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STABILITY OF SYSTEMS COMPOSED OF THE SHELLS OF REVOLUTION WITH 
VARIABLE GAUSSIAN CURVATURE 

Ya. М. Grigorenko,1  О. І. Bespalova,1  and  N. P. Boreiko1,2 UDC 539.3 

We analyze the stability of elastic systems composed of the shells of revolution with variable curvature 
and complex structures in the field of conservative axisymmetric loads of different nature.  Within the 
framework of classical and refined theories of shells, we determine the limit and bifurcation critical val-
ues of the acting loads based on the geometrically nonlinear statement of the problem and a criterion  
of dynamic stability.  To solve the corresponding nonlinear and eigenvalue problems, we propose to use 
a numerical-analytic approach based on their rational reduction to one-dimensional linear boundary-
value problems in the meridional coordinate and their numerical solution by the discrete-orthogonaliza-
tion method.  We present test examples that confirm the applicability of the proposed procedure to the 
analyzed class of problems.  The limit and bifurcation values of the critical loads in the shell system are 
analyzed depending on its geometric parameters. 

Keywords:  compound shell of revolution, axisymmetric loads, bifurcation and limit critical values, 
numerical-analytic approach, analysis. 

The present paper is a generalization of the works [2, 25, 26] devoted to the study of stability of the shell el-
ements aimed at the subsequent extension of the class of analyzed problems, investigation of more complicated 
objects, and improvement of the corresponding numerical procedures. 

As in the works [1–3, 25, 26], we study elastic inhomogeneous anisotropic systems formed by the shells of 
revolution of different shapes and structures that can be used to model numerous objects of contemporary engi-
neering (spacecrafts and underwater vehicle, protective equipment of nuclear reactors, reservoirs of different 
destinations, etc.).  The analysis of stability of these systems is an important factor in the evaluation of their 
strength, reliability, and functional efficiency under the actual conditions of operation. 

The results of investigations in this field of mechanics of deformable solids are described in numerous fun-
damental monographs and separate papers, where one can find the foundations of theory of static stability and 
the analysis of specific features of its investigation, various models of deformation of the shells, theoretical 
and experimental results of evaluation of the critical loads, the analysis of the influence of the structure of mate-
rials and the presence of imperfections or various inclusions, etc., on the stability of shell elements [4, 9, 20, 22, 
28, 37].  Until recently, the main attention of the researchers was mainly focused on the shells of simple shapes, 
i.e., plates, cylinders, cones, and spherical segments, subjected to the action of various kinds of loads (force, 
temperature, and aerodynamic) for different characteristics of composite materials [16, 19, 23, 24, 30, 32–35].  
Thus, the work [16] is devoted to the analysis of buckling of a simply supported rectangular plate with stiffening 
ribs.  The problem of stability of cylindrical and conic shells interacting with a flow of liquid was studied in [19].  
In [35], one can find the results of experimental and theoretical investigations of the critical loads of composite 
                                                        
1 S. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kyiv, Ukraine. 
2 Corresponding author; e-mail: nataliya.petrivna@ukr.net. 

 
Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 1, pp. 127–142, January–March, 2019.  Original arti-
cle submitted February 22, 2019. 

  1072-3374/21/2584–0527      ©  2021    Springer Science+Business Media, LLC 527 

DOI 10.1007/s10958-021-05564-3



528 YA. М. GRIGORENKO,  О. І. BESPALOVA,  AND  N. P. BOREIKO 

pipelines under the action of uniform external hydrostatic pressure.  The influence of wind loads and tempera-
ture fields on the stability of cylinders was studied in [23, 24].  In [34], investigations of the same kind were car-
ried out for functionally graded piezoelectric materials.  The detailed analysis of the subcritical and supercritical 
states mainly of cylindrical shells (open, closed, and with elliptic cross sections) subjected to the action of 
nonaxisymmetric, cyclically symmetric, or localized loads for various conditions of fastening of the boundary 
contour was presented in [30].  For spherical shells, similar investigations were carried out in [32].  

We especially mention the works devoted to the analysis of stability of the shells made of nanomaterials and 
their applications in modern structures, which now become quite actual [10, 15, 40].  

A separate, relatively insignificant, part of scientific investigations carried out in this field is formed by the 
works devoted to the analysis of stability of elastic systems formed by mated shells of different shapes.  In this 
case, additional difficulties are caused by the formulation and rational accounting of the conditions of conjuga-
tion of separate constitutive elements in the solution of the corresponding problems.  Furthermore, in the joints 
of these shells, we, as a rule, observe the formation of additional stresses that may exert unpredicted influence 
on the stability of the entire system.  For plates and shells, the problem of formulation and conditions of conju-
gation conditions on the basis of the finite-element method was considered in [29, 42].  In the comprehensive 
paper [31], one can find a survey of works devoted to the problems of nonlinear (linear) deformation and stabil-
ity of systems formed by cylinders, cones, and spherical segments (coaxial and out-of-alignment), i.e., systems 
with zero or constant Gaussian curvature.  Further, compound systems with elements of cylindrical and conic 
shapes were considered, in particular, in [36] and [38].  Moreover, systems with elements of the spherical type in 
static fields of different kinds were studied for different properties of the materials in [27, 41].  It is worth noting 
that, for systems of conjugate shells with variable curvatures, investigations of this kind are practically absent 
despite the fact that these objects are often encountered in building practice (domes of buildings for public wor-
ship and government institutions), in space technology (spacecraft bodies), and in the construction of vessels of 
various destinations (pressure balloons). 

