
Journal of Mathematical Sciences, Vol. 259, No. 2, November, 2021

FUNDAMENTAL FREQUENCY SOLUTIONS WITH
PRESCRIBED ACTION VALUE TO NONLINEAR
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We apply the nonlinear generalized Rayleigh quotients method to develop new tools that

can be used to study ground states of nonlinear Schrödinger equations. We introduce

a new type variational functional, the global minimizer of which corresponds to the

so-called fundamental frequency solutions with a prescribed action value. We find the

ground state of the problem and uniquely determine the corresponding values of the

mass, frequency, and action level. Based on this approach, we obtain new results on the

existence and absence of nonnegative solutions to the zero mass problem. Bibliography:

15 titles.

1 Introduction

We consider the nonlinear Schrödinger equation

iψt = Δψ + fμ(|ψ|ψ), (t, x) ∈ R
+ × R

N , (1.1)

with combined power type nonlinearity fμ(|ψ|ψ) = μ|ψ|p−2ψ − |ψ|q−2ψ, where ψ is a complex-

valued function of (t, x), p, q ∈ (2, 2∗ := 2N/(N − 2)), N � 3, and μ ∈ R. For physical

background of such equations we refer the reader to [1] and the references therein. As known

(cf., for example, [2, 3]), the Cauchy problem for Equation (1.1) with the initial data ψ0 ∈
H1 := H1(RN ) is locally well posed and has a unique local solution ψ ∈ C([0, T (ψ0)), H

1) ∩
C1([0, T (ψ0)), H

−1) for some T (ψ0) > 0 that satisfies the energy conservation law

E ≡ Hμ(ψ(t)) :=

∫ (1
2
|∇ψ|2 − Fμ(|ψ|ψ)

)
dx,

where

Fμ(|ψ|ψ) = μ

p
|ψ|p − 1

q
|ψ|q,
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and the mass (charge, particle numbers) conservation law

m ≡ Q(ψ(t)) :=
1

2

∫
|ψ|2dx.

In the present paper, we study the existence of the standing waves ψλ = eiλtu of Equation

(1.1), where the amplitude function u satisfies the equation

−Δu− λu− μ|u|p−2u+ |u|q−2u = 0, x ∈ R
N . (1.2)

Here, λ ∈ R is the standing wave frequency. We note that the corresponding action functional

Sλ,μ(u) := Hμ(u)− λQ(u)

is a conserved quantity. For given λ ∈ R a solution u to Equation (1.2) is called a ground state

if Sλ,μ(u) � Sλ,μ(w) for any w ∈ H1 \ 0 such that DSλ,μ(w) = 0.

We also deal with the so-called prescribed action solution to Equation (1.2), i.e., a function

uS ∈ H1 that for a given action S ∈ R
+ satisfies the conditions

Sλ,μ(u
S) = S, DSλ,μ(u

S) = 0 (1.3)

with some λ � 0. The standard approach to studying Equation (1.2) considers solutions with

prescribed frequency λ, whereas the action S and mass m are unknown (cf., for example, [3, 4]).

An alternative approach is to find a solution u to Equation (1.2) with prescribed mass m = Q(u)

and unknown λ and S (cf., for example, [5, 6]).

We note that the frequency λ can be also considered as the value of the following conserved

quantity:

λ = ΛS
μ(ψ(t)) :=

Hμ(ψ)− S

Q(ψ)
. (1.4)

In what follows, the frequency λ, action S, and mass m are referred to as the main parameters

of the problem.

We note that the approach with prescribed action can be applied to the study of inverse

problems and the so-called spectral and scattering control problems (cf., for example, [7, 8] and

the references therein).

There is an extensive literature on problems with prescribed frequency and mass, but little

is known about problems with prescribed action.

The main goal of this paper is to propose a general approach to finding solutions with

prescribed action. We present a new type variational functional associated with Equation (1.1),

owing to which we find a ground state u of the problem and uniquely determine the corresponding

values of mass m, frequency λ, and action level Sλ,μ of this state.

We pay a special attention to the standing wave ψλ, called the zero frequency solution, of

Equation (1.1) with λ = 0. The corresponding equation (1.2) with λ = 0 for the amplitude

function u is called the zero frequency problem (also known as the zero mass problem; cf. [4, 9]).

Our approach is based on the nonlinear generalized Rayleigh quotient method introduced in

[10]. This method is applied to Equation (1.2) with ΛS
μ(u) taking for the Rayleigh quotient. A

feature of the nonlinear generalized Rayleigh quotient method is that it allows us to find critical

values of parameters of the problem and, at the same time, convert the original variational
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functionals into functionals with simpler geometry (cf. [10]). We note that uS ∈ H1 \ 0 is

a prescribed action solution to Equation (1.2) with action S > 0; namely, uS satisfies (1.3)

if and only if uS is a critical point of ΛS
μ(u) with critical value λ, i.e., DΛS

μ(u
S) = 0 and

λ = ΛS
μ(u

S). For given S > 0 we call a solution û to Equation (1.2) a fundamental frequency

solution (respectively, ei
̂λtû is called a fundamental frequency standing wave of Equation (1.1))

with fundamental frequency λ̂S
μ if λ̂S

μ = ΛS
μ(û) � ΛS

μ(w) for any w ∈ H1\0 such thatDΛS
μ(w) = 0.

For S > 0 we denote by

GS(μ) := {u ∈ H1 \ 0 : ΛS
μ(u) = λ̂S

μ , DΛS
μ(u) = 0} (1.5)

the set of fundamental frequency solutions to Equation (1.2) with fundamental frequency λ̂S
μ .

We will show that the existence of a fundamental frequency solution implies the existence of a

ground state and the converse is also true (cf. Lemma 5.3). In what follows, GS(μ) also denotes

the set of ground states.

In accordance with the nonlinear generalized Rayleigh quotient method [10] the functional

ΛS
μ(u) corresponds to the following nonlinear generalized Rayleigh quotient:

λS
μ(u) :=

cSN

(∫
|∇u|2

) N
(N−2) − μ

2

p

∫
|u|p + 2

q

∫
|u|q

∫
|u|2

, u ∈ H1 \ {0}, S > 0, (1.6)

where

cSN =
N − 2

NN/(N−2)S2/(N−2)
,

for p, q ∈ (2, 2∗) and μ > 0. We will see that any critical point of λS
μ(u) in H1 \ 0 corresponds,

possibly after scaling, to a critical point of ΛS
μ(u) and, consequently, yields a solution to Equation

(1.2) with prescribed action S > 0. Moreover, the nonlinear generalized Rayleigh quotient λS
μ(u)

is characterized by properties similar to the properties of the usual Rayleigh quotient of linear

theory. In particular, as in the spectral theory, the critical value

λ̂S
μ := min

u∈H1\0
λS
μ(u) (1.7)

plays a principal role in the study of Equation (1.2). In the case 2 < q < p < 2∗, we introduce

the additional principal critical value

μ̂S = inf
u∈D\0

μS(u), (1.8)

where D := D1,2(RN ) ∩ Lq(RN ),

μS(u) :=
( c(p, q,N)

S
2(p−q)

(2∗−q)(N−2)

)
(∫

|u|q
) 2∗−p

2∗−q
(∫

|∇u|2
) 2∗(p−q)

2(2∗−q)

∫
|u|p

, u ∈ H1, (1.9)

the constant c(p, q,N) is independent of S (cf. (2.4) below).

