
Journal of Mathematical Sciences, Vol. 258, No. 1, October, 2021

METHODS FOR STUDYING THE STABILITY
OF LINEAR PERIODIC SYSTEMS
DEPENDING ON A SMALL PARAMETER
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Abstract. In this paper, we consider systems of linear differential equations with periodic coefficients
depending on a small parameter. We propose new approaches to the problem of constructing a mon-
odromy matrix that lead to new effective formulas for calculating multipliers of the system studies.
We present a number of applications in problems of the perturbation theory of linear operators, in
the analysis of stability of linear differential equations with periodic coefficients, in the problem of
constructing the stability domains of linear dynamical systems, etc.
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1. Introduction and statement of the problem. Many theoretic and applied problems lead to
the necessity of the study of the following linear system depending on a scalar or vector parameter ε:

dx

dt
=

[
A0 + S(t, ε)

]
x, x ∈ R

N ; (1.1)

here A0 is a constant square matrix with real entries and S(t, ε) is a T -periodic in t matrix (i.e.,
S(t+ T, ε) ≡ S(t, ε)) with real entries satisfying the condition

S(t, 0) ≡ 0. (1.2)

In the study of systems, the analysis of their stability and, in particular, the search for stability
domains in the space of parameters, examining of the order of increasing or decreasing of solutions,
etc. are of special interest. Extensive literature is devoted to the study of such problems, and a number
of effective research methods were proposed both for a general setting and aimed at studying various
versions of a system of the form (1.1) (see, e.g., [1, 8, 10, 13] and the reference therein). The analysis
of the unperturbed system

dx

dt
= A0x, x ∈ R

N , (1.3)

i.e., the system (1.1) as ε = 0, is sufficiently simple. This simplicity is related to the existence of
explicit formulas for the fundamental system of solutions and, therefore, explicit formulas for the
general solution of the autonomous system (1.3) of the form x(t) = eA0tx0. Unfortunately, for the
perturbed system (1.1) in the general case (for N ≥ 2), due to its nonautonomy, there are no such
explicit formulas, and this essentially complicates the analysis of the system.

A number of methods have been proposed in the literature for studying systems of the form (1.1);
these methods yield certain formulas for an approximate representation of general solutions, allow
one to analyze the stability of the system and to examine properties of solutions, etc. The classical
Floquet theory (see, e.g., [8, 13] allows one to pass from linear equations with periodic coefficients to
linear equations with constant coefficients. However, the use of this theory assumes the knowledge of a
fundamental system of solutions of the equation with periodic coefficients, which is possible only in the
simplest cases. Therefore, the Floquet theory, which has an important theoretical value, is not effective
from a practical point of view in many cases. In a number of works (see, e.g., [1, 8, 13]), methods
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were proposed for an approximate study of systems of the form (1.1) for a number of important cases,
in particular, for the case where elements of the matrix S(t, ε) are finite sums of exponential terms.
In [10], a method was proposed that realizes the step-by-step (by powers of the small parameter ε)
conversion of entries of the periodic matrix S(t, ε) into entries of a certain constant matrix. Studies of
various problems related to systems of the form (1.1) actively develop in many directions (see, e.g., [3,
5, 9, 12]).

In this paper, we propose new approaches to approximate constructing the fundamental matrix for
the system (1.1) and new formulas for approximate calculating its multipliers. Also, we discuss several
applications.

2. Calculation of the fundamental matrix. We assume that the matrix S(t, ε) is continuously
differentiable by ε up to order k (k ≥ 1) inclusively. For simplicity, we assume that the small parameter
ε is scalar.

We denote by U = X(t, ε) a solution of the following matrix Cauchy problem:

U ′ =
[
A0 + S(t, ε)

]
U, U(0) = I, (2.1)

where I is the identity matrix. The matrix X(t, ε) is the fundamental matrix (FM) of the system (1.1)
and the matrix V (ε) = X(T, ε) is its monodromy matrix. Eigenvalues of the matrix V (ε) are called
multipliers of the system (1.1). The equalities X(t, 0) = eA0t and V (0) = eA0T are obvious.

We propose a scheme of constructing the formula for approximate calculation of the fundamental
matrix of the system (1.1). We construct the FM as an expansion by powers of the small parameter ε:

X(t, ε) = X0(t) + εX1(t) + ε2
X2(t)

2!
+ . . .+ εk

Xk(t)

k!
+ Ψ(t, ε), (2.2)

where X0(t) = eA0t and the matrices X1(t),X2(t), . . . ,Xk(t) are unknown; here Ψ(t, ε) is a continuous
in t and continuously differentiable in ε matrix satisfying the condition

∥∥Ψ(t, ε)
∥∥ = O

(|ε|k+1
)

as ε → 0.

For simplicity, we introduce the notation

Sj(t) = S(j)
ε (t, 0), j = 1, 2, . . . k, (2.3)

i.e., Sj(t) is the jth derivative of the matrix S(t, ε) by ε for ε = 0.