The investigations of the static stability of shells are based on the analysis of diagrams of their equilibrium 
states with determination of the characteristic points, i.e., bifurcation and limit critical values of the acting loads.  
The determination of the limit critical loads is based on the use of nonlinear statements of the corresponding 
problems.  Moreover, to find the bifurcation values, it is customary to use the energy and static criteria and 
(much less frequently) the dynamic criterion.  The last two criteria in conservative systems are identical from the 
viewpoint of the mechanics of deformable systems [5].  However, they differ in the form of their computational 
realizations, which may serve as an additional factor increasing the reliability of the obtained results.  The appli-
cation of these criteria to shells is connected with finding nontrivial solutions of a homogeneous two-dimen-
sional linearized boundary-value problem, which can be reduced by the well-known methods of applied mathe-
matics to the eigenvalue problem for algebraic or ordinary differential equations.  In this case, it is customary to 
use different modifications of the finite-element and finite-difference methods, variational-difference and projec-
tive approaches, the methods of reduction of dimensionality, etc. [8, 9, 12, 16, 17, 21, 29, 30, 42]. 

In the present work, for elastic systems formed by compound shells of revolution, including elements of 
variable curvature and complex structure in thickness, we analyze the limit (nonlinear statement) and bifurcation 
(dynamic criterion of stability) critical values of the acting conservative axisymmetric loads within the frame-
work of the classical and refined theories of shells.  To solve the corresponding nonlinear boundary-value prob-
lems and eigenvalue problems, we use a numerical-analytic approach based on the rational reduction (by analyt-
ical methods) of the original problem to one-dimensional linear boundary-value problems along the meridian 
(generatrix) and their practically exact numerical solution by the orthogonal-sweep method [7, 18].  Thus, in the 
indicated coordinate direction, the variability of the geometric and stiffness characteristics of the shells is taken 
into account in the continual form, which is especially important for joining dissimilar elements into a single 
system. 
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Fig. 1 

1.  Statement of the Problem and the General Characteristic of the Procedure of Its Solution 

In the present work, we study an object traditional for numerous works of the authors [1–3, 25, 26], i.e., 
an elastic system of coaxial conjugate shells of revolution whose initial surface  γ = 0  across the thickness is 
referred to an orthogonal curvilinear coordinate system  α , θ.  Here,  α   is the coordinate varying along the me-
ridian (generatrix) of the system and, moreover, its certain j th shell can be specified in a local coordinate system  
α j ∈[α0 j ,α1 j ],   j = 1,…, J ,  where  J   is the number of constituent shells in the analyzed system;  θ  is the cen-
tral angle in the cross-sectional plane  z = const ;  γ   is the coordinate directed along the normal to the chosen 
initial surface;  Oz   is the axis of rotation of the generatrix, and  ϕ  is the angle between the normal to the gener-
atrix and the Oz -axis (Fig. 1).  The physical characteristics of the materials of shell can be homogeneous, inho-
mogeneous (functionally graded), or discretely inhomogeneous (layered) along the thickness.  For layered shells, 
we assume that the neighboring layers contact without separation and sliding.  As for the conditions of fas-
tening of the end faces of the system  α = α01  and  α = α1J ,  we impose no additional restrictions except, possi-
bly, their physical compatibility.  In the lines of contact between the neighboring shells α = α1 j = α0 j+1,  

 j = 1,…, J −1,  we impose the conditions of balance of static characteristics of the stress-strain state (SSS) and 
the conditions of continuity of its kinematic characteristics in the common coordinate system  rOz.  

The shells are placed in a field of conservative axisymmetric force and/or temperature loads of different 
kinds: distributed along the meridian or concentrated either in the end-face contours or in certain cross sections  
z = const. 