The nonlinear generalized Rayleigh quotient μS(u) is characterized by the fact that its critical

points correspond to the zero frequency solutions to Equation (1.2). We will show that μ̂S > 0.
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Our first result concerns the existence of a ground state and a fundamental frequency solution

to Equation (1.2) in the nonzero frequency case λ < 0.

Theorem 1.1. Let S > 0.

1o If 2 < p < q < 2∗, then for any μ > 0 Equation (1.2) has a fundamental frequency solution

ûSμ with prescribe action S and frequency λ̂S
μ = ΛS

μ(û
S
μ) < 0.

2o If 2 < q < p < 2∗, then for any μ > μ̂S Equation (1.2) has a fundamental frequency

solution ûSμ with prescribe action S and frequency λ̂S
μ = ΛS

μ(û
S
μ) < 0.

3o If 2 < q < p < 2∗ and 0 � μ < μ̂S, then Equation (1.2) has no weak solution in H1 with

any action such that S̃ � S and λ < 0.

Furthermore, ûSμ in Assertions 1o and 2o is a ground state of Equation (1.2) and a global mini-

mum point of λS
μ(u) in H1, ûSμ > 0 in R

N , and ûSμ ∈ C2(RN ).

Under the assumptions of Assertions 1o and 2o of Theorem 1.1, the existence of a spherically

symmetric ground state of Equation (1.2) decreasing with respect to r := |x| follows from [4, 11].

The main novelty of Theorem 1.1 is that the ground state ûSμ is obtained as the global minimum

of λS
μ(u) in H1, which helps in further study of Equation (1.2).

Remark 1.1. By [12], Equation (1.2) cannot have weak, spherically symmetric, decreasing

in r := |x| positive solutions if λ > 0 (cf. [4]).

Regarding the existence and nonexistence of a zero frequency solution to Equation (1.2), we

will prove the following assertion.

Theorem 1.2. Let S > 0.

1o If 2 < q < p < 2∗, then for μ = μ̂S the zero frequency problem (1.2) has a fundamental

frequency solution ûS
μ̂S ∈ D with prescribe action S. Furthermore, ûS

μ̂S is a ground state of

Equation (1.2) with λ = 0 and a global minimum point of μS(u) in D , ûS
μ̂S > 0 in R

N , and

ûS
μ̂S ∈ C2(RN ).

2o If 2 < p < q < 2∗, then the zero frequency problem (1.2) has no weak solution in D for any

μ > 0.

The assumption of Assertion 1o of Theorem 1.2 corresponds to the sufficient condition in

[4] for the existence of spherically symmetric ground states of the zero–mass problem in D .

However, it appears that the result on the absence of solutions to problems with zero frequency,

as in Assertion 2o of Theorem 1.2, has not been earlier known. In this paper, we show that this

result admits a fairly simple proof. It should be emphasized that the simplicity of the proof is

achieved owing to the use of the nonlinear generalized Rayleigh quotient.

Remark 1.2. The existence of spherically symmetric ground states of the zero-mass problem

(1.2) including the more general form

−Δu = g(u), u ∈ D1,2,

was proved in [4] under some assumptions including the sufficient condition

lim sup
s→0+

g(s)

s2∗−1
� 0. (1.10)
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In the case 2 < p < q < 2∗, we have lim
s→0+

g(s)/s2
∗−1 = +∞. Thus, from Assertion 2o of Theorem

1.2 it follows that (1.10) is also a necessary condition.

Remark 1.3. In the case of λ = 0 in (1.2), the dependence of the problem on μ can be

neglected since the change of variables u = (1/μ)1/(p−q)v(x/μ(q−2)/2(p−q)) transforms Equation

(1.2) to the equation

−Δv − |v|p−2v + |v|q−2u = 0, x ∈ R
N ,

but this is not the case for the nonlinear Schrödinger equation (1.1).

Definition 1.1. We call uS ∈ GS(μ), S > 0, a physical ground state of Equation (1.2)

with respect to the action value if there exists a sequence uSm ∈ GSm(μ), m = 1, . . . , such that

lim
m→+∞Sm = S, Sm �= S, m = 1, . . . ,, and uSm → uS in H1 as m → +∞. The set of physical

ground states to Equation (1.2) with respect to the action value is denoted by ĜS(μ).

Remark 1.4. Nonphysical ground states, i.e., those in the residual set ĜS,c(μ) := GS(μ) \
ĜS(μ), can be neglected and should not be encountered in nature. Indeed, from Definition 1.1

it follows that for any ground state uS ∈ ĜS,c(μ) of Equation (1.2) there exists a neighborhood

U ⊂ H1 of uS such that for any sufficiently small nonzero perturbation of S the problem (1.2)

has no ground states in U .

Since the function S 
→ μ̂S is invertible, for any μ > 0 we can introduce

S(μ) = μ
N
2

(c(p, q,N)

μ

) (N−2)(2∗−q)
2(p−q)

(1.11)

such that μ̂S(μ) = μ for any μ > 0, where

μ̂S := c(p, q,N)
1

S
2(p−q)

(2∗−q)(N−2)

μp/ρ ∀ S > 0. (1.12)

Theorem 1.3. Let μ > 0.

1o If 2 < p < q < 2∗, then for any S ∈ (0,∞) there exists a physical ground state of Equation

(1.2), i.e., ĜS(μ) �= ∅. Furthermore, there exists a unique mass value mS such that

mS := mS
μ = Q(ûSμ) for all ûSμ ∈ ĜS(μ). Moreover, the function S 
→ mS is continuous on

(0,∞).

2o If 2 < q < p < 2∗, then for any S ∈ (S(μ),∞) there exists a physical ground state of

Equation (1.2), ĜS(μ) �= ∅. Furthermore, there exists a unique mass value mS such that

mS := mS
μ = Q(ûSμ) for all ûSμ ∈ ĜS(μ). Moreover the function S 
→ mS is continuous on

(S(μ),∞).

