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SCHLESINGER TRANSFORMATIONS FOR ALGEBRAIC
PAINLEVÉ VI SOLUTIONS

R. Vidunas∗ and A. V. Kitaev† UDC 517.9

Schlesinger (S) transformations can be combined with a direct rational (R) pull-back of a hyper-
geometric 2× 2 system of ODEs to obtain RS2

4 -pullback transformations to isomonodromic 2× 2
Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic func-
tions, possibly in different orbits under Okamoto transformations. The paper demonstrates direct
computations (involving polynomial syzygies) of Schlesinger transformations that affect several
singular points at once, and presents an algebraic procedure of computing algebraic Painlevé VI
solutions without deriving full RS-pullback transformations. Bibliography: 33 titles.

1. Introduction

Given a matrix differential system

d

dz
Ψ(z) = M(z)Ψ(z), (1.1)

one often considers its Schlesinger transformations [16, 18,25]. Thereby the local monodromy
difference at any z-point is shifted by an integer, and the total shift must be an even integer.
Usually only elementary Schlesinger transformations [16,20] are considered explicitly, whereby
local monodromy differences at 2 points are shifted by ±1. General Schlesinger transformations
are implicitly handled as composite sequences of elementary Schlesinger transformations. The
present paper demonstrates explicit computation of the Schlesinger transformations in a bulk
ansatz, without resorting to a chain of elementary transformations. Polynomial syzygies [10]
play a prominent role in the bulk computations.

It is convenient to include the Schlesinger transformations in a general definition of a pull-
back transformation of differential systems (1.1). Accordingly, a general pull-back transforma-
tion has the form

z �→ R(x), Ψ(z) �→ S(x)Ψ(R(x)), (1.2)

where R(x) is a rational function of x, and S(x) is (up to a radical normalizing factor) a linear
transformation of solution vectors with rational coefficients. The transformed equation is

dΨ(x)

dx
=

(
dR(x)

dx
S−1(x)M(R(x))S(x) − S−1(x)

dS(x)

dx

)
Ψ(x). (1.3)

The transformation by S(x) is a Schlesinger transformation affecting local behavior at x-
points. It is analogous here to the projective equivalence transformations y(x) → θ(x)y(x)
of ordinary differential equations. If S(x) is the identity map, we have a direct pull-back of
a differential system. The Schlesinger transformations can be designed [18, (16)] to remove
apparent singularities of the direct pull-back with respect to R(x).

Pull-back transformations (1.2) change Fuchsian equations to Fuchsian equations. In [19,
20], they are called RS-transformations in the context of isomonodromic Fuchsian systems
corresponding to algebraic solutions of the sixth Painlevé equation. To merge terminology,
we refer to these pull-back transformations as RS-pullbacks, or RS-pullback transformations.
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Thereby we emphasize the composition of a rational change of independent variable z �→ R(x)
and the Schlesinger transformation S(x).

The subject of the present paper is a construction of Schlesinger S-transformations for
the RS-pullback transformations of 2× 2 matrix hypergeometric equations to isomonodromic
2 × 2 Fuchsian systems with 4 singular points. The corresponding solutions [16] of the sixth
Painlevé equation are algebraic functions, since they are determined algebraically by matrix
entries of pulled-back equations (1.3) while those entries are algebraic functions in x and the
isomonodromy parameter. Algebraic Painlevé VI solutions have applications to Frobenius
manifolds [8], WDVV equations, and surface singularities [17]. Characterizing all algebraic
Painlevé VI solutions was an active field of research recently [2–4,9,20]. The final classification
was achieved by Lisovyy and Tykhyy in [22].

The second author conjectured in [19, 20] that all algebraic solutions of the sixth Painlevé
equation can be obtained by RS-transformations of matrix hypergeometric equations, up to
Okamoto transformations [27]. The classification in [22] validates this conjecture, as explained
in [32, Sec. 4.1]. Particularly, quadratic transformations [29] of Painlevé VI solutions can be
expressed as RS-transformations of the corresponding Fuchsian systems [18]. Isomonodromic
Fuchsian systems with finite (say, icosahedral [3]) monodromy group are always pull-backs of a
standard hypergeometric equation with the same monodromy group, as asserted by celebrated
Klein’s theorem [21]. R. Fuchs [12] soon considered extension of Klein’s theorem to algebraic
solutions of the Painlevé equations. In particular [26], algebraic solutions of the Painlevé
equations from the first to the fifth indeed arise from pull-back transformations of confluent
hypergeometric equations. The pull-back method for computing algebraic Painlevé VI solu-
tions is considered in [2,19,20], and in the context of the Picard-Fuchs equations [7,24] where
only the direct pull-backs are considered.

The paper is organized as follows. Section 2 presents two parametric rational functions
R(x) of considered pull-back transformations (1.2). They are almost Belyi coverings, that
is, one-dimensional families of finite coverings of CP1 \ {0, 1,∞} with only one simple rami-
fication point. Just as the Belyi coverings (i.e., those unramified above CP

1 \ {0, 1,∞}) are
typical for pull-back transformations between hypergeometric equations [1,28], the almost Be-
lyi coverings are characteristically suitable for RS-pullbacks from hypergeometric equations
to isomonodromic Fuchsian systems [2, 20, 30–32]. We use two coverings of degree 8 and 12
that were previously used in [20]; our full RS-transformations are already implied there. In
Theorem 2.1, we recall a method [20] to obtain an algebraic Painlevé VI solution directly from
an almost Belyi map.

Section 3 demonstrates two examples of full RS-transformations, both with respect to the
degree 8 covering. The Schlesinger transformations S(x) are constructed at once, instead of
composing elementary Schlesinger transformations as was done in [1,2,16]. Thereby we avoid
unnecessary factorization of high degree polynomials when shifting local monodromy differ-
ences at conjugate roots by the same integer. A similar approach is adopted in [11, 3F(iii)] for
construction of rational solutions of the Painlevé II equation. The degree 8 pull-back trans-
formation is applied to matrix hypergeometric equations with icosahedral monodromy group.
Consequently, we recompute the icosahedral Painlevé VI solutions of Boalch [3] types 26, 27
(or solutions 14, 13 in [22], respectively).

In Sec. 4, we formulate basic algebraic facts useful in computations of RS-pullback transfor-
mations. Polynomial syzygies [10] are extensively used. Section 5 gives a general formula for
some algebraic Painlevé VI solutions, with minimum information from fullRS-transformations.