Theorem 2.1. The fundamental matrix of the system (1.1) can be represented in the form (2.2),
where

X0(t) = eA0t, X1(t) = eA0t

t∫

0

e−A0τS1(τ)e
A0τdτ, (2.4)

and the matrices X2(t), . . . ,Xk(t) are defined by the recurrent formula

Xm(t) = eA0t

t∫

0

e−A0τ
m−1∑

j=0

(
Cj
mSm−j(τ)Xj(τ)

)
dτ, m = 2, . . . , k; Cj

m =
m!

(m− j)!j!
. (2.5)

In particular, the matrix X2(t) is defined by the formula

X2(t) = eA0t

t∫

0

e−A0τ
(
S2(τ)e

−A0τ + 2S1(τ)X1(τ)
)
dτ. (2.6)

The proofs of this and other assertions are contained in Sec. 4.
Theorem 2.1 implies the following assertion.
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Theorem 2.2. The monodromy matrix V (ε) of the system (1.1) can be represented in the form

V (ε) = V0 + εV1 + ε2
V2

2!
+ . . .+ εk

Vk

k!
+ Ṽ (ε), (2.7)

where

V0 = eA0T , V1 = eA0T

T∫

0

e−A0τS1(τ)e
A0τdτ, (2.8)

the matrices V2, . . . , Vk are defined by the recurrent formula

Vm = eA0T

T∫

0

e−A0τ
m−1∑

j=0

(
Cj
mSm−j(τ)Xj(τ)

)
dτ, m = 2, . . . , k,

and Ṽ (ε) is a continuously differentiable in ε matrix satisfying the following condition:

‖Ṽ (ε)‖ = O
(|ε|k+1

)
as ε → 0.

In particular, the matrix V2 is defined by the formula

V2 = eA0T

T∫

0

e−A0τ
(
S2(τ)e

A0τ + 2S1(τ)X1(τ)
)
dτ.

3. Applications. In this section, we consider some applications of Theorems 2.1 and 2.2.

3.1. Formulas of the perturbation theory of linear operators. As the first application, we consider the
problem of constructing multipliers of the system (1.1) in the following cases, which are important for
applications:

1◦ the matrix A0 has a simple eigenvalue 0;
2◦ the matrix A0 has a pair of simple eigenvalues ±ω0i, where ω0 > 0, and ω0T �= πk for integer k;
3◦ the matrix A0 has a pair of simple eigenvalues ±ω0i, where ω0 > 0, and ω0T = πk0 for some integer

k0.

In all these cases, we assume that the matrix A0 has no other eigenvalues with zero real part.

Case 1◦. In this case, the monodromy matrix V0 = eA0T of the unperturbed system (1.3) has a
simple eigenvalue 1. It is known from the theory of perturbation of linear operators (see [6]) that
the monodromy matrix V (ε) of the perturbed system (1.1) for any small |ε| has a unique simple
eigenvalue μ(ε) for which μ(0) = 1, and the function μ(ε) is Ck-smooth. We consider the problem on
the approximate constricting the function μ(ε).

We denote by e and g∗ the eigenvectors of the matrices A0 and A∗
0 corresponding to the zero

eigenvalue (here and below, we denote by B∗ the transpose matrix).

Theorem 3.1. The vectors e and g∗ can be normalized corresponding to the equalities

‖e‖ = 1, (e, g∗) = 1. (3.1)

Clearly, there exist exactly two variants of such normalization of the vectors e and g∗, which differ
only by sign.

Theorem 3.2. The function μ(ε) for small |ε| can be represented in the form

μ(ε) = 1 + εμ1 +O(ε2), (3.2)

where

μ1 =

T∫

0

(S1(t)e, g
∗)dt; (3.3)
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here S1(t) is the first of the matrices (2.3).

Case 2◦. In this case, the monodromy matrix V0 = eA0T of the unperturbed system (1.3) has a pair of
simple complex conjugate eigenvalues e±ω0T i (e±ω0T i �= ±1). It is known from the theory of perturba-
tions of linear operators (see [6]) that the monodromy matrix V (ε) of the perturbed system (1.1) for
any small |ε| has a unique simple eigenvalue μ(ε) such that μ(0) = μ0 = eω0T i, and the function μ(ε)
is Ck-smooth. Consider the problem on the approximate construction of the function μ(ε).

Since the matrix A0 has a pair of simple purely imaginary eigenvalues ±ω0i (ω0 > 0), there exists
nonzero vector e, g, e∗, g∗ ∈ R

N such that the following equalities hold:

A0(e+ ig) = iω0(e+ ig), A∗
0(e

∗ + ig∗) = −iω0(e
∗ + ig∗). (3.4)

The vectors e and g (respectively, e∗ and g∗) are linearly independent; however, they are defined not
uniquely. Now we are interested in the following normalization of these vectors.

Theorem 3.3. The vectors e, g, e∗, and g∗ can be normalized corresponding to the equalities

(e, e∗) = (g, g∗) = 1, (e, g∗) = (g, e∗) = 0. (3.5)

We assume that this normalization of the vectors e, g, e∗, and g∗ has been performed.

