+ ⇒ R
m, Uεi(t) = BRm (x0i(t), εt) , Vεi(t) = BRm (ẋ0(t), ε) .

Theorem 2.4. Assume that for some positive numbers α and ε and a function μ : R+ → R+, which

is essentially bounded on each finite segment, for any i = 1, 2, . . ., almost all t ∈ R+, and arbitrary
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x, x̂ ∈ Uεi(t) and v ∈ Vεi(t), the following relations hold :

(v, y(t)) ∈ Bα (fi(t, x, ·)) ⊂ R
m × R

l, (19)

|fi(t, x, v)− fi(t, x̂, v)| ≤ μ(t)|x− x̂|, (20)

∀τ > 0 vrai sup
s∈[0,τ ]

|fi(s, x0i(s), v)− fi(s, x0i(s), ẋ0i(s))| ≤ ∞. (21)

If

Ri = vrai sup
s∈[0,T ]

|yi(s)− y0i(s)| → 0

as i → ∞ for some T > 0, then there exists a number i0 such that for all i ≥ i0, there exists a solution
xi of the problem (17) defined on [0, T ], and the sequence of these solutions satisfies the following
condition:

vrai sup
s∈[0,T ]

|ẋi(s)− ẋ0(s)| → 0.

Proof. We set

μ̂ = vrai sup
t∈[0,T ]

μ(t), τ = min
{
T, 2−1μ̂−1α

}
(22)

and take i0 so that α−12Ri ≤ ε for any i > i0. We denote by Vτi the subspace in Wm
τ (ẋ0) containing

measurable functions v : [0, τ ] → R
m such that |v(t)− ẋ0i(t)| ≤ ε for almost all t ∈ [0, τ ]. Introduce

the mapping

Υτi(z1, z2)(t) = fi

⎛

⎝t, γi +

t∫

0

z2(s)ds, z1(t)

⎞

⎠ , t ∈ [0, τ ].

For t ∈ [0, τ ], the problem (17) can be rewritten as the equation

Υτi(z, z) = fi, i = 1, 2, . . . , (23)

for the unknown function z ∈ Vτi, which is the derivative of the solution to the problem (17).

By repeating the same arguments as in the proof of Theorem 2.3, we conclude that the conditions
of Theorem 2.2 for the mapping Υτi : Vτi × Vτi → W l

τ (yi) are satisfied; therefore, Eq. (23) for i ≥ i0
has a solution ẑi ∈ Vτi satisfying the inequality

vrai sup
t∈[0,τ ]

∣∣ẑi(t)− ẋ0(t)
∣∣ ≤ 2

α
Ri ≤ ε.

Therefore, the function

xi(·) = γi +

(·)∫

0

ẑi(s)ds

is a solution to the problem (17) defined on [0, τ ]. For this solution, the inclusion xi(t) ∈ Uεi(t) is

satisfied.
Similarly, we can prove that for any i > i0, there exists a solution of the differential equation on

the interval [τ, 2τ ] with the initial condition x(τ) = xi(τ); this solution xi satisfies the conditions

xi(t) ∈ Uεi(t), ẋi(t) ∈ Vεi(t), |ẋi(t)− ẋ0(t)| ≤ α−12Ri,

and so on. Thus, for any i > i0, for a finite number τ−1T of “steps,” we obtain a solution xi of the
problem (17) defined on [0, T ] and satisfying the conditions

ẋi(t) ∈ Vεi(t), |ẋi(t)− ẋ0(t)| ≤ α−12Ri.

Now the theorem obviously follows from the convergence Ri → 0. �
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By virtue of the assumptions (20) and (21), the mapping Υτi acts from Vτi ×Vτi into W l
τ (yi). The

relation (20) implies that for any z1 ∈ Vτi, the mapping Υτ (z1, ·) : Vτ → W l
τ (y) is Lipschitzian with the

coefficient β = μ̂τ ≤ 2−1α. Since the function f satisfies the Carathéodory conditions, the mapping
Υτ (·, z2) : Vτ → W l

τ (y) is closed for any z2 ∈ Vτ . According to Lemma 2.1, the assumption (12) implies
that for any z ∈ Vτ , the following inclusion holds:

(z, y) ∈ Bα (Υτ (·, z)) ⊂ Vτ ×W l
τ (y).

Thus, the conditions of Theorem 2.2 are fulfilled, and Eq. (16) has a solution ẑ ∈ Vτ , and then the
absolutely continuous function

x̂(·) = γ +

(·)∫

0

ẑ(s)ds

is a solution to the problem (10), (11) defined on [0, τ ].

From Theorems 2.3 and 2.4 we can deduce theorems on the existence and the continuous dependence
on parameters of solutions of the Cauchy problem for the implicit differential equation, which were
earlier obtained in [4, 5, 7].