In the present work, we determine the critical values of the acting fields corresponding to the loss of stabil-
ity of the described shell systems in the axisymmetric (limit critical values) or nonaxisymmetric (bifurcation 
critical values) form.  The investigations are carried out under the following assumptions: 

 – the main (subcritical) SSS is determined by the elastic stage of deformation within the range of acting 
axisymmetric loads up to their limit values; 

 – the bifurcation critical loads are determined according to the dynamic criterion of stability in which 
their critical values are specified as the loads for which the minimal frequency of natural vibration of 
a preliminarily loaded shell system becomes equal to zero; 

 – vibrations are regarded as small perturbations of the main state of preliminarily loaded shell; 

 – the mathematical model of stability is based on the quadratic approximation of the geometrically non-
linear theory within the framework of the assumptions of the Kirchhoff–Love classical theory and the 
Timoshenko refined theory for the entire set of layers as a whole and with regard for temperature 
loads according to the Duhamel–Neumann hypothesis [7, 13, 14]. 
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Thus, in the case of application of the dynamic criterion of stability, the equilibrium states of conjugate shell 
systems and the required characteristic points of their diagrams (limit and bifurcation critical values) are deter-
mined from a nonlinear two-dimensional problem, which can be conditionally represented in the following vec-
tor-matrix form: 

 – a system of nonlinear partial differential equations 

 ∂N
A∂α

= Aq
∂q N
∂θqq=0

qq

∑ +G + q0 +C ∂2N
∂t2

,      α = α j ∈(α0 j ,α1 j ){ }, 

   (1) 
  j = 1,…, J ,    θ ∈ 0, 2π[ ]; 

 – conjugation conditions on the contact lines 

 S1 jN = S0 j+1N + Fj
0,      α = α1 j = α0 j+1,     j = 1,…, J −1; (2) 

 – boundary conditions at end faces of the system 

 B01N = b01
0 ,    α = α01, (3) 

 B1JN = b1J
0 ,    α = α1J ; (4) 

 – periodicity conditions in the circumferential direction  

 N (α,θ+ 2π, t) = N (α,θ, t). (5) 

Here,  N = Nn (α,θ, t){ }  is the required vector function whose components are the following static and kin-
ematic characteristics of the SSS according to the accepted theory of shells: 

 N = Nn (α,θ, t){ }  =  

	

Nα , Ŝα , Q̂α ,Mα ,u , v,w ,ϑα{ } , qq = 4 ,

Nα , Nαθ ,Qα ,Mα ,H ,u , v,w ,ψα ,ψθ{ } , qq = 2,

⎧
⎨
⎪

⎩⎪
 (6) 

where   

  Nα   and  Qα  are the tangential and transverse forces;  Mα   is the bending moment in the section  
α = const;  Nαθ   is the tangential shear force;  H   is the torque;   

  Ŝα = Nαθ + kθH   and  Q̂α =Qα +
∂H
r∂θ

  are, respectively, the reduced shear and transverse forces;   

  u ,  v,  and  w  are the meridional, circumferential, and normal displacements, respectively;  ϑα   is the 
angle of rotation of normal in the plane  α = const;  ψα  and ψθ   are the total angles of rotation of 
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a rectilinear element;  r = r(α)  is the distance from a point of the coordinate surface to the axis of 
revolution  Oz ;  kθ = kθ(α)  is the curvature of the coordinate line  α = const;   

  Aqq=0
qq∑ ∂q N

∂θq
= L   is the matrix differential operator of order  qq  with respect to the variable θ con-

structed according to the basic relations of the classical  qq = 4( )   and refined  qq = 2( )  theories [7];   

  A  is the Lamé coefficient in the coordinate  α ;  the components of the vector  G = gn (α){ }  are quad-
ratic functions of the components of the vector  N   corresponding to the geometrically nonlinear theo-
ry of shells in the quadratic approximation;  C   is the matrix characterizing the inertial properties of 
the system;   

  S1 j = sni
1 j{ }  and  S0 j+1 = sni

0 j+1{ }  are the matrices that form the conjugation conditions in the sec-

tions  α = α j ,   j = 1,…, J −1;    

  B01 = bni
01{ }  and  B1J = bni

1J{ }  are the matrices of boundary conditions on the contours  α = α01  and  

α = α1J ,  respectively;   

  q0 = qn
0{ },  Fj

0 = fnj
0{ }  and  b01

0 = b01n
0{ },  b1J

0 = b1Jn
0{ }  are the vectors characterizing the axisymmet-

ric distributed loads and temperature fields, concentrated forces (moments) in the section  α = α j,  

 j = 1,…, J −1,  and contour loads in the end faces  α = α01  and  α = α1J ,  and  t   is time.   

The expressions for the elements of the matrices  Aq = aik
q{ },   i, k = 1,…, n,  and the components of the vec-

tor  G = gn (α){ }  can be found in [7]. 

In analyzing the stability of these systems, we consider the action of one or several components of given 
fields   

 q0 = qn
0{ },     Fj

0 = Fj
0 = fnj

0{ },     b01
0 = b01n

0{ },     and     b1J
0 = b1Jn

0{ }   

whose variations are proportional to the variations of the same parameter  δ.  In this case, the problem is reduced 
to finding a value of this parameter for which the loss of stability is realized in the axisymmetric (limit critical 
value  δlim)  or nonaxisymmetric (bifurcation critical value  δbif)  mode.  In this case, according to the dynamic 
criterion,  δbif   is determined from the condition  ωmin(δ) = 0,  where  ωmin   is the lowest frequency of natural 
vibration of the shell system with regard for the preliminary action of a given load with parameter  δ.  