Theorem 3.4. The function μ(ε) for small |ε| can be represented in the form

μ(ε) = μ0 + εμ1 +O(ε2), (3.6)

where μ0 = eω0T i,

μ1 =
μ0

2
(γ1 + iγ2);

here

γ1 =

T∫

0

[(
S1(t)e, e

∗)+
(
S1(t)g, g

∗)
]
dt, γ2 =

T∫

0

[(
S1(t)g, e

∗)− (
S1(t)e, g

∗)
]
dt,

and S1(t) is the first of the matrices (2.3).

Case 3◦. In this case, the monodromy matrix V0 = eA0T of the unperturbed system (1.3) has a
semisimple eigenvalue μ0 of multiplicity 2, where μ0 = 1 for even k0 or μ0 = −1 for odd k0. It
follows from the theory of perturbations of linear operators (see [6]) that the monodromy matrix V (ε)
of the perturbed system (1.1) for any small |ε| has a pair of eigenvalues μ1(ε) and μ2(ε) for which
μ1(0) = μ2(0) = μ0 and the functions μ1(ε) and μ2(ε) are Ck-smooth. Consider the problem on
approximate construction of these functions.

Since the matrix A0 has a pair of simple, purely imaginary eigenvalues ±ω0i (ω0 > 0), there exist
nonzero vectors e, g, e∗, g∗ ∈ R

N such that Eqs. (2.8) are fulfilled. We also assume that Eqs. (3.5) are
valid.

Below, we will need the following assertion (see, e.g., [11]).

Theorem 3.5. The functions μ1(ε) and μ2(ε) for small |ε| can be represented in the form

μ1(ε) = μ0 + μ1ε+ o(ε), μ2(ε) = μ0 + μ2ε+ o(ε), (3.7)

where μ1 and μ2 are eigenvalues of the matrix

B =

[
(V1e, e

∗) (V1g, e
∗)

(V1e, g
∗) (V1g, g

∗)

]
; (3.8)

here V1 is the matrix defined by the second equality in (2.8).
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Elements of the matrix (3.8) can be calculated by the formulas (2.8) and (3.4). As a result, we
obtain the equalities

(V1e, e
∗) = μ0

T∫

0

{

cos2(ω0t)
(
S1(t)e, e

∗)+ sin2(ω0t)
(
S1(t)g, g

∗)

− 1

2
sin(2ω0t)

[(
S1(t)e, g

∗)+
(
S1(t)g, e

∗)
]
}

dt, (3.9)

(V1g, e
∗) = μ0

T∫

0

{

cos2(ω0t)
(
S1(t)g, e

∗)− sin2(ω0t)
(
S1(t)e, g

∗)

+
1

2
sin(2ω0t)

[(
S1(t)e, e

∗)+
(
S1(t)g, g

∗)
]
}

dt, (3.10)

(V1e, g
∗) = μ0

T∫

0

{

cos2(ω0t)
(
S1(t)e, g

∗)− sin2(ω0t)
(
S1(t)g, e

∗)

+
1

2
sin(2ω0t)

[(
S1(t)e, e

∗)− (
S1(t)g, g

∗)
]}

dt, (3.11)

(V1g, g
∗) = μ0

T∫

0

{

cos2(ω0t)
(
S1(t)g, g

∗)+ sin2(ω0t)
(
S1(t)e, e

∗)

+
1

2
sin(2ω0t)

[(
S1(t)e, g

∗)− (
S1(t)g, e

∗)
]
}

dt. (3.12)

3.2. Stability of linear periodic systems. As the second application, we examine the stability of the
linear system (1.1) for small |ε|.

This problem is analyzed relatively simply in the following two cases (see, e.g., [10, 13]). In the first
case, all eigenvalues of the matrix A0 have negative real parts; then for all small |ε|, the zero solution of
the system (1.1) is asymptotically stable. In the second case, at least one eigenvalue of the matrix A0

has positive real parts; then for all small |ε|, the zero solution of the system (1.1) is unstable.

Stability of solutions in critical cases. The critical case where the matrix A0 has one or several eigenval-
ues with zero real parts and has no eigenvalues with positive real part is significantly more complicated.
We consider three main variants of the critical case, namely, the cases 1◦–3◦ indicated in the previous
section. We assume that the other eigenvalues of the matrix A0 have negative real parts.

First, we consider the case 1◦, i.e., let the matrix A0 have a simple eigenvalue 0. Theorem 3.2 implies
the following assertion.

Theorem 3.6. For all small |ε| satisfying the condition εμ1 < 0 (respectively, εμ1 > 0), the solution
x = 0 of Eq. (1.1) is asymptotically stable (respectively, unstable).

Now we consider the case 2◦, i.e., let the matrix A0 have a pair of simple eigenvalues ±ω0i, where
ω0 > 0, and ω0T �= πk for integer k. Theorem 3.4 implies the following assertion.