Section 6 presents full RS-transformations with respect to the degree 12 covering. An
important demonstration is that the same rational covering R(x) can be used in several
RS-transformations, starting from various matrix hypergeometric equations with different
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monodromy groups. Using the same degree 12 covering, we obtain icosahedral solutions of
Boalch [3] types 31, 32 (or solutions 17, 16 in [22], respectively), and customarily unrelated oc-
tahedral and Hitchin [15] solutions. Similarly, [31] demonstrates the use of the same degree 10
covering to pull-back 3 hypergeometric equations (with local monodromy differences 1/2, 1/3,
k/7 for k = 1, 2 or 3) to obtain solutions 33, 34, 32 in [22].

The Appendix presents the Jimbo–Miwa [16] correspondence between the solutions of the
sixth Painlevé equation and isomonodromic Fuchsian 2× 2 systems, and the matrix hyperge-
ometric equation. In particular, the Appendix introduces the notations

PV I(ν0, ν1, νt, ν∞; t) and E(ν0, ν1, νt, ν∞; y(t); z)

for the Painlevé VI equation and corresponding isomonodromic Fuchsian systems.

2. Almost Belyi coverings

Following [20], we introduce notation for ramification patterns and RS-transformations.
A ramification pattern for an almost Belyi covering of degree n is denoted by R4(P1|P2|P3),
where P1, P2, P3 are three partitions of n, specifying the ramification orders above three points.
The ramification pattern above the fourth ramification locus is assumed to be 2+1+1+. . .+1.
By the extra ramification point, we refer to the simple ramification point in the fourth fiber. The
Hurwitz space for such a ramification pattern is generally one-dimensional [33, Proposition 3.1].

We consider almost Belyi coverings of genus 0 only, and write them as P
1
x → P

1
z, meaning

that the projective line with the projective coordinate x is mapped to the projective line with
coordinate z. Then the total number of parts in P1, P2, P3 must be equal to n+ 3, according
to [20, Proposition 2.1]; this is a consequence of the Riemann–Hurwitz formula.

We use almost Belyi coverings with the following ramification patterns:

R4

(
5 + 1 + 1 + 1 | 2 + 2 + 2 + 2 | 3 + 3 + 2

)
, (2.1)

R4

(
3 + 3 + 3 + 3 | 2 + 2 + 2 + 2 + 2 + 2 | 5 + 4 + 1 + 1 + 1

)
. (2.2)

The degrees of the coverings are 8 and 12, respectively. For each covering type, three specified
fibers with ramified points can be brought to any three distinct locations by a fractional-linear
transformation of P1

z. We assign the first and the next two partitions to z = 0, z = 1, and
z = ∞, respectively. Similarly, by a fractional-linear transformation of P1

x, we may choose any
three x-points1 as x = 0, x = 1, and x = ∞.

For direct applications to the Painlevé VI equation, it is required to normalize the point
above z = ∞ with the deviating ramification order 2, 4 (respectively) and three nonramified
points above {0, 1,∞} ⊂ P

1
z as x = 0, x = 1, x = ∞, and x = t. We refer to explicit almost

Belyi coverings normalized this way as properly normalized.
The properly normalized coverings with ramification patterns (2.1)–(2.2) were first com-

puted in [20]. In computation of RS-transformations, compact expressions for nonnormalized
coverings are more convenient to use. The coverings can be computed on modern computers
either using the most straightforward method with undetermined coefficients, or an improved
method [30] that uses differentiation. Here we present only explicit expressions for the almost
Belyi coverings.

1Strictly speaking, the x-points in our settings are curves or branches, parametrized by an isomonodromy
parameter t or other parameter, since the Hurwitz spaces for the almost Belyi maps are one-dimensional. For
simplicity, we ignore the dimensions introduced by such parameters, and consider a one-dimensional Hurwitz
space as a generic point.

497



The degree 8 covering is

ϕ8(x) =
(s+ 1)2 x5

(
9(s + 1)2x3 − 24s(s+ 3)x2 + 8s(11s − 1)x+ 48s2

)
64 s (x2 − 2sx− s)3

. (2.3)

The Hurwitz space is realized here by a projective line with projective parameter s. (In the
pulled-back Fuchsian equations, s is the isomonodromy parameter.) One can check that

ϕ8(x)− 1 =

(
3(s + 1)2x4 − 4s(s+ 3)x3 + 12s(s− 1)x2 + 24s2x+ 8s2

)2
64 s (x2 − 2sx− s)3

. (2.4)

It is evident that the ramification pattern is indeed (2.1). The extra ramification point is
x = 5s. To get a properly normalized expression, the degree 3 polynomial in the numerator
of ϕ8(x) has to be factorized. We reparametrize

s =
2(u− 1)

u3 + 4u2 + 2u+ 2
(2.5)

and make the fractional-linear transformation

x �→ 2(u+ 8)w

3(u + 2)4
(2x− 1)− 2(u− 1)(u2 − 4u− 24)

3(u+ 2)4
, (2.6)

where w =
√

u(u− 1)(u + 3)(u+ 8). Apparently, the Hurwitz space parametrizing the prop-
erly normalized almost Belyi covering has genus 1. We obtain the following properly normalized
expression:

ϕ̂8(x) =
u5(u+ 8)3(u+ 3)

8(u3 + 4u2 + 2u+ 2)

x(x− 1)(x − t8)
(
x− 1

2 − (u−1)(u2−4u−24)
2w(u+8)

)5

(
x2 − (L1w + 1)x+ 1

2L1w − L2

)3 , (2.7)

where

t8 =
1

2
+

(u− 1)(3u4 + 12u3 + 24u2 + 64u+ 32)

2u2(u+ 8)
√

u(u− 1)(u+ 3)(u+ 8)
, (2.8)

and

L1 =
(u−1)(u+4)(u2−10)

(u+3)(u+8)2(u3+4u2+2u+2)
, L2 =

5u6+40u5+20u4−320u3−40u2+1216u−192
8(u+3)(u+8)2(u3+4u2+2u+2)

.

To get the degree 8 covering in [20, pp. 11–12], one has to make the substitutions u �→ −8(s+
1)2/(s2 − 34s + 1) or u �→ (8s1 + 1)/(1 − s1) . After the first substitution, the quadratic
polynomial in the denominator of (2.7) factors as well.

The degree 12 covering is given by

ϕ12(x) =
4

27(s + 4)3
F 3
12

x5G12
, or ϕ12(x)− 1 =

1

27(s + 4)3
P 2
12

x5G12
, (2.9)

where

F12 = x4 − 4(s+ 3)x3 + (s2 + 6s+ 14)x2 + 2(s + 6)x+ 1,

G12 = sx3 − 4(s2 + 3s − 1)x2 − 4(2s + 11)x− 4,

P12 = 2x6 − 12(s + 3)x5 + 15(s2 + 6s+ 10)x4

+ 2s(s2 + 9s+ 15)x3 + 6(s2 + 9s + 25)x2 + 6(s + 6)x+ 2.