The solution of problem (1)–(5) under the accepted assumptions admits a physically substantiated decom-
position of the required solution  N   into the following two components:  the main component  N 0  that deter-
mines the subcritical state and the dynamic component  N d  corresponding to the vibration of the shell system 
about the ground state: 

 N ≈ N 0 + N d ,       N
0 ≫ N d. 
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Hence, problem (1)–(5) can be also approximately reduced to the following two problems: 

 – a problem of ground state of conjugate shells under given axisymmetric loads, which is a one-dimen-
sional nonlinear boundary-value problem formulated for the vector function  N 0  = Nn

0(α){ }   as fol-

lows: 

 
 

1
A
dN 0

dα
= L0N 0 +G(α, N 0,…)+ q0,      α = α j ∈(α0 j ,α1 j ){ },     j = 1,…, J , (7) 

 S1 jN
0 = S0 j+1N

0 + Fj
0,      α = α j ,     j = 1,…, J −1, (8) 

 B01N
0 = b01

0 ,    α = α01, (9) 

 B1JN
0 = b1J

0 ,    α = α1J , (10) 

  where  L0  is an algebraic operator; 

 – a problem of small undamped vibration of the shells about the ground state obtained as a result of lin-
earization of the initial problem (1)–(5) for the vector function  N d = Nn

d(α,θ, t){ }: 

 
 

1
A
∂N d

∂α
= !LN d +C ∂2N d

∂t2
,      α = α j ∈(α0 j ,α1 j ){ }, 

   (11) 
  j = 1,…, J ,    θ ∈ 0, 2π[ ], 

 S1 jN
d = S0 j+1N

d,      α = α1 j = α0 j+1,     j = 1,…, J −1, (12) 

 B01N
d = 0 ,    α = α01, (13) 

 B1JN
d = 0,    α = α1J , (14) 

 N d(α,θ+ 2π, t) = N d(α,θ, t), (15) 

  where  
 
!L = L + ∂G

∂N 0   is a differential matrix operator containing (as parameters) the components of 

the vector function of the ground stressed state  N 0 = Nn
0(α, δ){ }  depending on the parameter of load-

ing δ. 

To solve the one-dimensional nonlinear boundary-value problem (7)–(10), we use the procedure of lineari-
zation in the Newton–Kantorovich–Raphson form (the quasilinearization method) together with the orthogonal-
sweep method whose algorithm is described in [3, 7, 18]. The process of linearization (m =1, 2,…) is convergent 
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in the domain of convexity of the operator  L0  of the problem (for this class of shells, it coincides with the do-
main of subcritical loads) and not convergent outside this domain [6].  This fact serves as a computational crite-
rion for the evaluation of the ultimate critical value of parameter  δlim :  δ− ≤ δlim ≤ δ+,  where  δ−  is the maxi-
mal value of loading for which the process of quasilinearization is monotonically convergent and  δ+  is the min-
imal value of  δ  for which this process is not convergent or its monotonic convergence is violated. 

The two-dimensional boundary-value problem (11)–(15) of small undamped vibrations of a preliminarily 
loaded shell system, after separation of the time factor  eiωt   in the components of the required solution  Nd   and 
their representation, with regard for the conditions of periodicity (15), in the form of trigonometric series in the 
circumferential coordinate  θ: 

 
 
N d = Nn

d(α,θ, t) = Nnk
d (α)

k=0,1,2,…
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

sin kθ

cos kθ
⎡

⎣
⎢

⎤

⎦
⎥ e

iωt , (16) 

is reduced to the following sequence of one-parameter homogeneous boundary-value problems for the function-
al coefficients  

 Nk
d = Nnk

d (α){ } 

appearing in relation (16): 

 1
A
dNk

d

dα
= (Ak − λC)Nk

d ,      α = α j ∈(α0 j ,α1 j ){ },     j = 1,…, J , (17) 

 S1 jNk
d = S0 j+1Nk

d,      α = α1 j = α0 j+1,     j = 1,…, J −1, (18) 

 B01Nk
d = 0 ,    α = α01, (19) 

 B1JNk
d = 0,    α = α1J . (20) 

Here,  Ak   is a quadratic matrix of the eighth or tenth order obtained from the operator   !L   in (11) by using 

expansion (16),  λ = ω2 ,  ω   is the natural frequency of vibration of the shell system, and  k   is a parameter 

characterizing the form of wave formation in the circumferential direction.  The expression  
sin kθ

cos kθ
⎡

⎣
⎢

⎤

⎦
⎥  in equali-

ty (16) means that the odd components of the vector function  N d  (  {Ŝα , v}  corresponds to the classical theory 
and  Nαθ, H , v,ψθ{ }  corresponds to the refined theory) are taken with  sin kθ ,  whereas the even components 
are taken with  cos kθ . 