Theorem 3.7. For all small |ε| satisfying the condition εγ1 < 0 (respectively, εγ1 > 0), the solution
x = 0 of Eq. (1.1) is asymptotically stable (respectively, unstable).

In the case 3◦, the problem on the stability of the system (1.1) is reduced to calculating eigenvalues
of the matrix (3.8) and analyzing the formula (3.7) for small |ε|. Here we restrict ourselves by an
example.
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Example. Consider the system (see, e.g., [13])

x′ = (A0 + εA1(t))x, x ∈ R
3, (3.13)

where ε is a small parameter,

A0 =

⎛

⎝
−1 1 0
0 0 1
0 −1 0

⎞

⎠ , A1(t) =

⎛

⎝
0 0 0
0 0 0

− cos t −1 −1

⎞

⎠ .

Eigenvalues of the matrix A0 are λ1,2 = ±i and λ3 = −1. We examine the stability of the solution
x = 0 of the system (3.13) for small ε.

Since the matrix A0 has a pair of simple eigenvalues λ1,2 = ±i and the period T of the right-hand
side of the system (3.13) is equal to T = 2π, in the example considered the conditions of the case 3◦
for k0 = 2 are fulfilled.

To examine the stability of the system (3.13), we construct the matrix (3.8) whose elements can be
calculated by the formulas (3.9)–(3.12). We find the eigenvectors e, g and e∗, g∗ of the matrices A0

and A∗
0 corresponding to the eigenvalues i and −i, respectively, and satisfying the relations (3.5):

e =

⎛

⎝
1
2
0

⎞

⎠ , g =

⎛

⎝
−1
0
2

⎞

⎠ , e∗ =

⎛

⎝
0

1/2
0

⎞

⎠ , g∗ =

⎛

⎝
0
0

1/2

⎞

⎠ .

By easy calculations we obtain the matrix (3.8) in the form

B = π

[ −1 1
−1 −1

]
.

Then Theorem 3.5 and the formula (3.7) imply that the system (3.13) has a pair of multipliers, which
can be represented in the form μ1,2(ε) = 1− πε ± πiε + o(ε). Obviously, the third multiplier has the
form μ3(ε) = e−2π + O(ε). This implies that for small ε > 0, the solution x = 0 of the system (3.13)
is asymptotically stable and for small ε < 0 is unstable.

Stability of linear Hamiltonian systems. Consider the case where the system (1.1) is Hamiltonian,
namely, consider the linear system

dx

dt
=

[
A0 + S(t, ε)

]
x, x ∈ R

2N , (3.14)

under the same conditions as for the initial system (1.1). In addition, we assume that the system (3.14)
is Hamiltonian (see, e.g., [13]). Then the product of its multipliers is equal to 1 and the Poincaré
mapping U(T ) of the system for the time T preserves the phase volume.

Since the system (3.14) is a particular case of the system (1.1), the constructions performed above
and the results obtained remain valid for the system (3.14). However, the system (3.14) has its own
specifics, contained, in particular, in the following properties of linear Hamiltonian systems with pe-
riodic coefficients (see, e.g., [13]):

(i) if the system (3.14) has a multiplier μ1, then the number μ2 = 1/μ1 is also its multiplier of the
same multiplicity;

(ii) if the system (3.14) has a multiplier μ = 1 or μ = −1, then its multiplicity is even;
(iii) the system (3.14) is stable in the Lyapunov sense if and only if all its multipliers μ satisfy the

equality |μ| = 1 and are semisimple.

Since the multipliers μ of the unperturbed system x′ = A0x are related to the eigenvalues λ of the
matrix A0 by the equality μ = eλT , the system (3.14) can be stable in the Lyapunov sense for small |ε|
if and only if all eigenvalues of the matrix A0 have zero real parts.

Now we discuss stability conditions for the Hamiltonian system (3.14) in situations similar to the
cases 1◦–3◦ (see the previous section). First, we note that the case 1◦ for the Hamiltonian system (3.14)
cannot be realized since the matrix A0 cannot have a simple eigenvalue 0.
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Consider an analog of the case 2◦ under the condition that all eigenvalues of the matrix A0 are
simple and purely imaginary, ±ω0i, where ω0 > 0 and ω0T �= πk for integer k. Let the following
condition be fulfilled:

(a) for any two distinct pairs of eigenvalues ±ω1i and ±ω2i for integer k, the relation ω1 − ω2 �=
2πk/T holds.

In this case, for all small |ε|, the system (3.14) is stable in the Lyapunov sense (but is not asymptotically
stable).

Now we consider an analog of the case 3◦. Let the matrix A0 have exactly one pair of simple
eigenvalues ±ω0i with ω0 > 0 and ω0T = πk0 for some integer k0. Let all other eigenvalues of the
matrix A0 are simple (naturally, they have zero real parts) and let the condition (a) be fulfilled. Under
these conditions, we can construct the matrix B defined by Eq. (3.8). The following assertion holds.