(2.10)

The extra ramification point is x = −5/s. To get a properly normalized expression, we
reparametrize

s =
(u2 − 5)(u2 + 4u− 1)(u2 − 4u− 1)

8(u+ 1)2(u− 1)2
, (2.11)
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and make the fractional-linear transformation

x �→ (u+ 1)2(u− 1)2

2(u2 − 5)
− (u+ 1)3(u− 3)3(u2 + 3)x

2(u− 1)2(u2 − 5)(u2 − 4u− 1)
. (2.12)

The obtained expression is

ϕ̂12(x) =
1024(u + 1)20(u− 3)12

(
x4 − (u2−4u−1)(3u6−21u4+49u2+33)

(u+1)5(u−3)3
x3 + L6

)3

27(u2 + 3)5(u2 − 5)5(u2 + 4u− 1)(u2 − 4u− 1)5 x(x− 1) (x− t12) (x− t∗12)
5 ,

where

t12 =
(u− 1)5(u+ 3)3(u2 − 4u− 1)

(u+ 1)5(u− 3)3(u2 + 4u− 1)
, t∗12 =

(u− 1)4(u2 − 4u− 1)

(u+ 1)(u− 3)3(u2 + 3)
, (2.13)

and

L6 =
(u2 − 4u− 1)2(49u12 − 686u10 + 3895u8 − 9700u6 + 10575u4 − 2446u2 + 2409)

16(u+ 1)10(u− 3)6
x2

−(u− 1)5(u2 − 4u− 1)3(9u8 − 144u6 + 874u4 − 2184u2 + 2469)

8(u+ 1)10(u− 3)9
x

+
(u− 1)10(u+ 3)2(u2 − 4u− 1)4

16(u + 1)10(u− 3)10
.

The Hurwitz space parametrizing this properly normalized almost Belyi covering has still
genus 0. To get the degree 12 covering in [20], one has to consider 1

/
ϕ̂12(x), and substitute

u �→ (s− 3)/(s + 1).
In [20], the following symbol is introduced to denote the RS-pullback transformations of

E(e0, e1, 0, e∞; t; z) with respect to a covering with ramification pattern R4(P0|P1|P∞):

RS2
4

(
e0
P0

∣∣∣∣ e1
P1

∣∣∣∣ e∞P∞

)
, (2.14)

where the subscripts 2 and 4 indicate a second order Fuchsian system with 4 singular points
after the pull-back. We assume the same assignment of the fibers z = 0, z = 1, z = ∞ as
for the R4-notation. Location of the x-branches 0, 1, t,∞ does not have to be normalized. In
Sec. 3, we present explicit computations for

RS2
4

(
1/5

5 + 1 + 1 + 1

∣∣∣∣ 1/2

2 + 2 + 2 + 2

∣∣∣∣ 1/3

3 + 3 + 2

)

and

RS2
4

(
2/5

5 + 1 + 1 + 1

∣∣∣∣ 1/2

2 + 2 + 2 + 2

∣∣∣∣ 1/3

3 + 3 + 2

)
.

These RS-pullbacks produce algebraic solutions of PV I(1/5, 1/5, 1/5,±1/3; t), respectively,
PV I(2/5, 2/5, 2/5,±2/3; t).

As was noticed in [20] and [7], some algebraic Painlevé VI solutions determined by the

RS-pullback transformations RS2
4

(
1/k0
P0

∣∣∣ 1/k1
P1

∣∣∣ 1/k∞P∞

)
with k0, k1, k∞ ∈ Z, can be calculated

from the rational covering alone, without computing any Schlesinger transformation. Here is
a general formulation of this situation.

Theorem 2.1. Let k0, k1, k∞ denote three integers, all ≥ 2. Let ϕ : P1
x → P

1
z denote an almost

Belyi map depending on a parameter t. Suppose that the following conditions are satisfied.

(i) The covering z = ϕ(x) is ramified above the points z = 0, z = 1, z = ∞; there is
one simply ramified point x = y above P

1
z \ {0, 1,∞}, and there are no other ramified

points.
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(ii) The points x = 0, x = 1, x = ∞, x = t lie above the set {0, 1,∞} ⊂ P
1
z.

(iii) The points in ϕ−1(0) \ {0, 1, t,∞} are all ramified of order k0. The points in ϕ−1(1) \
{0, 1, t,∞} are all ramified of order k1. The points in ϕ−1(∞) \ {0, 1, t,∞} are all
ramified of order k∞.

Let a0, a1, at, a∞ denote the ramification orders at x = 0, 1, t,∞, respectively. Then the point
x = y, as a function of x = t, is an algebraic solution of

PV I

(
a0

kϕ(0)
,

a1
kϕ(1)

,
at

kϕ(t)
, 1− a∞

kϕ(∞)
; t

)
. (2.15)

Proof. See [31, Theorem 3.1]. �
Our two coverings ϕ̂8(x) and ϕ̂12(x) immediately give solutions of PV I(1/5, 1/5, 1/5, 1/3; t)

and PV I(1/5, 1/5, 1/5, 1/5; t), respectively. To parametrize the algebraic solutions, it is conve-
nient to parametrize the indeterminant t as, respectively, t8 in (2.8) or t12 in (2.13).

Direct application of Theorem 2.1 to ϕ̂8(x) gives the following2 solution y26(t8) of PV I(1/5,
1/5, 1/5, 1/3; t8):

y26 =
1

2
+

(u− 1)(u+ 3)(u3 + 4u2 + 14u+ 8)

2(u3 + 4u2 + 2u+ 2)
√

u(u− 1)(u + 3)(u+ 8)
. (2.16)

Note that t8 is the nonramified point of ϕ̂8(x) above z = 0 not equal to x = 0 or x = 1,
while y26 is the extra ramification x-point of ϕ̂8(x); it corresponds to the point x = 5s in
the expression (2.3) of ϕ8(x). To get the parametrizations in [20], one has to substitute
u �→ −8(s + 1)2/(s2 − 34s + 1) or u �→ (8s1 + 1)/(1 − s1). In Sec. 3, we derive the same

algebraic solution by computing the full transformation RS2
4

(
1/5

5+1+1+1

∣∣∣ 1/2
2+2+2+2

∣∣∣ 1/3
3+3+2

)
.