The paper is organized as follows. In Section 2, we give some preliminary information and

introduce nonlinear generalized Rayleigh quotients. In Section 3, we prove that the functional

λS
μ(u) possesses a global minimizer. In Section 4, we prove that μS(u) attains its global minimum

in D . In Section 5, we study the behavior of solutions depending on the main parameters λ, S,

and m. In Section 6, we complete the proof of Theorems 1.1–1.3.
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2 Nonlinear Generalized Rayleigh Quotients

We denote by H1 := H1(RN ) the Sobolev space of functions equipped with the norm

‖u‖1 =
( ∫

(|u|2 + |∇u|2)
)1/2

and introduce the space D1,2 := D1,2(RN ) := {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )} with the inner

product

(u, v) :=

∫
∇u · ∇v dx

and norm

‖u‖D1,2 :=

∫
|∇u|2 dx.

For the sake of brevity we set ∫
· · · :=

∫

RN

· · · dx.

For a Gateaux differentiable functional F : H1(D1,2) → R we denote by DF (u) the derivative

of F at u ∈ H1(D1,2). For u ∈ H1 we set

uσ := u(x/σ), x ∈ R
N , σ > 0,

T (u) :=

∫
|∇u|2, Q(u) :=

∫
|u|2, A(u) :=

∫
|u|p, B(u) :=

∫
|u|q.

Then we can write

Sλ,μ(u) :=
1

2
T (u)− λ

1

2
Q(u)− μ

1

p
A(u) +

1

q
B(u).

For S � 0 we introduce the so-called action-level Rayleigh quotient

ΛS
μ(u) :=

1
2T (u)− μ1

pA(u) +
1
qB(u)− S

1
2Q(u)

. (2.1)

We note that for any S ∈ R and λ ∈ R

1) ΛS
μ(u) = λ if and only if Sλ,μ(u) = S,

2) DΛS
μ(u) = 0 with ΛS

μ(u) = λ if and only if DSλ,μ(u) = 0.

For u ∈ H1 \ 0, S > 0, σ > 0 we consider

ΛS
μ(uσ) =

σ−2 1
2T (u)− μ1

pA(u) +
1
qB(u)− σ−NS

1
2Q(u)

.

Then the following equalities are equivalent:

d

dσ
(ΛS

μ)(uσ) = 0,
2

Q(u)

(
− σ−3T (u) +

NS

σN+1

)
= 0, σ = σS(u) :=

( NS

T (u)

) 1
N−2

.
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In accordance with the nonlinear generalized Rayleigh quotient method, we can introduce the

nonlinear generalized Rayleigh quotient (cf. (1.6))

λS
μ(u) := λS

μ(uσS(u)) =
2

Q(u)

(cSN
2
T

N
(N−2) (u)− μ

1

p
A(u) +

1

q
B(u)

)
, (2.2)

where

cSN =
(N − 2)

N
N

(N−2)S
2

(N−2)

.

We note that λS
μ(u) is a 0-homogeneous functional with respect to the scale change σ 
→ uσ, i.e.,

λS
μ(uσ) = λS

μ(u) for all σ > 0.

A direct calculation of the derivative DλS
μ(u) yields the following assertion.

Lemma 2.1. We assume that S > 0 and u ∈ H1 \ 0. Then DλS
μ(u) = 0, λS

μ(u) = λ, and

σS(u) = 1 if and only if u is a weak solution to Equation (1.2) with prescribed action S.

By the homogeneity of λS
μ(u), we can assume that any critical point u of λS

μ(u) satisfies the

equality σS(u) = 1.

We consider

λS
μ(tu) =

1

Q(u)

(
t

4
N−2 cSNT

N
(N−2) (u)− μ

2

p
tp−2A(u) +

2

q
tq−2B(u)

)
.

A point t0 > 0 is a fibering critical point of λS
μ(tu) if (dλS

μ(tu)/dt)|t=t0 = 0. We note that if

p, q ∈ (2, 2∗), then 4/(N − 2) > max{p−2, q−2}. Then the following assertions are obvious.

1. If 2 < p < q < 2∗, then for any u ∈ H1 \ 0 and μ > 0 the fibering function λS
μ(tu) has a

unique fibering critical point t = t(u). Furthermore, λS
μ(t(u)u) = min

t>0
λS
μ(tu) < 0 for all

u ∈ H1 \ 0 and μ > 0.

2. If 2 < q < p < 2∗, then for u ∈ H1 \ 0 the fibering function λS
μ(tu) can have at most two

nonzero critical points t0μ(u) and t1μ(u) s.t. 0 < t0μ(u) � t1μ(u).

Thus, the following assertion holds.

Corollary 2.1. If 2 < p < q < 2∗, then λ̂S
μ ≡ inf

u∈H1\0
λS
μ(u) < 0 for any μ > 0.

In the case 2 < q < p < 2∗, we need to know the value of μ if the fibering function λS
μ(tu)

has two distinct critical points t0μ(u) and t1μ(u), i.e., 0 < t0μ(u) < t1μ(u). To find such values, we

consider the Rayleigh quotient

MS(u) :=

cSN
2 T

N
(N−2) (u) + 1

qB(u)
1
pA(u)

.

We note that MS(u) = μ if and only if λS
μ(u) = 0.

For every u ∈ H1 \ 0 we consider the corresponding fibering function

MS(su) :=

cSN
2 s2

∗−pT
N

(N−2) (u) + 1
q s

q−pB(u)
1
pA(u)

, s > 0.
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It is easy to see that the function s 
→ MS(su) has a unique global minimum point sS(u) > 0

such that MS(su) is monotonically decreasing in (0, sS(u)) and monotonically increasing in

(sS(u),+∞). To find sS(u), we calculate

d

ds
MS(su) = 0 ⇔ s2

∗−qcp,q,N,ST
N

(N−2) (u) = B(u),

where cp,q,N,S = cSNq(2∗ − p)/2(p − q). Thus for every u ∈ H1 \ 0 the function MS(su) attains

its global minimum at the unique point

sS(u) =
( B(u)

cp,q,N,ST
N

(N−2) (u)

)1/(2∗−q)
.

Hence we can introduce the nonlinear generalized Rayleigh quotient (cf. (1.9))

μS(u) := MS(sm(u)u) = min
s�0

MS(su) = Cp,q,N,S
B

2∗−p
2∗−q (u)T

2∗(p−q)
2(2∗−q) (u)

A(u)
, (2.3)

where

Cp,q,N,S =
c(p, q,N)

S
2(p−q)

(2∗−q)(N−2)

,

and

c(p, q,N) =
((N − 2)

N
N

(N−2)

q(2∗ − p)

2(p− q)

) (p−q)
(2∗−q) p(2∗ − q)

q(2∗ − p)
. (2.4)

It is easy to see that μS(u) is 0-homogeneous with respect to both actions t 
→ tu and σ 
→ uσ ≡
u(·/σ), i.e.,

μS(uσ) = μS(u), μS(su) = μS(u) ∀σ > 0, s > 0, u ∈ H1 \ 0. (2.5)

A direct calculation of the derivative DμS(u) yields the following assertion.