Theorem 3.8. If detB < 0, then for all small |ε| the system (3.14) is unstable, and if detB > 0,
then it is stable, but not asymptotically stable.

This theorem follows from the fact that the eigenvalues μ1 and μ2 of the matrix B are solutions of
the equation

λ2 + detB = 0;

this can be easily proved, for example, by using Eqs.(3.9)–(3.12).

3.3. Construction of boundaries of stability domains for dynamical systems. As the third application,
we consider the problem on the construction of boundaries of stability domains of the linear system

x′ =
[
A0 + S(t, α, β)

]
x, x ∈ R

N , (3.15)

involving two scalar parameters α and β. Such problems appear in many theoretic and applied aspects
of the theory of differential equations (see, e.g., [2, 4, 15]).

We assume that the matrix S(t, α, β) is T -periodic, i.e., S(t + T, α, β) ≡ S(t, α, β); moreover,
S(t, α0, β0) ≡ 0.

A system can be stable in the Lyapunov sense for some values of parameters and unstable for other.
The set G in the plane Π of parameters (α, β) is called the stability domain (respectively, instability
domain) of the system (3.15) if for any (α, β) ∈ G the system (3.15) is stable in the Lyapunov sense
(respectively, unstable).

A point (α0, β0) ∈ Π is called a boundary point of the stability domain G of the system (3.15) if any
neighborhood of it contains both points of the stability domain G and points of the in stability domain.
Obviously, a point (α0, β0) ∈ Π is a boundary point for the stability domain G if the matrix A0 has
at least one imaginary eigenvalue and has no eigenvalues with positive real parts.

The set of boundary points of the set G is called the boundary Γ of the set G. If a point (α0, β0) ∈ Π
is a boundary point of the stability domain of the system (3.15), then, as a rule, one or several smooth
boundary curves pass through this point.

Let (α0, β0) be a boundary point of the stability domain of the system (3.15). We discuss the
construction of a boundary curve (or several such curves) passing through the point (α0, β0).

An equation describing the required boundary curve can be constructed by various methods. As-
suming for definiteness that the corresponding function is monotonic in α, we construct it in the
parametric form: {

α(δ) = α0 + δ,

β(δ) = β0 + β1δ + β2δ
2 + . . .+ βkδ

k + ψ(δ),
(3.16)

where δ is a small parameter, β1, . . . , βk are unknown coefficients, and ‖ψ(δ)‖ = o(|δ|k) as δ → 0.
Substituting (3.16) into (3.15), we obtain a system of the form (1.1) depending on the small param-

eter δ. Applying the schemes described in Theorems 2.1 and 2.2, we choose the coefficients β1, . . . , βk
such that the multipliers of the corresponding systems lie on the unit circle of the complex plane.
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We illustrate this scheme by the Mathieu equation (see, e.g., [1]):

u′′ + (α+ β cos 2t)u = 0, (3.17)

where α and β are real-valued parameters. We must take into account the fact that (3.17) is a Hamil-
tonian equation.

We find boundary points of the stability domain of Eq. (3.17) lying on the positive semiaxis α of
the plane Π of parameters (α, β) and construct boundary curves passing through these points. The
properties of Hamiltonian systems indicated above imply that the required boundary points have the
coordinates (n2, 0), where n is an integer.

For simplicity, we consider the case n = 1, i.e., construct boundary curves of the stability domain
of Eq. (3.17) passing through the point (1, 0) of the plane (α, β). This means that we consider the
dynamics of Eq. (3.17) for values α and β close to α0 = 1 and β0 = 0, respectively.

By the standard change of variables x1 = u and x2 = u′, we reduce Eq. (3.17) to the linear system

x′ = A(t, α, β)x, x ∈ R
2, (3.18)

where

A(t, α, β) =

[
0 1

−(α+ β cos 2t) 0

]
.

The system (3.18) is a linear system with periodic coefficients with the period T = π.
We search for a curve Υ0, which bounds the stability and instability domains of Eq. (3.17) and

passing through the point (1, 0) in the plane of parameters (α, β) in the form of a function defined
parametrically:

{
α(δ) = 1 + δ,

β(δ) = β1δ + β2δ
2 + . . .+ βkδ

k + o(δk),
(3.19)

where βj are unknown coefficients. We find the first coefficient β1; the other coefficients in (3.19) can
be found similarly. Substituting (3.19) into (3.18), we obtain the system

x′ =
[
A0 + δS(t, β1)

]
x+ S̃(t, δ)x, (3.20)

where

A0 =

[
0 1

−1 0

]
, S(t, β1) =

[
0 0

−(1 + β1 cos 2t) 0

]
,

and the matrix S̃(t, δ) satisfies the relation ‖S̃(t, δ)‖ = o(δ) as δ → 0 uniformly with respect to t.
We denote by V (δ) the monodromy matrix of the system (3.20). Since the matrix A0 has simple

eigenvalues ±i and the period of the right-hand side of the system (3.18) is T = π, the matrix V (0)
has a semisimple eigenvalue μ0 = −1.