Similarly, application of Theorem 2.1 to ϕ̂12(x) gives the following solution y31(t12) of
PV I(1/5, 1/5, 1/5, 1/5; t12 ):

y31 =
(u− 1)4(u+ 3)2

(u− 3)(u+ 1)(u2 + 3)(u2 + 4u+ 1)
. (2.17)

To get the parametrization in [20], one has to substitute u �→ (s − 3)/(s + 1). The im-

plied RS-transformation is RS2
4

(
1/3

3+3+3+3

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 1/5
5+4+1+1+1

)
. As Sec. 6 demonstrates,

Theorem 2.1 can be applied to an alternative normalization of ϕ12(x) giving a solution of
PV I(1/4, 1/4, 1/4,−1/4; t).

We note that the genus of algebraic Painlevé VI solutions is not a monotonic function of
the minimal genus of the Hurwitz spaces parametrizing the pull-back covering: the degree 8
covering ϕ̂8(x) gives a genus 1 solution, while the degree 12 covering ϕ̂12(x) gives a genus 0
solution. The covering ϕ8(x) is still parametrized by a projective line, even if its normalization
ϕ̂8(x) gives an algebraic Painlevé VI solution of genus 1.

3. Computation of Schlesinger transformations

This section starts with construction of RS2
4

(
1/5

5+1+1+1

∣∣∣ 1/2
2+2+2+2

∣∣∣ 1/3
3+3+2

)
, demonstrating

the construction of the S-part of full RS-pullbacks as a single Schlesinger transformation.
This gives us the same Painlevé VI solution y26(t8) as dictated by Theorem 2.1. From the
full RS-transformations, we easily derive a solution of PV I(1/5, 1/5, 1/5,−1/3; t8 ) as well.

Then we construct an example of RS2
4

(
2/5

5+1+1+1

∣∣∣ 1/2
2+2+2+2

∣∣∣ 1/3
3+3+2

)
and derive solutions of

PV I(2/5, 2/5, 2/5, 2/3; t8 ) and PV I(2/5, 2/5, 2/5,−2/3; t8) of Boalch type 27.

2Throughout this paper, the indices 26, 27, 31, 32 refer to the Boalch types [3] of icosahedral Painlevé VI
solutions.

500



Application of Appendix formulas (7.6)–(7.8) to the equation E(1/5, 1/2, 0, 1/3; t; z) yields
the following leading terms of dominant local solutions at the singular points, up to multipli-
cation by constants:

u0 =

(
11

1

)
z−

1
10 , u1 =

(
11

−19

)
(1− z)−

1
4 , u∞ =

(
1

0

)
z

1
6 . (3.1)

Let f1(z), f2(z) denote the normalized basis for solutions of E(1/5, 1/2, 0, 1/3; t; z). We have

f1(z) ∼
(1
0

)
z1/6 and f2(z) ∼

(0
1

)
z−1/6, as z → ∞. Up to scalar multiples, explicit expressions

for these solutions can be copied from (7.9)–(7.10).
The Fuchsian system for the equation PV I(1/5, 1/5, 1/5, 1/3; t) must be an RS-pullback

RS2
4

(
1/5

5+1+1+1

∣∣∣ 1/2
2+2+2+2

∣∣∣ 1/3
3+3+2

)
with respect to the covering z = ϕ̂8(x). It is preferable to

work with the simpler parametrization z = ϕ8(x), and apply the fractional-linear transforma-
tion (2.6) to switch to z = ϕ̂8(x) at the last stage. Let us denote

F8 = 9(s + 1)2x3 − 24s(s + 3)x2 + 8s(11s − 1)x+ 48s2,

P8 = 3(s + 1)2x4 − 4s(s + 3)x3 + 12s(s− 1)x2 + 24s2x+ 8s2,

G8 = x2 − 2sx− s,

(3.2)

so that, copying (2.3) and (2.4), we have

ϕ8(x) =
(s+ 1)2

64s

x5F8

G3
8

, ϕ8(x)− 1 =
1

64s

P 2
8

G3
8

. (3.3)

The direct pull-back of E(1/5, 1/2, 0, 1/3; t, z) with respect to ϕ8(x) is a Fuchsian system with
singularities at x = ∞ and the roots of F8(x), and apparent singularities at x = 0 and the roots
of G8(x), P8(x). In particular, the local monodromy exponents at x = ∞ are ±1/3, twice the
exponents at z = ∞. We have to remove apparent singularities, and choose a solution basis
g1(x), g2(x) of the pulled-back equation so that, up to constant multiples, g1(x) ∼ (1

0

)
x1/10

and g2(x) ∼ (0
1

)
x−1/10. This would allow straightforward normalization3 of the pulled-back

equation for the Jimbo–Miwa correspondence.
Let T26 denote the matrix representing the basis g1(x), g2(x) in terms of the solution basis

f1(ϕ8(x)), f2(ϕ8(x)) of the directly pulled-back equation. That is,
(g1
g2

)
= T26

(f1
f2

)
. The S-

matrix in (1.2)–(1.3) can be taken to be T−1
26 . It has to shift local exponents at x = 0, and

the roots of G8(x) and P8(x). The local exponents at x = ∞ have to be shifted as well, since
the shifts of local monodromy differences must add to an even integer. The matrix T26 has to
satisfy the following conditions.

(i) Local exponent shifts for general vectors. For general vectors u, the vector T26u
is O (1/

√
x) at x = 0, O

(
1/
√
P8

)
at the roots of P8(x), O

(
1/
√
G8

)
at the roots of

G8(x), and O(
√
x) at infinity.

(ii) Local exponent shifts for dominant solutions at singular points. We must
have T26u0 = O(

√
x) at x = 0, T26u1 = O(

√
P8) at the roots of P8(x), T26u∞ =

O(
√
G8) at the roots of G8(x), and T26u∞ = O (1/

√
x) at infinity.

(iii) Normalization at infinity. The positive local monodromy exponent 1/6 at z = ∞
gets transformed to the local monodromy exponent 2 · 1

6 − 1
2 < 0 at x = ∞. Hence

the dominant solution ∼ (
1
0

)
z1/6 should be mapped, up to a constant multiple, to

3We may require strict asymptotic behavior for g1(x), g2(x) without reference to constant multiples, as in [2]
and [20], but this is unnecessary. The Jimbo–Miwa correspondence merely requires existence of a basis with
the strict asymptotics. There is no value in controlling strict identification of normalized bases all the way until
final fractional-linear normalization, (2.6) in this particular case.
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the vanishing solution ∼ (0
1

)
x−1/6, and the vanishing solution ∼ (0

1

)
z−1/6 should be

mapped, up to a constant multiple, to the dominant solution ∼ (
1
0

)
x1/6.