Lemma 2.2. We assume that DμS(u0) = 0, μS(u0) = μ0, σ(u0) = 1, and t1μ0
(u0) = 1.

Then DSλ,μ(u0) = 0 and Sλ,μ(u0) = S with λ = 0, μ = μ0 ≡ μS(u0).

If 2 < q < p < 2∗, then from the Gagliardo–Nirenberg interpolation inequality it follows that

∫
|u|p � Cgn

( ∫
|∇u|2

) 2∗(p−q)
2(2∗−q)

( ∫
|u|q

) 2∗−p
2∗−q

⇔ A(u) � Cgn(T (u))
2∗(p−q)
2(2∗−q) (B(u))

2∗−p
2∗−q , (2.6)

where the constant Cgn is independent of u ∈ D . Thus, μS(u) can be extended to D \ 0.
We consider the principal critical value (1.8), i.e.,

μ̂S = inf
u∈D\0

μS(u) ≡ Cp,q,N,S inf
u∈D\0

B
2∗−p
2∗−q (u)T

2∗(p−q)
2(2∗−q) (u)

A(u)
.

By (2.3),

μ̂S = inf
u∈D\0

MS(u). (2.7)

Moreover, (2.6) implies μ̂S > 0.
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Proposition 2.1. Let 2 < q < p < 2∗.

(i) If 0 < μ � μ̂S, then λS
μ(t

i
μ(u)u) � 0 for all u ∈ H1 \ 0, i = 0, 1.

(ii) If μ > μ̂S, then there exists u ∈ H1\0 such that the function λS
μ(tu) has two distinct nonzero

critical points t0μ(u) and t1μ(u), 0 < t0μ(u) < t1μ(u) < +∞. Moreover, λS
μ(t

0
μ(u)u) > 0 and

λS
μ(t

1
μ(u)u) < 0.

Proof. Assertion (i) immediately follows from the definition of μ̂S in (1.8).

To prove Assertion (ii), we assume that μ > μ̂S . Then from (1.8) it follows that there

exists u ∈ H1 \ 0 such that μ̂S < μS(u) < μ. Since μS(u) is a global minimum of MS(su)

and MS(su) → +∞ as s ↓ 0 and s → +∞, we infer that the equation MS(su) = μ has two

distinct solutions s0(u) < s1μ(u). Hence λS
μ(s

0
μ(u)u) = λS

μ(s
1
μ(u)u) = 0. Since λS

μ(su) < 0 for s ∈
(s0μ(u), s

1
μ(u)), λ

S
μ(su) attains its minimum value at a point t1μ(u) in the interval (s0μ(u), s

1
μ(u)),

whereas the local maximum point t0μ(u) belongs to (0, s0μ(u)).

Corollary 2.2. Let 2 < q < p < 2∗.

(i) If μ > μ̂S, then λ̂S
μ = inf

u∈H1\0
λS
μ(u) < 0.

(ii) If μ = μ̂S, then λ̂S
μ̂S = inf

u∈H1\0
λS
μ̂S (u) � 0,

(iii) If μ < μ̂S, then λ̂S
μ = inf

u∈H1\0
λS
μ(u) > 0.

Proof. Assertions (i) and (iii) follow from Proposition 2.1. To prove (ii), we assume the

contrary: λ̂S
μ̂S < 0. By (1.7), there exists u ∈ H1 \ 0 such that λ̂S

μ̂S < λS
μ̂S (u) < 0, which implies

MS(u) < μ̂S . Then μS(u) = min
s�0

MS(su) < μ̂S which contradicts the definition of μ̂S .

3 Existence of Global Minimizer of λS
μ(u)

We consider the minimization problem (1.7).

Lemma 3.1. We assume that S > 0 and 2 < p < q < 2∗, μ > 0 or 2 < q < p < 2∗, μ > μ̂S.

Then the following assertions hold:

(1) λ̂S
μ < 0 and there exists a minimizer ûSμ of (1.7), i.e., λ̂S

μ = λS
μ(û

S
μ),

(2) ûSμ is a fundamental frequency solution to Equation (1.2) with prescribe action S. Moreover,

ûSμ > 0 in R
N and ûμ ∈ C2(RN ).

Proof. We simultaneously consider both cases 2 < p < q < 2∗, μ > 0, and 2 < q < p < 2∗,
μ � μ̂S . Corollaries 2.1 and 2.2 imply λ̂S

μ < 0. We consider a minimizing sequence (un) of (1.7),

i.e., λS
μ(un) → λ̂S

μ as n → +∞. Let us show that (un) is bounded in H1. Since the functional

λS
μ(u) is 0-homogenous, we can assume that ‖un‖L2 = 1, n = 1, 2, . . .. Let ‖∇un‖L2 → +∞. By

the Hölder and Sobolev inequalities,

∫
|u|p � C‖u‖κL2‖∇u‖

2∗(2−κ)
2

L2 = C‖∇u‖
2∗(2−κ)

2

L2 , u ∈ H1, (3.1)
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where κ = 2(2∗ − p)/(2∗ − 2) and 0 < C < +∞ is independent of u ∈ H1. Since 2∗ >

2∗(2− κ)/2, we get

λS
μ(un) �

cSN
2
‖∇un‖2∗L2 − μ

1

p

∫
|un|p

� cSN
2
‖∇un‖2∗L2 − μC

1

p
‖∇un‖

2∗(2−κ)
2

L2 → +∞, ‖∇un‖L2 → +∞, (3.2)

and arrive at a contradiction. Thus, (un) is bounded in H1. By the Sobolev inequality, the

norms ‖un‖Lp and ‖un‖Lq are also bounded. By the Banach–Alaoglu and Sobolev embedding

theorems, there exists a subsequence, still denoted by (un), such that un ⇀ ûSμ in H1(RN ),

un → ûSμ in Lγ
loc(R

N ), 1 � γ < 2∗, and un → ûSμ almost everywhere on R
N for some ûSμ ∈ H1.

Let us show that ûSμ �= 0. We note that the sequence ‖un‖pLp ≡ A(un) is separated from zero.

Indeed, if A(un) → 0 as n → +∞, then

λ̂S
μ = lim

n→+∞
2

Q(un)

(cSN
2
‖∇un‖2∗L2 − μ

1

p

∫
|un|p + 1

q

∫
|un|q

)
� 0.

However, λ̂S
μ < 0, and we arrive at a contradiction.