To find the unknown numerical factor  λ = ω2   for which the homogeneous boundary-value problem (17)–
(20) has a nontrivial solution for each value of the harmonic  k   in (16), it is customary to use well-known 
methods, namely, the method of successive approximations in the modification of inverse iteration and the step-
by-step search method in combination with the orthogonal-sweep method.  The algorithms of these methods 
were described in detail in [1, 7, 11]. 
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We now present the general scheme of the procedure of evaluation of the parameters of limit  δlim   and bi-
furcation  δbif   critical values of the applied load. We find these values step-by-step for a sequence  δ0 = 0 ,  δi  = 
δi−1 + Δi ,   i =1, 2,…. 

In the ith intermediate step of the process, if  δi−1 ≠ δlim ,  then we realize the following operations: 

 1°° . Solving the nonlinear axisymmetric problem (7)–(10) with an aim to determine the ground state of the 
shell system  N 0(δi )  by the method of quasilinearization  m =1, 2,…( )  and according to the Kirch-
hoff–Love classical theory  (n = 8,  qq = 4)  (6). 

 2°° . Refinement of the obtained solution according to the refined theory  (n = 10 ,  qq = 2)  in (6). 

 3°° . If the process of quasilinearization is not convergent, then we return to the previous (i −1)th step with  
δ = δi−1  and a lower value of  Δi−1. 

 4°° . If the process of quasilinearization monotonically converges and 

 4.1. δi−1 = δbif ,  then we pass to the next (i +1)th step of the process; 

 4.2. δi−1 ≠ δbif ,  then we go further (to 5°°). 

 5°° . Computation of natural frequencies by the method of successive approximations for   k = 0,1, 2,…,K   
in (16) according to the classical theory of shells  (n = 8,  qq = 4)  in (6).  

 6°° . Refinement of the obtained frequencies by the Δ(λ)-method according to the Timoshenko refined 
theory  (n = 10 ,  qq = 2 )  in (6). 

 7°° . If, for some  k = k∗,  we get  

 ωk∗ (δi ) = 0     (
  
ωk∗ (δi )≪ωℓ (δi ),   ℓ ≠ k∗), 

  then, according to the dynamic criterion of stability, we set  δbif = δi, pass to the next (i +1)th step, 
and then repeat all operations 1°°–7°° . 

The attainment of required accuracy of evaluation of the limit  δlim   and bifurcation  δbif   critical values of 
the acting loads is realized by decreasing the value of  Δi .  

2.  Practical Substantiation of the Procedure (Testing) 

The stage of testing is required to substantiate the possibility of application of the developed procedure to 
the analyzed class of problems.  In our works, it has been carried out inductively on the basis of the well-known 
methods of applied mathematics, e.g., by comparing with the results of solution of some problems obtained ana-
lytically, experimentally, or numerically by using other methods. Thus, in [2], testing of this kind was carried out  
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 (a) (b) 

Fig. 2 

Table 1 

  c/a = 0.5   c/a = 0.75 

KIR TIM [39] KIR TIM [39] 

Ω00 8.518 8.516 8.519 8.847 8.839 8.882 

 
!Ncr  10.86 10.86 10.78 11.82 11.82 11.89 

on examples of some specific shells, namely, a gently sloping spherical dome, a truncated isotropic cone, and 
a cylinder–hemisphere system made of glass-reinforced plastic.  The comparison with the experimental data 
and the results obtained by the finite-difference method revealed good agreement of the obtained limit and bifur-
cation critical values of the applied loads.  In what follows, we present two additional examples of solution of 
the problem of stability for a system of conjugate shells taken from [21, 39].  

Consider a circular plate of radius  a   formed by two elements: a circular plate of radius  c  and constant 
thickness  h0  and an annular plate with inner radius  c   and outer radius  a   whose thickness linearly changes 
from  h0  to  h1  (Fig. 2 а).  The material of the plate is isotropic with elasticity modulus  E ,  Poisson’s ratio  µ,  
and density  ρ.  The outer contour of the conjugate system of plates  r = a  is simply supported and subjected to 
the action of compressive tangential forces  p . 

For this system, by using the developed procedure, we determine the minimal natural frequency  ωmin   and 

the critical values of the contour forces  p∗  according to the Kirchhoff–Love (KIR) and Timoshenko (TIM) the-
ories and compared these values with the results obtained in [39].  The corresponding data are presented in Ta-
ble 1 in the form of the dimensionless minimal natural frequency  

 Ω00 = a
2 ρh0

D0
ωmin , 
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 (a) (b) 

Fig. 3 

where  D0 =
Eh0

12(1−µ2 )
,  and the dimensionless tangential force   

  
!Ncr  = a

2

D0
p∗   

for two types of circular plates with variable thickness, namely,   c/a = 0.5   and   c/a = 0.75,  and the following 
values of the  other geometric parameters:  a = 1.2  m,  h0 = 0.016 m,  and  h1 = 0.012  m. 