By the first condition, the matrix T26 has the form

T26 =
1√

xG8P8

(
A26 B26

C26 D26

)
, (3.4)

where the matrix entries A26, B26, C26, D26 are polynomials in x of maximal degree 4, with the
coefficients being rational functions in s. By the second condition, the expressions 11A26+B26

and 11C26 +D26 vanish at x = 0, 11A26 − 19B26 and 11C26 − 19D26 are divisible by P8, and
A26, C26 are divisible by G8 and have degree at most 3. Let us define a few polynomials:

U1 = 19 · 11A26 +B26

x
, V1 =

11A26 − 19B26

P8
, W1 = −220 · A26

G8
,

U2 = 19 · 11C26 +D26

x
, V2 =

11C26 − 19D26

P8
, W2 = −220 · C26

G8
.

Then for i = 1, 2 we have

xUi + P8 Vi +G8 Wi = 0. (3.5)

In other words, the two polynomial vectors (Ui, Vi,Wi) are syzygies between the three poly-
nomials x, P8, G8. The last condition sets up the degrees for the entries of T26,

degA26 ≤ 2, degB26 = 4, degC26 = 3, degD26 ≤ 3. (3.6)

It turns out that the syzygies giving relations (3.5) of degree at most 4 form a linear space
of dimension 3. Here is a basis:

(G8, 0,−x), (xG8, 0,−x2), (L1, −1, −8s) , (3.7)

where L1 = 3(s+ 1)2x3 − 4s(s+ 3)x2 + 4s(3s − 1)x+ 8s2. The third syzygy gives the entries
A26, B26 satisfying (3.6). The first syzygy in (3.7) gives the entries C26, D26. For constructing
the transformation matrix T26, we multiply the syzygies (or the rows) by constant factors.
Here is a suitable transformation matrix:

T26 =
1√

xG8P8

(
38sG8 55P8 + 22sG8

19xG8 11xG8

)
. (3.8)

Using (1.3) with S = T−1
38 , we routinely compute the transformed differential equation

dΨ

dx
=

1

F8

(
K1 −8

5sK2

−2
5(x− 5s) −K1

)
Ψ, (3.9)

where

K1 =
3
2(s+ 1)2x2 − 2s(s+ 3)x− 4

5s, K2 = (15s2 + 30s + 4)x− 7s(5s+ 4).

We note that the x-root of the lower-left entry of the transformed equation is the extra rami-
fication point of the covering z = ϕ8(x). We can apply the Jimbo–Miwa correspondence after
reparametrization (2.5) and fractional-linear transformation (2.6) of (3.9). Then a solution of
PV I(1/5, 1/5, 1/5, 1/3; t) is equal to the x-root of the lower-left entry, while the independent
variable t is parametrized by the singularity t8 of the transformed Fuchsian equation. We get
the same solution y26(t8) as in (2.16), (2.8), reaffirming Theorem 2.1 for this case.

The full RS-pullback RS2
4

(
1/5

5+1+1+1

∣∣∣ 1/2
2+2+2+2

∣∣∣ 1/3
3+3+2

)
can provide much more additional re-

sults. For instance, the x-root of upper-right entry of T26 determines a solution of PV I(1/5, 1/5,
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1/5,−1/3; t8). After applying transformations (2.5)–(2.6) to K2, the x-root gives the following
solution ỹ26(t8):

ỹ26 =
1

2
+

(u− 1)(u + 3)(2u6 + 28u5 + 106u4 + 169u3 + 274u2 + 142u + 8)

4(u6 + 8u5 + 35u4 + 65u3 + 5u2 − 22u− 11)
√

u(u− 1)(u + 3)(u+ 8)
.

Alternatively, this solution can be computed from y26(t8) by applying a few Okamoto trans-
formations.

Now we consider construction of the RS-pullback

RS2
4

(
2/5

5 + 1 + 1 + 1

∣∣∣∣ 1/2

2 + 2 + 2 + 2

∣∣∣∣ 1/3

3 + 3 + 2

)

with respect to ϕ̂8(x), aiming for a solution of PV I(2/5, 2/5, 2/5, 2/3; t). The leading terms of
dominant local solutions of E(2/5, 1/2, 0, 1/3; t; z) at the singular points are constant multiples
of

v0 =

(
17

7

)
z

1
5 , v1 =

(
17

−13

)
(1− z)−

1
4 , v∞ =

(
1

0

)
z−

1
6 . (3.10)

Again, it is preferable to work first with the simpler covering z = ϕ8(x). The direct pull-back
of E(2/5, 1/2, 0, 1/3; t, z) with respect to ϕ8(x) is a Fuchsian system with the same singularities
as in the previous case, but the local monodromy exponents at x = 0 and the roots of F8(x)
are multiplied by 2. Hence we have to shift the local exponent difference at x = 0 by 2, and
we do not shift the local exponents at x = ∞. Let T27 denote the transition matrix to a basis
of Fuchsian solution normalized at x = ∞, analogous to T26 above. The matrix T27 has to
satisfy the following conditions.

(i) Local exponent shifts for general vectors. For general vectors u, the vector T27u
is O (1/x) at x = 0, O

(
1/
√
P8

)
at the roots of P8, O

(
1/
√
G8

)
at the roots of G8, and

O(1) at infinity. Hence, the matrix T27 has the form

T27 =
1

x
√
G8P8

(
A27 B27

C27 D27

)
, (3.11)

where A27, B27, C27, D27 are polynomials in x of maximal degree 4.
(ii) Local exponent shifts for dominant solutions at singular points. We must

have T27v0 = O(x) at x = 0, M27v1 = O(
√
P8) at the roots of P8(x), and M27v∞ =

O(
√
G8) at the roots of G8(x). This means that the following are triples of polynomials

in x: (
13 · 17A27 + 7B27

x2
, 7 · 17A27 − 13B27

P8
, −340 · A27

G8

)
,

(
13 · 17C27 + 7D27

x2
, 7 · 17C27 − 13D27

P8
, −340 · C27

G8

)
,

and the polynomial triples are syzygies between x2, P8, G8.
(iii) Normalization at infinity. The local exponents at x = ∞ are not shifted by the

Schlesinger transformation. Hence the dominant solution ∼ (1
0

)
z1/6 is mapped, up to

a constant multiple, to the dominant solution ∼ (1
0

)
x1/3, and the vanishing solution

∼ (0
1

)
z−1/6 is mapped, up to a constant multiple, to the vanishing solution ∼ (0

1

)
x−1/3.