Lemma 3.2 (cf. [13, Lemma I.1]). We assume that r > 0, 1 � γ < 2∗, (un) is a bounded in

Lγ(RN ), |∇un| is bounded in L2(RN ), and

sup
y∈RN

∫

B(y;r)

|un|γ → 0, n → ∞.

Then un → 0 in Ll(RN ) for any l ∈ (γ, 2∗).

Let r > 0. We note that

δ := lim inf
n→∞ sup

y∈RN

∫

B(y;r)

|un|γ > 0, 1 � γ < p.

Indeed, if this is not the case, then un → 0 in Lp(RN ) in view of Lemma 3.2. However, this is

impossible by the above. Thus, passing to a subsequence if necessary, we infer that there exists

(yn) ⊂ R
N such that the integral

∫

B(yn;r)

|un|γ > δ/2, n = 1, . . . ,

exists. Hence we can assume, setting un := un(·+ yn) if necessary, that

∫

B(0;r)

|un|γ > δ/2, n = 1, . . . , 1 � γ < p.

Thus, ûSμ �= 0.
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Lemma 3.3 (cf. [13]). We assume that (un) is bounded in Lγ(RN ), 1 � γ < +∞, and

un → u almost everywhere on R
N . Then

lim
n→+∞ ‖un‖γLγ = ‖u‖γLγ + lim

n→+∞ ‖un − u‖γLγ . (3.3)

From Lemma 3.3 it follows that

lim
n→+∞ ‖∇un‖2L2 = ‖∇ûSμ‖2L2 + lim

n→+∞ ‖∇(un − ûSμ)‖2L2 ,

lim
n→+∞ ‖un‖pLp = ‖ûSμ‖pLp + lim

n→+∞ ‖un − ûSμ‖pLp ,

lim
n→+∞ ‖un‖qLq = ‖ûSμ‖qLq + lim

n→+∞ ‖un − ûSμ‖qLq ,

Q := lim
n→+∞ ‖un‖2L2 = ‖ûSμ‖2L2 + lim

n→+∞ ‖un − ûSμ‖2.

Since

(‖∇ûSμ‖2L2 + ‖∇(un − ûSμ)‖2L2)
N

(N−2) � ‖∇ûSμ‖2
∗

L2 + ‖∇(un − ûSμ)‖2
∗

L2 ,

we have

λ̂S
μ = lim

n→+∞λS
μ(un) �

cSN‖∇ûSμ‖2
∗

L2 − μ2
p‖ûSμ‖pLp +

2
q‖ûSμ‖qLq

Q

+
cSN lim

n→+∞ ‖∇(un − ûSμ)‖2
∗

L2 − μ2
p lim
n→+∞ ‖un − ûSμ‖pLp +

2
q lim
n→+∞ ‖un − ûSμ‖qLq

Q
.

Consequently, λ̂S
μ �= 0 which implies

λ̂S
μ � 1

Q
λ̂S
μ · ‖ûSμ‖2L2 +

1

Q
lim
n→∞

(
cSN‖∇(un − ûSμ)‖2

∗
L2 − μ

2

p
‖un − ûSμ‖pLp +

2

q
‖un − ûSμ‖qLq

)

� 1

Q
(λ̂S

μ · ‖ûSμ‖2L2 + λ̂S
μ lim
n→∞ ‖un − ûSμ‖2L2) = λ̂S

μ

lim
n→+∞ ‖un‖2L2

Q
= λ̂S

μ .

However, this is possible only in the case of equality. Hence un → ûSμ strongly in H1 and ûSμ is

a minimizer of (1.7).

By the homogeneity of λS
μ(u), we can assume that σS(ûSμ) = 1. By Lemma 2.1, we have

DSλ,μ(û
S
μ) = 0 and Sλ,μ(û

S
μ) = S, where λ = λ̂S

μ . Since λS
μ(|u|) = λS

μ(u) for u ∈ H1 \ 0, we can

assume that ûSμ � 0 in R
N .

Since ûμ ∈ H1(RN ), from the Brézis–Kato theorem [14] and Lγ estimates for elliptic problems

[15] it follows that ûSμ ∈ W 2,γ
loc (R

N ) for any γ ∈ (1,+∞). By the regularity theory for solutions

to elliptic problems, ûμ ∈ C2(RN ). By the Harnack inequality, ûSμ > 0 in R
N .

Proposition 3.1. Let S > 0.

1o If 2 < p < q < 2∗, then λ̂S
μ → 0 as μ → 0.

2o IF 2 < q < p < 2∗, then λ̂S
μ → 0 as μ ↓ μ̂S.
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Proof. We first prove Assertion 2o. We fix S > 0. By Lemma 3.1, for any μ > μ̂S there

exists a minimizer ûSμ of (1.7) and λS
μ(û

S
μ) < 0. By the homogeneity of λS

μ(u), we can assume

that Q(ûSμ) = 1 for all μ > μ̂S . By (2.2),

λS
μ(û

S
μ)− λS

μ̂S (û
S
μ) = −2(μ− μ̂S)

1

p
A(ûSμ)

Arguing as in the proof of Lemma 3.1, we see that the set (ûSμ) is bounded in H1 for μ sufficiency

close to μ̂S . By (3.1), the sequence A(ûSμ) is also bounded. Hence λS
μ(û

S
μ) − λS

μ̂S (û
S
μ) → 0 as

μ ↓ μ̂S . By Corollary 2.2, λS
μ̂S (û

S
μ) � 0, whereas λS

μ(û
S
μ) < 0, which implies λ̂S

μ → 0 as μ ↓ μ̂S .

The proof of Assertion 1o is similar. We only note that, in this case, λS
μ̂S (u) is replaced by

λS
0 (u) := λS

μ(u)|μ=0. We note that inf
u∈H1\0

λS
0 (u) = 0 in view of (2.2).

4 Existence of Solution to Zero Frequency Problem in D

In this section, we establish the existence of a fundamental frequency solution to the zero

frequency problem (1.2) by using the minimization problem (1.8). We denote

β :=
2q(2∗ − p)

2∗(p− q)
, ρ :=

2p(2∗ − q)

2∗(p− q)
,

μ(u) :=
‖u‖βLq‖∇u‖2L2

‖u‖ρLp(u)
≡ (S

2(p−q)
(2∗−q)(N−2)μS(u)/c(p, q,N))ρ/p, u ∈ H1 \ 0,

and consider

μ = inf
u∈D\0

μ(u). (4.1)

Then

μ̂S := c(p, q,N)
1

S
2(p−q)

(2∗−q)(N−2)

μp/ρ ∀ S > 0. (4.2)

Lemma 4.1. Let 2 < q < p < 2∗. Then there exists a minimizer ûS
μ̂S ∈ D of (1.8) such

that ûS
μ̂S weakly satisfies to Equation (1.2) with λ = 0 and μ = μ̂S. Moreover, ûSμ > 0 in R

N ,

ûμ ∈ C2(RN ), and S0,μ̂S (ûSμ̂S ) = S.