According to the scheme described above, we calculate the first derivative of the monodromy ma-
trix V (δ) at the point δ = 0 by the formula (2.8):

V ′(0) = V1 =
1

4
π

[
0 β1 − 2

β1 + 2 0

]
.

Eigenvalues of the matrix V1 are equal to ±π
√

β2
1 − 4/4. Therefore, for β1 = ±2, the multipliers μ(δ)

of the system (3.20) have the form μ(δ) = −1 + O(δ2), i.e., they are equal to −1 with accuracy δ.
Thus, the required coefficient β1 may take two values: β1 = 2 or β1 = −2. This confirms the fact (see,
e.g., [1]) that through the point (1, 0) in the plane of parameters (α, β), pass exactly two boundary
curves, which bound the stability and instability domains of the Mathieu equation (3.17); moreover,
the slopes of the tangents of these curves are equal to 2 and −2.
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3.4. Derivative of the matrix exponential. As the fourth application, we consider an interesting prob-
lem, which formally is not formally related to periodic systems of differential equations; however, it
can be solved by using approaches presented in this paper. Let A(μ) be a square real-valued matrix
of order N , which is continuously differentiable with respect to a scalar parameter μ. We calculate

the derivative of the matrix exponential eA(μ) with respect to μ, i.e., find
(
eA(μ)

)′
μ
. The necessity of

calculating this derivative naturally appears in many theoretical and applied problems (see, e.g., [7,
14]).

Since, by the definition,

eA(μ) = I +A(μ) +
1

2!
(A(μ))2 + . . . +

1

n!
(A(μ))n + . . . ,

the calculation of the derivative by this formula leads to summing of a complicated matrix series:
(
eA(μ)

)′
μ
= A′ +

1

2!
(A′A+A′A) +

1

3!
(A′A2 +AA′A+A2A′) + . . . ,

where we have introduced the notation A = A(μ) and A′ = (A(μ))′. The main difficulty is due to the
noncommutativity of the matrix product, i.e., in general, AA′ �= A′A.

Approaches proposed above allow one to prove the following theorem.

Theorem 3.9. The derivative of the matrix exponential eA(μ) is equal to

(
eA(μ)

)′
μ
= eA(μ)

1∫

0

e−A(μ)τA′(μ)eA(μ)τdτ.

4. Proofs of the basic assertions.

Proof of Theorem 2.1. The matrices Xj(t) involved in the formula (2.2) are the derivatives of the
fundamental matric X(t, ε) of the system (1.1) with respect to ε at the point ε = 0:

X1(t) = X ′
ε(t, 0), X2(t) = X ′′

ε (t, 0), . . . . (4.1)

In other words, the formula (2.2) is the Taylor formula for X(t, ε), whose existence follows from
general theorems on the Ck-smoothness of the solution to the Cauchy problem (2.1) with respect to
the parameter ε (we recall that the matrix S(t, ε) is assumed to be continuously differentiable with
respect to ε up to order k inclusively). Thus, it remains to calculate the derivatives of the matrix
X(t, ε) with respect to ε up to the kth order inclusively.

The matrix X(t, ε) is a solution of the Cauchy problem (2.1) and, therefore,

X(t, ε) = eA0t + eA0t

t∫

0

e−A0τS(τ, ε)X(τ, ε)dτ.

Differentiating both sides of this equality by ε, we obtain

X ′
ε(t, ε) = eA0t

t∫

0

e−A0τ
[
S′
ε(τ, ε)X(τ, ε) + S(τ, ε)X ′

ε(τ, ε)
]
dτ. (4.2)

Setting here ε = 0 and taking into account Eqs. (1.2), (2.3), and (4.1), we obtain the second equality
in (2.4).

To find X2(t), we differentiate Eq. (4.2) by ε. Then, setting ε = 0 in the equality obtained and
taking into account Eqs. (1.2), (2.3), and (4.1), we obtain Eq. (2.6).

The general formula (2.5) can be obtain similarly by using the method of mathematical induction.
�
Proof of Theorem 3.1. We prove this theorem in a more general setting. Namely, let H be a real
Hilbert space or a finite-dimensional linear space. Let A : H → H be a linear compact operator
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having a simple, real, isolated eigenvalue μ0. Here and below, we say that an eigenvalue μ0 of the
operator A is said to be isolated if there exists a neighborhood of the point μ0 (on the complex plane)
that does not contain points of the spectrum of the operator A distinct from μ0; in particular, in the
case where H is an infinite-dimensional Hilbert space, we obtain μ0 �= 0.

Due to the assumption made, there exist nonzero vectors e, g∗ ∈ H satisfying the equalities

Ae = μ0e, A∗g∗ = μ0g
∗; (4.3)

here A∗ : H → H is the adjoint operator. The vectors e and g∗ are not uniquely defined: if e
and g∗ satisfy Eqs. (4.3), then the vectors e1 = C1e and g∗1 = C2g

∗ also satisfy Eqs. (4.3) for any
constants C1 and C2. Therefore, the vectors e and g∗ can be normalized, for example, by the equalities
‖e‖ = ‖g∗‖ = 1. However, we are more interested in the normalization of these vectors by Eqs. (3.1):
‖e‖ = 1 and (e, g∗) = 1.