This sets up the degrees for the entries of T27:

degA27 = 4, degB27 ≤ 3, degC27 ≤ 3, degD27 ≤ 4. (3.12)
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It turns out that the syzygies relations of degree at most 4 form a linear space of dimension 2.
Here is a syzygy basis:

S1 =
(
G8, 0,−x2

)
,

S2 =
(
(s+ 1)

(
3(s + 1)x2 − 4sx− 4s

)
, −1, −8s (x+ 1)

)
.

(3.13)

To determine the entries C27, D27, we take the syzygy S2. To determine the entries A27, B27,
we take the syzygy 60(s+1)2S1 − 7S2. Up to multiplication of the two rows by scalar factors,
we obtain

A27 = − 1

17

(
15(s + 1)2x2 − 14sx− 14s

)
G8, B27 =

17
13A27 +

5
13P8,

C27 =
14

17
s (x+ 1)G8, D27 =

17
13C27 +

5
13P8.

The transformed differential equation is

dΨ

dz
=

1

F8

(
K3 −2sK4

14
5 s

(
x+ 8(5s−1)

15(s+1)

)
−K3

)
Ψ (3.14)

where

K3 = 3(s + 1)2x2 − 2s(25s + 54)

5
x+

8s(150s2 + 235s + 1)

75(s + 1)
,

K4 = (15s2 + 20s− 8)x+
16(75s2 + 100s + 4)

75(s + 1)
.

To get a solution of PV I(2/5, 2/5, 2/5, 2/3; t) by the Jimbo–Miwa correspondence, we have to
apply reparametrization (2.5) and fractional-linear transformation (2.6) to the lower-left entry
of the differential equation, and write down the x-root. We get the following solution y27(t8):

y27 =
1

2
+

(u+ 3)(4u3 − 7u2 + 4u+ 8)

10u
√

u(u− 1)(u+ 3)(u+ 8)
. (3.15)

To get the same parametrization of this solution as in [3], one has to substitute u �→ − 6s
(2s+1) .

In the same way, the x-root of upper-right entry −3sK4 determines a solution of the equation
PV I(2/5, 2/5, 2/5,−2/3; t). The solution ỹ27(t8) is the following:

ỹ27 =
1

2
+

(u+ 3)(8u9 + 90u8 + 216u7 + 670u6 + 2098u5 − 571u4 − 850u3 − 7u2 − 140u− 56)

50u(2u6 + 16u5 + 30u4 + 10u3 + 45u2 + 46u+ 13)
√
u(u− 1)(u+ 3)(u + 8)

.

4. Syzygies for RS-pullback transformations

As we saw in the previous section, computation of Schlesinger transformations for full
RS-pullback transformations leads to computation of syzygies between three polynomials in
one variable x. Recently, this syzygy problem got a lot of attention in computational algebraic
geometry of rational curves [5, 6]. It was successfully considered by Franz Meyer [23] already
in 1887. David Hilbert famously extended Meyer’s results in [13].

Here are basic facts regarding the homogeneous version of the syzygy problem.

Theorem 4.1. Let K be a field and n an integer. Let P (u, v), Q(u, v), R(u, v) be homogeneous
polynomials in K[u, v] of degree n. We assume that these polynomials have no common factors.
Let Z be the graded K[u, v]-module of syzygies between P (u, v), Q(u, v), R(u, v).

Then the module Z is free of rank 2. If (p1, q1, r1), (p2, q2, r2) is a homogeneous basis for
Z, then

deg(p1, q1, r1) + deg(p2, q2, r2) = n, (4.1)
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and the polynomial vector (P,Q,R) is a K-multiple of

(q1r2 − q2r1, p2r1 − p1r2, p1q2 − p2q1) . (4.2)

Proof. See [6], or even [23]. The form (4.2) is a special case of the Hilbert–Burch theorem [10,
Theorem 3.2]. �

In our situation, K is a function field on a Hurwitz curve. For our applications, K = C(s).
But we rather consider syzygies between univariate nonhomogeneous polynomials. Here are
the facts we use.

Theorem 4.2. Suppose that P (x), Q(x), R(x) are polynomials in K[x] without common fac-
tors. Let Z be the K[x]-module of syzygies between P (x), Q(x), R(x). Then

(i) the module Z is free of rank 2,
(ii) for any two syzygies (p1, q1, r1), (p2, q2, r2), expression (4.2) is a K[x]-multiple of

(P,Q,R),
(iii) there exist syzygies (p1, q1, r1), (p2, q2, r2), such that expression (4.2) equals (P,Q,R),
(iv) two syzygies (p1, q1, r1), (p2, q2, r2) form a basis for Z if and only if expression (4.2) is

a nonzero K-multiple of (P,Q,R),
(v) if the syzygies (p1, q1, r1), (p2, q2, r2) form a basis for Z, and α1, β1, γ1, α2, β2,

γ2 ∈ K, then

det

(
α1p1P + β1q1Q+ γ1r1R α2p1P + β2q1Q+ γ2r1R
α1p2P + β1q2Q+ γ2r1R α2p2P + β2q2Q+ γ2r2R

)
(4.3)

is a K-multiple of P QR.

Proof. The module is free, because K[x] is a principal ideal domain. The rank is determined
by the exact sequence 0 → Z → K3 → K → 0 of free K-modules, where the map K3 → K is
defined by (p, q, r) �→ pP + qQ+ rR.

Statement (ii) holds, because either expression (4.2) is the zero vector, or the K[x]-module
of simultaneous syzygies between the two triples p1, q1, r1 and p2, q2, r2 is free of rank 1. The
triple (P,Q,R) is a generator of this module (since P,Q,R have no common factors), while
triple (4.2) belongs to the module.