Proof. Let (vi) be a minimizing sequence of (4.1), i.e., μ(vi) → μ as i → ∞. Set ui =

ti(vi)σi , i = 1, 2, . . ., where ti = (‖vi‖qLq/‖vi‖pLp)1/(p−q) and σi = (‖vi‖pqLq/‖vi‖qpLp)1/N(p−q). Then

‖ui‖Lp = 1 and ‖ui‖Lq = 1, i = 1, . . .. By the homogeneity of μ(u), (ui) is a minimizing sequence

of (4.1). Since μ < +∞, (‖∇ui‖L2) is bounded. Thus, (ui) is bounded in D and in H1
loc. By the

Banach–Alaoglu theorem and the Sobolev embeddings, there exists a subsequence, still denoted

by (ui), such that ui ⇀ û∗ in D , ui → û∗ in Lγ
loc, 1 � γ < 2∗, ui → û∗ almost everywhere on

R
N for some û∗ ∈ D . Since the sequence ‖ui‖Lq = B(ui) is bounded, we can apply Lemma 3.2.

Arguing as in the proof of Lemma 3.1, we see that for any fixed r > 0 there exists (yi) ⊂ R
N

such that ∫

B(yi;r)

|ui|q > δ/2, i = 1, . . . .
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Setting ui := ui(·+ yn), if necessary, we get
∫

B(0;r)

|ui|q > δ/2, i = 1, . . . ,

which implies û∗ �= 0. By Lemma 3.3, we have

‖∇û∗‖2L2 = lim
i→∞

‖∇ui‖2L2 − lim
i→∞

‖∇(ui − û∗)‖2L2 , (4.3)

‖û∗‖pLp = lim
i→∞

‖ui‖pLp − lim
i→∞

‖ui − û∗‖pLp , (4.4)

‖û∗‖qLq = lim
i→∞

‖ui‖qLq − lim
i→∞

‖ui − û∗‖qLq . (4.5)

Let lim
i→∞

‖∇(ui − û∗)‖2L2 > 0, and let lim
i→∞

‖∇(ui − û∗)‖2L2 > 0. Then

μ = lim
i→∞

‖∇ui‖2L2 = ‖∇û∗‖2L2 + lim
i→∞

‖∇(ui − û∗)‖2L2

� μ
(‖û∗‖ρLp

‖û∗‖βLq

+ lim
i→∞

‖ui − û∗‖ρLp

‖ui − û∗‖βLq

)
= μ

(‖û∗‖ρLp

‖û∗‖βLq

+
(1− ‖û∗‖pLp)ρ/p

(1− ‖û∗‖qLq)β/q

)
> μ, (4.6)

and we arrive at a contradiction. Hence

‖∇û∗‖2L2 = lim
i→∞

‖∇ui‖2L2 = μ, ‖û∗‖pLp = lim
i→∞

‖ui‖pLp , ‖û∗‖qLq = lim
i→∞

‖ui‖qLq .

Consequently, û∗ is a minimizer of (4.1). By the homogeneity of μS(u), any function sû∗σ with

s > 0, σ > 0 is also a minimizer of (1.8). Hence we can find a minimizer ûS
μ̂S ∈ D of (1.8)

satisfying σS(ûS
μ̂S ) = 1 and sS(ûS

μ̂S ) = 1. Since DμS(ûS
μ̂S ) = 0, we have DS0,μ(û

S
μ̂S ) = 0. The

further argument is the same as in the proof of Lemma 3.1.

5 Further Properties of Solutions

In this section, we study the behavior of solutions depending on the main parameters λ, S,

and m of the problem. In Sections 2–4, for every given value of S Equation (1.2) was considered

with respect to the parameter μ > 0. In this section, for a given μ > 0 we consider Equation

(1.2) with respect to S.

From Corollary 2.2 and Lemma 3.1 we obtain the following assertion.

Corollary 5.1. 1o If 2 < p < q < 2∗ and μ > 0, then GS(μ) �= ∅ for any S > 0.

2o If 2 < q < p < 2∗ and μ > 0, then

(i) GS(μ) �= ∅ for any S � S(μ),

(ii) Equation (1.2) has no solution with λ � 0 and S ∈ (0, S(μ)).

Proof. Assertions 1o and 2o (i) immediately follow from Lemma 3.1. Let us prove Assertion

2o (ii). Indeed, if there exists a solution u0 to Equation (1.2) with Sλ,μ(u0) = S ∈ (0, S(μ)), then

μ < μ̂S in view of (1.11). By Corollary 2.2, we get λ = ΛS(u0) = λS(u0) > 0, which contradicts

the assumption λ � 0.
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Proposition 5.1. Let p, q ∈ (2, 2∗). If μ > 0, S2 > S1 > 0, and GSj (μ) �= ∅, j = 1, 2, then

−2
(S2 − S1)(S2/S1)

N/(N−2)

Q(ûS2
μ )

< λ̂S2
μ − λ̂S1

μ < −2
(S2 − S1)(S1/S2)

N/(N−2)

Q(ûS1
μ )

(5.1)

for all û
Sj
μ ∈ GSj (μ), j = 1, 2.

Proof. We note that for û
Sj
μ ∈ GSj (μ) we have σSj (û

Sj
μ ) = 1, j = 1, 2. Hence

λ̂S2
μ = λS2

μ (ûS2
μ ) � λS2

μ (ûS1
μ ) = ΛS2

μ ((ûS1
μ )

σS2 (û
S1
μ )

) = ΛS1
μ ((ûS1

μ )
σS2(û

S1
μ )

)− 2
S2 − S1

Q((ûS1
μ )

σS2((û
S1
μ )

)
.

Since σS1(ûS1
μ ) is a global maximum point of R+ � σ 
→ ΛS1((ûS1

μ )σ), we have

λ̂S1
μ = ΛS1

μ ((ûS1
μ )

σS1 (û
S1
μ )

) > ΛS1
μ ((ûS1

μ )
σS2 (û

S1
μ )

).

Hence

λ̂S2
μ − λ̂S1

μ < −2
S2 − S1

Q((ûS1
μ )

σS2 (û
S1
μ )

)
.

Taking into account that

1

Q((ûS1
μ )

σS2 (û
S1
μ )

)
=

T (ûS1
μ )

N
(N−2)

(NS2)N/(N−2)Q(ûS1
μ )

, σS1(ûS1) =
( NS1

T (ûS1
μ )

) 1
N−2

= 1,

we obtain the second inequality in (5.1). The first one is proved in the same way.