Since μ0 is an isolated eigenvalue of the operator A, the space H can be represented in the form
H = H0⊕H0, where H0 is a one-dimensional subspace containing the vector e and H0 is the subspace
complement to H0 and invariant for A.

Theorem 4.1. For any u ∈ H0, the equality (u, g∗) = 0 holds.

Proof. We denote by σ(B) the spectrum of the linear operator B. Since μ0 /∈ σ(A : H0 → H0), there
exists a bounded inverse operator (A− μ0I)

−1 : H0 → H0 (see, e.g., [6]). Therefore, for any u ∈ H0,
the equation (μ0I − A)v = u has a unique solution v ∈ H0: v = (μ0I − A)−1u. This and the obvious
equality ((μ0I −A)x, g∗) = 0, which is valid for any x ∈ H, imply the required relation (u, g∗) = 0. �

Theorem 4.2. The inequality (e, g∗) �= 0 holds.

Proof. Indeed, assume the contrary, i.e., (e, g∗) = 0. Then g∗⊥H0. By Theorem 4.1 we have g∗⊥H0.
This and the equality H = H0⊕H0 imply g∗ = 0. This contradicts the assumption that the vector g∗
is nonzero. �

Note that Theorems 4.1 and 4.2 imply that the space H0 can be defined by the equality

H0 =
{
x : x ∈ H, (x, g∗) = 0

}
.

Now Theorem 3.1 follows from Theorem 4.2: first, we normalize the eigenvector e so that ‖e‖ = 1 and
then (already having the normalized vector e) normalize the vector g by the condition (e, g∗) = 1. �
Proof of Theorem 3.2. By Theorem 2.2, the matrix V (ε) can be represented in the form

V (ε) = V0 + εV1 + o(ε), (4.4)

where V0 and V1 are defined by Eqs. (2.8) (see the formula (2.7)). It is known in the theory of
perturbations of linear operators (see, e.g., [6, 7]) that, since the operator V0 has a simple eigenvalue 1,
the operator (4.4) has a continuous branch of simple eigenvalues μ(ε), μ(0) = 1. Moreover, if the
corresponding eigenvectors e and g∗ are chosen according to Eqs. (3.1), then the function μ(ε) can be
represented in the form (3.2), where the coefficient μ1 is defined by the equality μ1 = (V1e, g

∗).
To complete the proof of Theorem 3.2, it remains to show that the number μ1 = (V1e, g

∗) coincides
with the number (3.3). Indeed, due to (2.8) we have

(V1e, g
∗) =

⎛

⎝eA0T

T∫

0

e−A0τS1(τ)e
A0τdτ e, g∗

⎞

⎠ =

T∫

0

(
S1(τ)e, g∗

)
dτ,

which is what was required; here we take into account the equalities eAte = e and eA
∗tg∗ = g∗, which

are valid for all t. �
Proof of Theorem 3.3. Similarly to Theorem 3.1, we prove Theorem 3.3 in a more general setting. For
definiteness, we prove Theorem 3.3 for the case 3◦ considered in Theorem 3.5; the proof for the case 2◦
considered in Theorem 3.4 is similar.
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LetH be a real Hilbert space or a finite-dimensional linear space. Let A : H → H be a linear compact
operator possessing a semisimple real eigenvalue μ0 of multiplicity 2. Then there exist nonzero vectors
e, g, e∗, g∗ ∈ H such that the following equalities hold:

Ae = μ0e, Ag = μ0g, A∗e∗ = μ0e
∗, A∗g∗ = μ0g

∗; (4.5)

moreover, the vectors e and g (respectively, the vectors e∗ and g∗) are linearly independent. The vector
e, g, e∗, g∗ are not uniquely defined.

We prove a more strong assertion than Theorem 3.3. Namely, we prove that the vectors e, g, e∗,
and g∗ can be normalized according to the equalities

‖e‖ = ‖g‖ = 1, (4.6)

(e, e∗) = (g, g∗) = 1, (e, g∗) = (g, e∗) = 0. (4.7)

In other words, we prove that, in addition to the normalization (3.5) described in Theorem 3.3, one
can ensure the normalization (4.6).

Below, we use the following two auxiliary assertions, which can be proved by a direct calculation.
Let e, g, e∗, and g∗ be eigenvectors of the matrices A0 and A∗

0 satisfying the equalities (4.5).

Theorem 4.3. The vectors e, g, e∗, and g∗ satisfy the relations

(e, e∗) = (g, g∗), (e, g∗) = −(g, e∗), (e, e∗)2 + (e, g∗)2 > 0.