For statement (iii), let D = gcd(P,Q), P̃ = P/D, and Q̃ = Q/D. Then P̃ = P/D and

Q̃ = Q/D are coprime, and there exist polynomials A, B such that R = AP̃ + BQ̃. Then

(Q̃,−P̃ , 0) and (A,B,−D) are the two required syzygies.
Now assume that (4.2) is a nonzero scalar multiple of (P,Q,R). Let u1 = (p1, q1, r1) and

u2 = (p2, q2, r2). If u3 = (p3, q3, r3) is a syzygy in Z, then

det

⎛
⎝p1 p2 p3
q1 q2 q3
r1 r2 r3

⎞
⎠ = 0, (4.4)

because the syzygy condition gives a K(x)-linear relation between the rows. A K[x]-linear
relation between the 3 syzygies is determined by the minors, say,

(p2q3 − p3q2)u1 + (p3q1 − p1q3)u2 + (p1q2 − p2q1)u3 = 0. (4.5)

By the second part, each coefficient here is a polynomial multiple of R. By our assumption,
p1q2−p2q1 is a nonzero constant multiple of R. After dividing (4.5) by R, we get an expression
of u3 as a K[x]-linear combination of u1 and u2, proving that the latter two syzygies form a
basis for Z. On the other hand, suppose that (4.2) is equal to (fP, fQ, fR), where either
f = 0 or the degree of f in x is positive. In the former case, the syzygies u1 and u2 are linearly
dependent over K(x), and hence they cannot form a basis for Z. In the latter case, one can see
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that for any two K[x]-linear combinations of u1 and u2, the expression analogous to (4.2) is a
multiple of (fP, fQ, fR), and hence the syzygy referred to in part (iii) is not in the module
generated by u1, u2.

In the last claim (v), we can eliminate the terms with r1R and r2R in all matrix entries

thanks to the syzygy condition. Hence we consider, for some scalars α̃1, α̃2, β̃1, β̃2,

det

(
α̃1p1P + β̃1q1Q α̃2p1P + β̃2q1Q

α̃1p2P + β̃1q2Q α̃2p2P + β̃2q2Q

)
= (α̃1β̃2 − α̃2β̃1)(p1q2 − q2p1)PQ. (4.6)

By the previous statement, p1q2 − q2p1 is a scalar multiple of R. �

In the application to RS-transformations, we start with matrix hypergeometric equation
E(e0, e1, 0, e∞; t; z) and its direct pull-back with respect to a covering z = ϕ(x). After this,
we have to shift local monodromy differences at some points of the fiber {0, 1,∞} ⊂ P

1
z. Let k

denote the order of the pole x = ∞ of the rational function ϕ(x), or the difference between
the degrees of its numerator and denominator.

Let F (x) be the polynomial whose roots are the points above z = 0 where local monodromy
differences have to be shifted, with root multiplicities equal to the corresponding shifts of local
monodromy differences. Let G(x) and H(x) be similar polynomials whose roots are the finite
points above z = 1, respectively, z = ∞, where the local monodromy differences have to be
shifted, with corresponding multiplicities. We set

Δ := degF (x) + degG(x) + degH(x). (4.7)

Suppose that the point x = 0 is above z = 0, and the local monodromy difference at x = ∞
has to be shifted by δ. The sum Δ+ δ must be even.

Local exponent shifts for general asymptotic solutions imply the following form of the inverse
Schlesinger matrix:

S−1 =
1√

F GH

(
A B
C D

)
. (4.8)

Local exponent shifts for dominant solutions at singular points require that the following are
triples of polynomials in x:(

(e0+e1−e∞)A+(e0−e1+e∞)B
F , (e0+e1−e∞)A−(e1−e0+e∞)B

G , A
H

)
, (4.9)(

(e0+e1−e∞)C+(e0−e1+e∞)D
F , (e0+e1−e∞)C+(e0−e1−e∞)D

G , C
H

)
. (4.10)

These polynomial triples are syzygies between

(e1 − e0 + e∞)F, (e0 − e1 + e∞)G, −2e∞(e0 + e1 − e∞)H. (4.11)

More conveniently, the following polynomial triples are syzygies between F , G, H:(
((e0−e∞)2−e21)A+((e0−e1)2−e2∞)B

2e∞F ,
((e1−e∞)2−e20)A+(e2∞−(e0−e1)2)B

2e∞G , (e0+e1−e∞)A
H

)
, (4.12)

(
((e0−e∞)2−e21)C+((e0−e1)2−e2∞)D

2e∞F ,
((e1−e∞)2−e20)C+(e2∞−(e0−e1)2)D

2e∞G , (e0+e1−e∞)C
H

)
. (4.13)

Normalization at infinity sets up the degrees for the entries of S−1 if δ < k, as we show in the
following lemma.

If F is a Laurent polynomial or Laurent series in 1/x, we denote by {F} the polynomial in
the x part of F . In particular, {Fx−j} for an integer j > 0 is equal to the polynomial quotient
of the division of F by xj .
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Lemma 4.3. Let f1(z) ∼ (1
0

)
z

1
2
e∞, f2(z) ∼ (0

1

)
z−

1
2
e∞ be the normalized basis for solutions

for E(e0, e1, 0, e∞; t; z), like in Sec. 3. Suppose that the Schlesinger transformation S maps
f1(ϕ(x)), f2(ϕ(x)) to solutions (of the pulled-back equation) asymptotically proportional to,
respectively,

∼
(
1

0

)
x

1
2
ke∞+ 1

2
δ, ∼

(
0

1

)
x−

1
2
ke∞− 1

2
δ. (4.14)

(i) If δ = 0, we have these degree bounds for the entries of S−1:

degA = Δ
2 , degB < Δ

2 , degC < Δ
2 , degD = Δ

2 . (4.15)

(ii) If δ > 0, let Δ∗ = 1
2(Δ − δ) and f2(ϕ(x)) = θ(x)

(
h1
h2

)
, where θ(x) is a power

function, and h1, h2 are power series in 1/x with h1 → 0, h2 → 1 as x → ∞. Then
degA = 1

2(Δ + δ), the other three entries of S−1 have lower degree, and({Ax−Δ∗−1} {B x−Δ∗}
{C x−Δ∗−2} {Dx−Δ∗−1}

)( {xδ h1}
{xδ−1 h2}

)
(4.16)

gives a polynomial vector of degree ≤ δ − 2 in x.
(iii) If δ > 1, then degD < 1

2(Δ + δ) − 1.
(iv) deg(AD −BC) ≤ Δ.
(v) If δ < k, then the degree bounds for the entries of S−1 are

degA = Δ+δ
2 , degB < Δ−δ

2 , degC < Δ+δ
2 , degD = Δ−δ

2 . (4.17)

(vi) If δ ≤ max(2, k), then degC < Δ+δ
2 and degD ≤ Δ−δ

2 .

Proof. The first statement is straightforward. In part (ii), the degree bounds on A, C follow
from the action S−1 on f1(ϕ(x)), that increases the local exponent 1

2ke∞. The prescribed
action on f2(ϕ(x)) should cancel the terms of A, B, C, D of degree greater than roughly Δ∗.
More precisely, that action of S−1 can be explicitly written as follows:

1√
FGH

(
xΔ

∗
0

0 xΔ
∗+1

)(
Ax−Δ∗−1 B x−Δ∗

C x−Δ∗−2 Dx−Δ∗−1

)(
x 0
0 1

)(
θ(x)h1
θ(x)h2

)

=
x2−δ θ(x)√

FGH

(
xΔ

∗−1 0
0 xΔ

∗

)(
Ax−Δ∗−1 B x−Δ∗

C x−Δ∗−2 Dx−Δ∗−1

)(
xδ h1
xδ−1h2

)
.