Corollary 5.2. We assume that μ > 0 and 2 < p < q < 2∗ (2 < q < p < 2∗). Then the func-

tion S 
→ λ̂S
μ is continuous and monotonically decreases on (0,∞) ( (S(μ),+∞)). Furthermore,

λ̂S
μ → 0 as S → 0 (S → S(μ)).

Proof. Let S0 ∈ (0,∞) ((S(μ),+∞)). By (5.1),

S2∗
2

Q(ûS2
μ )

>
S2∗
1

Q(ûS1
μ )

∀ S2 > S1 > 0, û
Sj
μ ∈ GSj (μ), j = 1, 2,

which implies that the set (Q(ûSμ))S∈(S0−ε,S0+ε) is bounded and separated from zero for any

S0 > 0 and ε > 0 such that S0 > ε (S0 > S(μ) + ε). By (5.1), λ̂S
μ → λ̂S0

μ as S → S0. By

(5.1), λ̂S
μ is monotonically decreasing on (0,∞) ((S(μ),+∞)). The further consideration follows

Proposition 3.1.

Lemma 5.1. We assume that μ > 0 and 2 < p < q < 2∗ (2 < q < p < 2∗). Then ĜS(μ) �= ∅

for all S ∈ (0,+∞) (S ∈ (S(μ),+∞)).

Proof. We note that for 2 < p < q < 2∗ from Corollary 5.1 it follows that GS(μ) �= ∅ for

any μ > 0 and S ∈ (0,+∞), whereas for 2 < q < p < 2∗ the inequality S > S(μ) implies μ̂S < μ

in view of (1.11). Then Lemma 3.1 yields GS(μ) �= ∅ .

Let S ∈ (0,+∞) (S ∈ (S(μ),+∞)). We assume that the sequence (Sm) is such that Sm → S.

We fix an arbitrary ûSm
μ ∈ GSm(μ), m = 1, . . .. By the homogeneity of λS

μ(u), we can assume
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that Q(ûSm
μ ) = 1, m = 1, . . .. Arguing as in the proof of Lemma 3.1, we conclude that (ûSm

μ ) is

bounded in H1. By (2.2), λSm
μ (ûSm

μ ) − λS
μ(û

Sm
μ ) = (cSm

N − cSN )T
N

(N−2) (ûSm
μ ), m = 1, . . .. By the

continuity of λ̂
(·)
μ , the last equality implies λS

μ(û
Sm
μ ) → λ̂S

μ , i.e., (û
Sm
μ ) is a minimizing sequence

of λS
μ(u). Arguing as in the proof of Lemma 3.1, we infer that there exists a subsequence, still

denoted by (ûSm
μ ), such that ûSm

μ → ûSμ strongly in H1 for some ûSμ ∈ GS
μ . By Definition 1.1,

this means that ûSμ ∈ ĜS(μ). Hence ĜS(μ) �= ∅.

Lemma 5.2. Let μ > 0.

1o If 2 < p < q < 2∗, then the function λ̂S
μ is differentiable at every S ∈ (0,+∞) and

d

dS
λ̂S
μ = −2

1

Q(ûSμ)
(5.2)

for all S ∈ (0,+∞), ûSμ ∈ ĜS(μ). Furthermore, for every S ∈ (0,+∞) there is a constant

mS > 0 such that

mS := mS
μ = Q(ûSμ) ∀ûSμ ∈ ĜS(μ); (5.3)

moreover, S 
→ mS is continuous on (0,∞).

2o If 2 < q < p < 2∗, then the function λ̂S
μ is differentiable at every S ∈ (S(μ),+∞) and (5.2)

holds for all ûSμ ∈ ĜS(μ) and S ∈ (S(μ),+∞). Furthermore, for every S ∈ (S(μ),+∞)

there is a constant mS > 0 such that (5.3) holds; moreover, S 
→ mS is continuous on

(0,∞).

Proof. We will prove both assertions 1o and 2o simultaneously.

We assume that μ > 0 and 2 < p < q < 2∗ (2 < q < p < 2∗). For every S ∈ (0,+∞)

(S ∈ (S(μ),+∞)) we take an arbitrary ûSμ ∈ ĜS(μ) so that we have a uniquely defined branch

of the solution (ûSμ), S ∈ (0,+∞) (S ∈ (S(μ),+∞)).

We fix S ∈ (0,+∞) (S ∈ (S(μ),+∞)) and consider a sequence (Sm) such that Sm → S as

m → +∞. From the proof of Corollary 5.2 we know that the sequence (Q(ûSm
μ )) is bounded

and separated from zero. Since σSm(ûSm
μ ) = 1, i.e., ‖∇ûSm

μ ‖2L2 = NSm, m = 1, . . . , we conclude

that the set (ûSm
μ ) is bounded in H1. Arguing as in the proof of Lemma 3.1, we conclude that

there exists a limit point ûSμ ∈ ĜS(μ) such that û
Smk
μ → ûSμ in H1 for some subsequence (mk)

such that mk → +∞ as k → +∞. Therefore, (5.1) implies the existence of the derivative
d

dS
λ̂S
μ

satisfying (5.2) with some ûSμ ∈ ĜS(μ). Thus, the derivative
d

dS
λ̂S
μ exists for any S ∈ (0,+∞)

(S ∈ (S(μ),+∞)). We take an arbitrary ûSμ ∈ ĜS(μ). By Definition 1.1, there exists a sequence

uSn ∈ GSn(μ), Sn �= S, n = 1, 2, . . . , such that lim
n→+∞Sn = S and uSn → ûSμ in H1 as n → +∞.

As above, (5.1) implies (5.2). Thus, the equality (5.2) holds for any ûSμ ∈ ĜS(μ).

Since λ̂
(·)
μ is well defined, the map S 
→ d

dS
λ̂S
μ is uniquely defined and, consequently, the

right-hand side of (5.2) is also uniquely defined. Thus, for every S ∈ (0,+∞) (S ∈ (S(μ),+∞))

there exists a unique constant mS > 0 such that mS
μ = Q(ûSμ) for every ûSμ ∈ ĜS(μ). From the

convergence û
Smk
μ → ûSμ in H1 it follows that the function S 
→ mS is continuous on (0,+∞)

((S(μ),+∞)).
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Corollary 5.3. We assume that μ > 0 and 2 < p < q < 2∗. Then lim
S→+∞

λ̂S
μ = −∞.

Moreover, there exists the inverse λ 
→ Sλ of λ̂S
μ such that λ̂Sλ

μ = λ for all λ ∈ (−∞, 0).

Moreover, Sλ is continuous and monotonically increases on (−∞, 0).