As follows from Table 1, the computations performed according to the Timoshenko refined theory practi-
cally do not change the values of critical loads and refine the values of natural frequencies by less than  0.1%.   

Here, the difference between the results obtained by using the proposed procedure and the data from [39], 
obtained by the Rietz method in the two-term approximation does not exceed 1%. 

To illustrate the application of the dynamic criterion of stability for the evaluation of the critical values of 
acting loads, in Fig. 2 b, we present the dependences  Ω00 = Ω00(k)   in the form of conditional curves for differ-

ent values of the contour tangential force:  p = 0  (absence of load),  p = p∗ < 0   (critical compressive force), 
and  p > 0  (stretching force).  The analysis of these dependences enables us to predict that these conjugate 
plates do not lose their stability in the bifurcation mode with formation of bulges and dents in the circumferential 
direction  (Ω00 ≠ 0   at any  k > 0)  and lose it only in the axisymmetric more  (Ω00 = 0   only for  k = 0).  It is 
also clear that, under the action of stretching forces  p > 0,  the plates do not lose their stability in the subcritical 
stage of deformation. 

Consider the problem of stability of a conic vessel filled with water whose computational scheme is shown 
in the form of two conjugate shells in Fig. 3 а:  a conic shell  (r1,  r2,  and   ℓ con   are the initial and final radii 
of the cone and its length, respectively) and a cylindrical shell    (r2  and  

 
ℓ cyl  are the radius and length of the 

cylinder, respectively).  Both parts of the vessel have the same thickness and are made of the isotropic materi-
al (Mylar) and subjected to the action of normal pressure with intensity p . The conic and cylindrical parts
are filled with water up to a height   ℓw .  The lower end face of the cone is rigidly fixed and its upper end face 
is free. 
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Table 2 

Critical load  k  
Cone–cylinder Cone 

[21] [2] ε ,  % [2] 

plim  0 0.993 0.999 0.6 1.001 

pbif  14 0.943 0.940 0.3 0.9402 

The limit  plim  and bifurcation  pbif   critical values of the load were computed for the following initial data 
(the sizes are given in centimeters, as in [2]): 

 r1 = 13 cm,      r2 = 32.173 cm,       ℓ con = 39.16 cm,      
 
ℓ cyl = 40 cm,       ℓw = 8  cm, 

 E = 5.0285 ⋅105 N/cm2,      µ = 0.33. 

To estimate the influence of some elements of the analyzed system on its stability, we additionally consid-
ered one its elements, namely, a cone of the same geometric sizes under the same acting load in the case where 
its upper end is free. 

The values of the limit load coefficient  plim   corresponding to the axisymmetric loss of stability (snap) and 

the bifurcation coefficient  pbif   corresponding to the nonaxisymmetric loss of stability accompanied by the 
formation of  k   bulges and dents in the circumferential direction are presented in Table 2 for the connected 
(cone–cylinder) system and for a separate element (cone).  These results were obtained by using the developed 
procedure [2] and by the finite-difference method with the help of the BOSOR 4 program [21].  

As follows from Table 2, the procedure of evaluation of the critical values of limit and bifurcation loads by 
the developed method for cone–cylinder system is confirmed by the results obtained in [21] with a difference 
smaller than 1%.  Note that the refinement of the results by the Timoshenko theory almost does not affect the 
critical values of these loads  (< 0.05%). 

In Fig. 3 b, as in the previous example, in order to illustrate the application of the dynamic criterion of sta-
bility, we present conditional curves  f = f (k)  characterizing the dependence of natural frequencies of the shell 
system on the parameter of wave formation  k   for different intensities of the acting load:  p = 0  (absence of 

loading),   p ! pbif   (internal pressure in the vicinity of the bifurcation value), and   p ! plim   (internal pressure in 
the vicinity of the limiting value).  It follows from the analysis of these dependences that, under the internal 
pressure, the cone–cylinder system loses its stability in the bifurcation mode with 14 bulges and dents.  For the 
load value  p = plim ,    the system loses its stability in the axisymmetric mode. 