For arbitrary real numbers a, b, α, and β, we set

e1 = ae+ bg, g1 = ag − be, e∗1 = αe∗ + βg∗, g∗1 = αg∗ − βe∗. (4.8)

Theorem 4.4. For any a, b, α, and β, the vectors (4.8) satisfy the equalities (4.5), in which one
must substitute e1, g1, e

∗
1, and g∗1 instead of e, g, e∗, and g∗. Conversely, if certain vectors e1, g1, e

∗
1,

and g∗1 satisfy Eqs. (4.5), then these vectors can be represented in the form (4.8).

First, we give the formulas that ensure Eqs. (4.6). It is natural to assume that
(
(e, e) − 1

)2
+

(
(g, g) − 1

)2
> 0.

We set
e1 = r

(
e cosϕ+ g sinϕ

)
, g1 = r(g cosϕ− e sinϕ). (4.9)

These vectors coincide with the corresponding vectors in (4.8) for a = r cosϕ and b = r sinϕ and,
therefore, they obey Theorem 4.4. We choose r > 0 and ϕ so that the equalities

(e1, e1) = (g1, g1) = 1 (4.10)

hold and thus prove that the vectors e and g can be chosen so that Eqs. (4.6) holds.
The following cases are possible:

S1: (e, g) = 0, (e, e) = (g, g);
S2: (e, g) = 0, (e, e) �= (g, g);
S3: (e, g) �= 0.

In the case S1, we set in (4.9) r = 1/
√

(e, e) and the angle ϕ can be taken arbitrarily. Therefore,
the vectors

e1 =
e cosϕ+ g sinϕ

√
(e, e)

, g1 =
g cosϕ− e sinϕ

√
(e, e)

satisfy Eqs. (4.10) for any value of ϕ.
In the case S2, we set in (4.9)

r =

√
2

(e, e) + (g, g)
(4.11)

and ϕ = π/4 + nπ/2, where n is an integer number.
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In the case S3, we choose r as in (4.11) and

ϕ =
1

2
arctan

(g, g) − (e, e)

2(e, g)
+

nπ

2
,

where n is an integer number.
Assume that in Eqs. (4.9) the values r and ϕ have been chosen so that the vectors e1 and g1 satisfy

Eqs. (4.10). Now we choose the vectors e∗1 and g∗1 according to Eqs. (4.8) so that Eqs. (4.7) hold:

(e1, e
∗
1) = (g1, g

∗
1) = 1, (e1, g

∗
1) = (g1, e

∗
1) = 0. (4.12)

Note that due to Theorem 4.3, the validity of these four equalities is guaranteed by the following two
relations:

(e1, e
∗
1) = 1, (e1, g

∗
1) = 0.

We set

α =
(e, e∗) cosϕ− (e, g∗) sinϕ

rC0
, β =

(e, g∗) cosϕ+ (e, e∗) sinϕ
rC0

,

where C0 = (e, e∗)2+(e, g∗)2 > 0 (see Theorem 4.3). Then the vectors e∗1 = αe∗+βg∗ and g∗1 = αg∗−βe∗
satisfy Eqs. (4.12). �
Proof of Theorem 3.9. Consider the auxiliary linear system

dx

dt
= A(ε)x, x ∈ R

N , (4.13)

where A(ε) is a real-valued constant square matrix smoothly (continuously differentiable) depending

on the scalar parameter ε. The matrix exponential X(t, ε) = eA(ε)t is the fundamental matrix of the
system (4.13).

The system (4.13) can be considered as a linear system with periodic in t coefficients, where the
period T is an arbitrary positive number. Setting for definiteness T = 1, we obtain than the mon-
odromy matrix of this system has the form V (ε) = X(1, ε) = eA(ε); in particular, V0 = V (0) = eA(0).
Theorem 3.9 will be proved if we verify that

V ′
ε (ε)|ε=0 =

(
eA(ε)

)′
ε

∣∣
∣
ε=0

= eA0

1∫

0

e−A0τA′(0)eA0τdτ. (4.14)

Setting A0 = A(0), we represent the system (4.13) in the form

dx

dt
=

[
A0 +

(
A(ε) −A0

)]
x, x ∈ R

N , (4.15)

i.e., in the form of the system (1.1) with S(t, ε) = A(ε)−A0; then, in particular, from the formula (2.3)
we obtain the equality

S1(t) = S′
ε(t, 0) = A′

ε(0).

This and the formula (2.8) imply Eq. (4.14) for the system (4.15). �

5. Conclusion. In this paper, we consider systems of linear differential equations with periodic
coefficients depending on a small parameter under the assumption that the unperturbed system is
autonomous. We propose formulas for constructing the fundamental matrix and the monodromy ma-
trix of the system in the form of an expansion in powers of the small parameter. We obtain new
effective formulas for calculating the coefficients of the corresponding expansions and new formulas for
calculating multipliers of the linear system considered. We discuss some applications in the theory of
perturbations of linear operators, the stability of linear differential equations with periodic coefficients,
the constructing stability domains for linear dynamical systems, and others.
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