Proof. Since S 
→ λ̂S
μ is continuous and monotonically decreases on (0,∞) ((S(μ),+∞)), we

can conclude that lim
S→+∞

λ̂S
μ = λμ � −∞ exists. Assume, contrary to our claim, that λμ > −∞.

We take λ < λμ. Since 2 < p < q < 2∗, there exists a solution ûλ ∈ H1 \ 0 to Equation

(1.2) in view of the Berestycki–Lions theorem [4]. We denote S = Sλ,μ(ûλ). Then ΛS
μ(ûλ) = λ.

Since σS(ûλ) = 1, we have ΛS
μ(ûλ) = λS

μ(ûλ) = λ. Hence λ � λ̂S
μ > λμ, which contradicts the

assumption λ < λμ. The rest of the proof immediately follows from Corollary 5.2.

Lemma 5.3. 1o We assume that μ > 0, p, q ∈ (2, 2∗), and S > 0 is such that there exists

a fundamental frequency solution ûSμ to Equation (1.2) with fundamental frequency level

λ := λ̂S
μ = λS

μ(û
S
μ) < 0. Then ûλ,μ := ûSμ is a ground state of Equation (1.2) with ground

level S.

2o We assume that μ > 0, 2 < q < p < 2∗, and λ ∈ (−∞, 0) and ûλ,μ is a ground state of

Equation (1.2) with ground level S = Sλ,μ(ûλ). Then ûSμ := ûλ,μ is a fundamental frequency

solution to Equation (1.2) with fundamental frequency level λ = λ̂S
μ .

Proof. We assume that Assertion 1o fails. Then there exists a solution w to Equation (1.2)

with λ = λ̂S
μ such that S1 := S

̂λS
μ ,μ

(w) < S
̂λS
μ ,μ

(ûS) = S. We note that ΛS1
μ (w) = λ̂S

μ and

DΛS1
μ (w) = 0. Hence σS1(w) = 1. Therefore, λS1

μ (w) = ΛS1
μ (w). Hence

λ̂S1
μ = min

u∈H1(RN )\0
λS1
μ (u) � λS1

μ (w) = ΛS1
μ (w) = λ̂S

μ ,

which contradicts the fact that λ̂S
μ is monotonically decreasing and S1 < S by Lemma 5.2.

To prove Assertion 2o, we assume that 2 < q < p < 2∗, μ > 0, λ ∈ (−∞, 0), and ûλ,μ is

a ground state of Equation (1.2) with ground level S = Sλ,μ(ûλ,μ). Since σS(ûλ,μ) = 1, we

infer that ΛS
μ(ûλ,μ) = λS

μ(ûλ,μ) = λ. Thus, λ � λ̂S
μ . By Corollary 5.3, there exists Sλ > S(μ)

and a fundamental frequency solution ûSλ
μ such that λ = λ̂Sλ

μ and Sλ,μ(û
Sλ
μ ) = Sλ. Then

Sλ � S = Sλ,μ(ûλ,μ) since ûλ,μ is a ground state of Equation (1.2). Consequently, λ̂S
μ � λ̂Sλ

μ = λ

by Proposition 5.1. At the same time, by the above, λ � λ̂S
μ and, consequently, λ = λ̂S

μ , i.e.,

ûλ,μ is a fundamental frequency solution to Equation (1.2) with fundamental frequency λ.

Corollary 5.4. We assume that 2 < q < p < 2∗ and μ > 0. For any given λ ∈ (−∞, 0)

there exists a ground state ûλ of Equation (1.2); moreover, ûλ ∈ ĜS(μ) with S := Sλ,μ(ûλ).

Proof. Let λ ∈ (−∞, 0). By Corollary 5.3, there exists a unique S := Sλ ∈ (S(μ),+∞)

such that λ = λ̂S
μ . By Lemma 3.1, there exists a fundamental frequency solution ûSμ ∈ ĜS(μ) to

Equation (1.2). By Assertion 1o of Lemma 5.3, we conclude that ûλ := ûSμ is a ground state of

Equation (1.2) with frequency λ and action level S.
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6 Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. We assume that 2 < p < q < 2∗, μ > 0 or 2 < q < p < 2∗,
μ > μ̂S . By Lemma 3.1, there exists a fundamental frequency solution ûSμ to Equation (1.2)

with prescribe action S and frequency λ = λ̂S
μ < 0. Moreover, ûSμ > 0 in R

N and ûμ ∈ C2(RN ).

By Lemma 5.3, ûSμ is a ground state of Equation (1.2).

It remains to prove Assertion 3o. We assume that 2 < q < p < 2∗, 0 � μ < μ̂S . Assume,

contrary to our claim, that there exists a weak solutions ũ ∈ H1(RN ) to Equation (1.2) such

that Λ
˜S
μ(ũ) =: λ < 0 with S̃ � S. Then 0 > Λ

˜S
μ(ũ) = λ

˜S
μ(ũ) � λS

μ(ũ), and thus MS(ũ) < μ < μ̂S

which contradicts (2.3).

Proof of Theorem 1.2. To prove Assertion 1o, we assume that 2 < q < p < 2∗, S > 0. By

Lemma 4.1, there exists a minimizer ûS
μ̂S ∈ D of (1.8) such that ûS

μ̂S weakly satisfies to Equation

(1.2) with λ = 0 and μ = μ̂S . Moreover, ûSμ > 0 in R
N , ûSμ ∈ C2(RN ), and S0,μ̂S (ûSμ̂S ) = S.

Let us show that ûS
μ̂S is a ground state of Equation (1.2). Assume the contrary, i.e., there

exists a weak solution v ∈ D\0 to Equation (1.2) such thatDS0,μ̂S(v) = 0 and S̃ := S0,μ̂S (v) < S.

Then M
˜S(v) = μ̂S and MS(v) < M

˜S(v) = μ̂S since S̃ < S, which contradicts (2.3).

To show that ûS
μ̂S is a fundamental frequency solution, it suffices to note that Equation (1.2)

with μ = μ̂S cannot have solution with frequency λ < 0 in view of Corollary 2.2.

To prove Assertion 2o, we assume that 2 < p < q < 2∗ and μ > 0. Assume the contrary,

i.e., Equation (1.2) with λ = 0 has a weak solution uμ ∈ D . Then 0 < S0,μ(uμ) < +∞, and for

S := S0,μ(uμ) we have MS(uμ) = μ, DMS(uμ) = 0. Hence
d

ds
MS(suμ)|s=1 = 0. However, in

the case 2 < p < q < 2∗, the function s 
→ MS(suμ) cannot have nonzero critical points.

Proof of Theorem 1.3. The required assertion follows from Lemmas 5.1 and 5.2.
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