It is worth noting that the comparison of the obtained critical values of loads obtained for the system as 
a whole and for a separate cone (the last column in Table 2) reveals their practical coincidence (with an accuracy 
of about  0.5%).  This means that the presence of cylindrical element in the analyzed system almost does not 
affect the values of critical loads.  Hence, in this specific case, the analysis of stability of the system as a whole 
can be performed by considering its separate element, namely, the cone as the most sensitive object from the 
viewpoint of the loss of stability. 
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Fig. 4 

4.  Numerical Results 

Consider an elastic system formed by elliptic  EL+( )  and cylindrical  CYL( )  shells connected via a transi-

tion element  S   of different geometric shape (Fig. 4 а). 
The elliptic shell with its center on the axis of revolution  Oz   and semiaxes  a1  (along the Oz -axis) and  b1  

(along the Or -axis) has a constant thickness  hE .  We specify the meridian (generatrix) of the middle surface of 
the shell in the  rOz  coordinate system in the following parametric form: 

 r(α) = b1 sinα ,      z(α) = a1 cosα,     α ∈[0, π/2], 

where  α   is the central angle of the ellipse that characterizes the current state of a point of the generatrix and 
measured clockwise from the axis of revolution  Oz . 

Let  hcyl  be the radius  R  of the cylindrical shell of constant thickness and let 
 
ℓ cyl   be its length.  The equa-

tion of its generatrix has the form 

 r(s) = R,    
 
s ∈[0, ℓ cyl ], 

where  s   is the distance between the current point of this generatrix and a certain initial position. 
For the transition element  S   of thickness  hS ,  we consider the following possibilities of selection of its 

shape (Fig. 4 b): 

 I — an annular plate of length  b2  with radii  R + b2  and  R  and the equation of generatrix  

 r(s) = R + b2 − s ,    s ∈[0, b2 ], 

  where  s   is the distance from the current point on the generatrix of the plate; 
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 II — a conic shell with the same radii  R + b2,  R,  length   ℓ con ,  and the equation of generatrix 

 
 
r(s) = R + b2 − s b2

ℓ con
,      s ∈[0, ℓ con ],       ℓ con = a2

2 + b2
2 , 

  where  s   is the distance from the current point on the generatrix of the cone and  a2   is the length of 
the transition element along the Oz -axis; 

 III — a part of a toroidal elliptic shell of negative curvature  TE−( )  with semiaxes  a2   (along the Oz -axis) 

and  b2  (along the Or -axis);  the distance between the center of ellipse and the axis of revolution is 

equal to  r− = R + b2 = b1  and the equation of generatrix takes the following parametric form: 

 r(α) = r− − b2 sinα ,      z(α) = −a2 cosα,     α ∈[0, π/2], 

  where  α   is the central angle of ellipse measured in this case from the Oz -axis counterclockwise; 

 IV — a part of a toroidal elliptic shell of positive curvature  TE+( )  with the same semiaxes as in case III; 

the distance between the center of ellipse and the axis of revolution  r+ = R,  and the equation of gen-
eratrix takes the following parametric form: 

 r(α) = r+ + b2 cosα ,      z(α) = a2 sinα ,     α ∈[0, π/2], 

  where  α   is the central angle of the ellipse measured from the Or -axis clockwise. 

Note that conjugate systems of this kind can be used to model round architectural structures of various des-
tinations (entertaining, religious, defensive, etc.) with dome-shaped roofs of different curvatures. 

The constituent shells are isotropic and made of materials with different moduli of elasticity and Poisson’s 
ratios:  E+   and  µ+  correspond to the elliptic part,  ES   and  µS   correspond to the transition element, and  Ecyl   

and  µcyl   correspond to the cylindrical part.  We assume that the end face of the cylindrical shell is rigidly fixed.  
The conditions of symmetry are imposed at the vertex of the elliptic (dome-shaped) part.  The system is subject-
ed to the action of axisymmetric external pressure with intensity  q   uniformly distributed over the main elliptic 
shell.  Both the transition element and the cylindrical part are free of any loads.  Thus, the entire system suffers 
the action of pressure nonuniformly distributed over the generatrix. 

We now analyze the problem of stability of this system depending on the changes in the geometric parame-
ters of the loaded elliptic part characterized by the parameter of ellipticity   

 β = a1
b1

   

equal  to  the  ratio  of  the  semiaxes  for  b1 = const   and  the variations of height  a1  within the range   β ∈[1/6, 2].   
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 (a) (b) 

Fig. 5 

We study the dependences of critical values of the limit  qlim = qlim (β)  and bifurcation  qbif = qbif (β)  loads for 
the presented four versions of the shape of transition element I–IV. 

The subsequent calculations are performed for the following initial data: 

 R = 20 m,       b1/R = 1.5 ,       a2/R = 0.25 ,       b2/R = 0.5 , 

 
  
ℓ cyl/R = 1.25      in case  I, 

 ℓ cyl/R = 1.0       in cases  II,  III,  IV, 

  hE/R = hS/R = 0.5 ⋅10−3,      
 
hcyl/R = 10−2, 

 E+ = 2.5 ⋅1010 Pa,      µ+ = 0.35       (shale–natural slate), 

 ES = 2.0 ⋅1011 Pa,      µS = 0.24        (carbon steel), 

 Ecyl = 2.0 ⋅1010 Pa,      µcyl = 0.16      (concrete). 