3. Regular mappings of products of metric spaces and their applications to the study
of boundary-value problems.

3.1. Systems of operator equations in metric spaces. Let Xk, k = 1,m, and Yj, j = 1, l, be metric
spaces. We introduce the spaces

X =
m∏

k=1

Xk, Y =
l∏

j=1

Yj.

It is natural to introduce the distance between elements of the products X and Y as the vectors
ρX = (ρX1 , . . . , ρXm) and ρY = (ρY1 , . . . , ρYl

). A ball in X of radius d = (d1, . . . , dm) ∈ R
n
+ centered

at u = (u1, . . . , um) ∈ X is the set

BX(u, d) =

n∏

k=1

BXk
(uk, dk).

We say that a sequence {xi} converges to x0 in X if ρX(xi, x0) → 0 in the space Rm. Cauchy sequences

and the notion of completeness are defined in a standard way. The space (X, ρX) is complete if and

only if the spaces Xk, k = 1,m, are complete.

Definition 3.1. Let K be an (m × l)-matrix with nonnegative elements κkj, k = 1,m, j = 1, l.

The set of all pairs (u, y) ∈ X × Y , for each of which there exists an element x ∈ X such that
Ψ(x) = y and ρX(x, u) ≤ KρY (y,Ψ(u)) is called the set (of vector metric) K-regularity of the

mapping Ψ : X → Y . The set of K-regularity of the mapping Ψ : X → Y is denoted by BK(Ψ).

Obviously, Definitions 3.1 and 2.3 are equivalent in the case m = l = 1.
The regularity property (also called the covering property) of mappings in products of metric

spaces and in more general spaces with vector metrics was introduces and studied in [6, 10–12]. Using
the regularity set of the corresponding mappings, we obtain here a solvability condition for systems
of equations, which is similar to the results of the papers mentioned above, under somewhat less

restrictive assumptions.
Consider a vector y ∈ Y , a vector mapping F = (F1, . . . , Fl) : X → Y , and the system of equations

Fj(x1, . . . , xm) = yj, j = 1, l; we write this system in the form

F (x) = y. (24)
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Theorem 3.1. Let Xk, k = 1,m, be complete metric spaces and x0 ∈ X be a given vector. Assume

that the matrices Km×l and Bl×m with nonnegative elements are such that the spectral radius of their
product satisfies the condition sr(BK) < 1. Let

r = K(Il −BK)−1ρY (F (x0), y) ,

where Il is the identity (l× l)-matrix. Assume that mapping F : X → Y can be represented in the form

F (x) = Υ(x, x) ∀x ∈ X,

where the mapping Υ : X
2 → Y satisfies the following conditions:

∀x ∈ BX(x0, r) (x, y) ∈ BK (Υ(·, x)) ; (25)

∀x, x̂ ∈ BX(x0, r) Υ(x̂, x) = y ⇒ ρY (Υ(x̂, x̂), y) ≤ βρX(x̂, x); (26)

∀{xi} ⊂ BX(x0, r) ∀ξ ∈ X xi → ξ, ∀i = 1, 2, . . . Υxi, xi−1) = y ⇒ Υ(ξ, ξ) = y. (27)

Then there exists a solution of Eq. (24) in the ball BX(x0, r).

Proof. Due to the assumption sr(BK) < 1, the series
∞∑

i=0
(BK)i converges to the matrix (Il −BK)−1.

Since elements of the matrices B and K are nonnegative, the following inequality holds for any l:

l∑

i=0

(BK)i ≤ (Il −BK)−1.

Further arguments are similar to those used in the proof of Theorem 2.2. The assumptions (25) and (26)
allow one to define a sequence {xi} ⊂ X such that

Υ(xi, xi−1) = y, ρX(xi, xi−1) ≤ BKρX(xi−1, xi−2),

ρX(xi, x0) ≤ K
i−1∑

n=0

(BK)nρY (y,Υ(x0, x0)) ≤ r.

Since sr(BK) < 1, the sequence {xi} ⊂ BX(x0, r) in the complete space X is a Cauchy sequence.
According to the condition (27), this sequence converges to a solution of Eq. (24). �

From Theorem 3.1, we can derive the well-posedness conditions for the vector equation (24). Let

Υi : X
2 → Y , i = 1, 2, . . ., be a sequence of mappings, x0 ∈ X , and y ∈ Y . We consider the sequence

of equations

Fi(x)
def
= Υi(x, x) = y, i = 1, 2, . . . . (28)

Corollary 3.1. Let Xk, k = 1,m, be complete metric spaces and mappings Υi : X
2 → Y , i = 1, 2, . . .,

satisfy the conditions of Theorem 3.1, i.e., (m× l)- and (l ×m)-matrices Ki and Bi with nonnegative

components be given, sr(BiKi) < 1, and the relations (25), (26), and (27) be satisfied, where

ri = K(Il −BK)−1ρY (F (x0), y) .