The picture of subcritical state typical of this system is presented in Fig. 5 in the form of distributions, along 
the generatrix, of the relative deflection   w/wmax (Fig. 5 а) and the maximal meridional  σs

+   and circumferen-

tial  σθ
+   stresses on the outer surface (Fig. 5 b) for the transition element in case I  with   β = 1  near the critical 

value of the limit load  qlim = 0.6   (wmax  is the value of deflection at the tip of the elliptic shell).  As follows 
from Fig. 5 а, the action of external pressure is responsible for the maximum displacements into the interior of 
the shell  w < 0( )  in the loaded elliptic part  s ∈[0, 46]( ).  At the same time, in the transition element  
s ∈[46, 56]( ),  we observe the formation of quite large deflection of the opposite sign, whereas the displacements  
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 (a) (b) 

Fig. 6 

of the cylinder  s ∈[56, 76]( )  are practically absent (they are lower than the maximal displacements by several 
orders of magnitude).  Unlike deflections, the maximal stresses are completely concentrated in the zone of tran-
sition element.  Moreover, the highest compressive stresses (both meridional and circumferential responsible for 
the loss of stability) are concentrated in the zone of conjugation of the elliptic shell with the transition element.  
At the same time, the tensile stresses are formed in the zone of conjugation of the transition element with the 
cylinder.  As compared with these stresses, the stresses formed in the elliptic shell and in the cylinder are lower 
by more than three orders of magnitude. 

The dependences of the critical values of the limit loads  qlim = qlim (β)  are shown in Figs. 6 а and 6b for 
the shapes of transition element in cases I, II and III, IV, respectively.  As follows from Fig. 6, the variations of 
the parameter  β   of the elliptic part of the system exert qualitatively different effects on the presented depend-
ences.  Thus, the most expected and natural dependence is observed for the transition element in the form of 
an annular plate (case I) and has the form of a monotonically increasing function.  For the toroidal elliptic transi-
tion elements both with negative and positive curvatures (cases III and IV), the increase in  β   in the entire 
range of its changes  β ∈[1/6, 2]  almost does not affect the level of limit loads and their quantitative values are 
lower than in cases I and II by an order of magnitude.  For the conic transition element (case II), the curve  
qlim = qlim (β)  monotonically increases within the range   β ∈[1/6,1]  as in case I and remains practically con-
stant for  β ∈[1, 2]  as in cases III and IV  (β = 1  corresponds to a spherical dome).  

Thus, the mutual influence of the parameter of ellipticity  β   of the loaded part of the system and the shape 
of the transition element in cases I–IV is observed only for the transition element in the form of an annular 
plate (I) and (partly) for the conic element (II).  In the other cases, the picture of critical loads is determined 
solely by the shape of the transition element.  

Similar dependences of the critical values of loads for the bifurcation mode of the loss of stability  qbif = 

qbif (β)   with indication of the number of bulges and dents in the circumferential direction are presented 
in Fig. 7.  Thus, the shapes of transition element in cases I and II are illustrated in Fig. 7 а, whereas cases III 
and IV are illustrated in Fig. 7 b (the dashed line corresponds to the critical values of the limit load).  The cas-
es of toroidal elliptic transition elements (Fig. 4 b, III, IV) and annular plates (Fig. 4 b, I) are not interesting 
for the evaluation of the critical values of loads because their values  are  lower than the corresponding values for  
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Fig. 7 

the conic transition element (II) by an order of magnitude.  In this last case, the curve  qbif = qbif (β)  consists of 
three branches: increasing for   β ∈[1/6,1/2]  with two deflections k = 2( )  in the circumferential direction, de-
creasing for   β ∈(1/2,1]  with  k = 18, 19, 22 ,  and weakly increasing for  β ∈(1, 2]  with  k = 22, 21, 20 . 

The highest critical values of loads for the bifurcation mode of the loss of stability observed as the parame-
ter  β   changes in all cases I–IV are attained for the conic transition element and   β = 1/2 . 

Thus, for the compound elastic systems of the shells of revolution of different curvatures, we investigated 
their static stability in the field of conservative axisymmetric loads.  

The critical values of the limit and bifurcation loads are determined by using the classical and Timoshenko-
type refined models of shells based on the quadratic approximation of the geometrically nonlinear theory and the 
dynamic criterion of stability.  

For the solution of the corresponding nonlinear problems and the eigenvalue problem, we propose a unique 
numerical-analytic procedure based on the rational reduction of these problems to linear one-dimensional 
boundary-value problems and numerical solution of these problems by the orthogonal-sweep method. 

The verification of this procedure confirms the possibility of its application for the solution of the problems 
of stability for the analyzed class of shell systems.  

We study the problem of stability of compound systems with elements of different Gaussian curvatures and 
reveal the relationship between all its components in the evaluation of the critical bifurcation and limit loads. 
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