If ri → 0 as i → ∞, then for any i, there exists a solution x = ξi of Eq. (28) such that ξi → x0.
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3.2. Regularity of the Nemytsky operator in products of spaces of measurable functions. We formulate

a vector analog of the results obtained in Sec. 2.2.
Let x = (x1, . . . , xm) be a vector in R

m; we introduce the notation Hmx = (|x1|, . . . , |xm|) ∈ R
m
+ .

Let f : [0, τ ] × R
m → R

l be a function satisfying the Carathéodory conditions. Introduce the
Nemytsky operator, which assigns the measurable function

[0, τ ] � t → (Nfx)(t)
def
= f(t, x(t)) ∈ R

l

to each measurable function x : [0, τ ] → R
m.

The following assertion allows one to verify the validity of the relation (25) for functional equations.

Lemma 3.1. Let

u : [0, τ ] → R
m, y : [0, τ ] → R

l, K : [0, τ ] → R
m×l
+

be measurable functions. Assume that for almost all t ∈ [0, τ ], there exists a vector x ∈ R
m such that

f(t, x) = y(t), Hm (x− u(t)) ≤ K(t)Hl (y(t)− f(t, u(t))) .

Then there exists a measurable function x̂ : [0, τ ] → R
m satisfying the relations

(Nf x̂)(t) = y(t), Hm (x̂(t)− u(t)) ≤ K(t)Hm (y(t)− (Nfu)(t))

almost everywhere on [0, τ ].

3.3. Boundary-value problem for an implicit differential equation. Consider the boundary-value prob-
lem for the implicit differential equation (10), i.e., the problem of finding a solution to this equation on
a certain interval [0, T ] satisfying the boundary condition. For definiteness, we consider the two-point

problem with the condition

Ax(0) +Dx(T ) = γ, (29)

where A,D ∈ R
n×m and γ ∈ R

n). We write the boundary-value problem (10), (29) in the form of the
system of equations

Nf

⎛

⎜
⎝ẋ, x(0) +

(·)∫

0

ẋ(s)ds

⎞

⎟
⎠ = γ, (A+D)x(0) +D

T∫

0

ẋ(s)ds = γ,

for the unknown (ẋ, x(0)). The results on regular mappings acting in products of metric spaces obtained

above are applicable to this system.
Let x0 : [0, T ] → R

m be an absolutely continuous function. We introduce the function

y0 : [0, T ] → R
l, y0(t) = f (t, x0(t)ẋ0(t)) ,

which is obviously measurable. Let

Rj = vrai sup
t∈[0,T ]

|y0(t)− y(t)| < ∞, j = 1, l.

Introduce the vectors R = (Rj)j=1,l, γ0 = Ax0(0) +Dx0(T ), d = Hn(γ0 − γ).

Assume that the rank of the matrix A+D is equal to n. In this case, there exists the right inverse

matrix (A+D)−1
+ ∈ R

m×n. We set

Kb = Hm×n

(
(A+D)−1

+

)
.

For the mapping A +D : Rm → R
n, the Kb-regularity set coincides with the whole space R

m × R
n.

We introduce the notation |D| = Hn×mD.
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Let Kf and M be (m × l)- and (l × m)-matrices with nonnegative components. We define the

2m× (l + n)- and (l + n)× 2m-matrices K and B and their product by the formulas

K =

(
Kf 0
0 Kb

)
, B =

(
TM M
T |D| 0

)
, BK =

(
TMKf MKb

T |D|Kf 0

)
.

Assume that sr(BK) < 1. Then there exists the matrix G = K(Il+n −BK)−1. We write this matrix
in the form

G =

(
G11 G12

G21 G22

)

and define its block structure as follows: G11 and G21 are (m × l)-matrices and G12 and G22 are
(m× n)-matrices. Consider the sets

V (t) = B
Rm (ẋ0(t), G11R+G12d) ,

U(t) = B
Rm (x0(t), G21R+G22d+ tG11R+ tG12d) .

Theorem 3.2. Assume that for some essentially bounded function M : [0, T ] → R+, the relations

(v, y(t) ∈ BKf (f(t, x, ·)) ⊂ R
m × R

l,

Hl (f(t, x, v)− f(t, x̂, v)) ≤ MHm(x− x̂),

|f(t, x0(t), v) − f(t, x0(t), ẋ0(t))| ≤ M(t)

hold for almost all t ∈ R+ and arbitrary x, x̂ ∈ U(t) and v ∈ V (t). Then there exists a solution x of

the boundary-value problem (10), (29) for which ẋ(t) ∈ V (t) and x(0) ∈ B
Rm (γ0, G21R+G22d).

In conclusion, we note that methods based on covering (regular) mappings are also applicable to the
study of implicit functional-differential equations. For example, an equation with a deviating argument

was examined in [13] by using assertions on vector covering mappings.
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