The entries of the last product (or a matrix and the vector) have degree at most δ − 2.
The coefficients at greater powers of x depend on the truncated entries in (4.16) only. This
completes the proof of part (ii). Note that

deg{Ax−Δ∗−1} = δ − 1, deg{B x−Δ∗} ≤ δ − 1,

deg{C x−Δ∗−2} ≤ δ − 3, deg{Dx−Δ∗−1} ≤ δ − 2,

deg{xδ h1} ≤ δ − k, deg{xδ−1 h2} = δ − 1.

If δ ≥ 2, then deg{Dx−Δ∗−1} ≤ δ − 3 as well, giving part (iii).
Part (iv) is immediate if δ = 0. Otherwise deg(AD−BC) < Δ+ δ as a first estimate. The

matrix in (4.16) is formed by the leading terms contributing to the terms in AD−BC greater
than Δ; its columns are linear dependent modulo division by xδ−1, and that translates to the
claim of part (iv).

If δ < k, then the vector in (4.16) is simply
(0
1

)
, and this gives trivial restrictions on the

coefficients of B and D to the powers ≥ Δ∗ of x, giving part (v). For the last part, we have
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to consider additionally δ ≤ 2 and δ = k. If δ = k > 2, then {xδ h1} is a constant and the
second row of the matrix in (4.16) has degree at most δ − 3. Hence the constant {xδ h1} does
not influence the conditions on C and D. �

Explicit expressions for the solutions f1(z), f2(z) can be obtained from (7.9)–(7.10). If the
Schlesinger transformation increases the local exponent of −1

2ke∞ by δ/2, rather than the

local exponent 1
2ke∞ as in (4.14), then the specifications of Lemma 4.3 for the diagonal entries

A, D and for the off-diagonal entries B, C should be pairwise interchanged, and the function
f2 in part (ii) should be replaced by f1. If the Schlesinger transformation maps f1(ϕ(x)),
f2(ϕ(x)) to functions proportional to

∼
(
0

1

)
x

1
2
ke∞± 1

2
δ, ∼

(
1

0

)
x−

1
2
ke∞∓ 1

2
δ,

respectively, then the rows of S−1 must be interchanged. Normalization of the pulled-back
solutions to the

(0
1

)
and

(1
0

)
leading terms can be softened by allowing the leading terms of

the transformed solutions f1(z), f2(z) to be scalar nonzero multiples of the two basis vectors.
Then the rows of S−1 are determined up to scalar multiples, and we do not have any further
conditions on the Schlesinger transformation. In particular, the rows of S−1 can be computed
independently, from syzygy (4.12) or (4.13) between F , G, H satisfying the extra conditions
of Lemma 4.3. The two syzygies ought to be defined uniquely by Lemma 4.3, up to a constant
multiple. (One can check that the linear problems with undetermined coefficients have one
variable more than the number of linear relations from the syzygy and Lemma 4.3 conditions.
Multiple solutions would give low degree syzygies F , G, H; generically, the two degrees in (4.1)
are equal or differ by merely 1.)

Theorem 4.4.

(i) The lower-left entry of the pulled-back Fuchsian equation depends only on the syzygy
(4.13) alone; that is, it does not depend on the syzygy (4.12). Similarly, the upper-right
entry of the pulled-back equation depends only on the syzygy (4.12).

(ii) The required syzygies (4.12)–(4.13) form a basis for the C(t)[x]-module of syzygies K
between the polynomials F , G, H.

(iii) The determinant AD −BC is a C(t)-multiple of F GH.
(iv) The Schlesinger transformation S can be assumed to have the form

S =
1√

F GH

(
D −B
−C A

)
, S−1 =

1√
F GH

(
A B
C D

)
, (4.18)

where the polynomial entries A, B, C, D are determined by syzygies (4.12)–(4.13).

Proof. The first statement can be seen directly, by checking off-diagonal entries of the matrices
S−1MS and S−1S′ in expression (1.3) for the pulled-back equation. The lower-left entry is
determined by the second row of S−1 and the first columns of MS and S′; these all depend
on C, D, but not on A, B. We have the reverse situation for the upper-right entry.

Let (U1, V1,W1) and (U2, V2,W2) be the 2 syzygies in (4.12)–(4.13), respectively. The syzy-
gies are linearly independent, since they give different degree of A or C. The expression
V1W2 − V2W1 is a C(t) multiple of (AD −BC)/GH; part (iii) of Lemma 4.3 implies that

deg(V1W2 − V2W1) ≤ Δ− degG− degH = degF.

We conclude that V1W2 − V2W1 is a C(t) multiple of F by part (ii) of Theorem 4.2. The two
syzygies form a module basis by part (iv) of the same theorem.
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Part (iii) follows, since AD − BC is divisible by each F , G, H, and has degree ≤ Δ. We
divide one of the rows by that scalar multiple and make the determinant precisely equal to
F GH. Then S and S−1 have the form (4.18). �

5. General expression in terms of syzygies

By the Jimbo–Miwa correspondence, a Painlevé VI solution is determined by the lower-left
entry of a pulled-back Fuchsian system. By the third part of Theorem 4.4, that lower-left
entry is determined by one syzygy (4.13) between F , G, H. In general, that syzygy depends

on the first coefficients of the solution f2(z) ∼
(0
1

)
z−

1
2
e∞. But if δ ≤ max(2, k), then we have

only the degree bounds of part (vi) of Lemma 4.3. Then we do not need to know coefficients
in the expansion of f2(z) at z = ∞ in order to determine the syzygy (and, eventually, the
Painlevé VI solution).

If δ > 0, then we prefer to assume that the direct pull-back solutions f1(ϕ(x)) and f2(ϕ(x))
are mapped into solutions (4.14) in the opposite order than in Lemma 4.3. The reason is
that in applications we usually apply integer shifts that change the sign of local monodromies
±1

2ke∞, while we wish to keep the positive local monodromy for the
(
1
0

)
solution. Respectively,

if δ > 0, then the degree bounds in parts (v), (vi) of Lemma 4.3 on the entries of
(A B
C D

)
change

columnwise. In particular,
degC = Δ−δ

2 , degD < Δ+δ
2 . (5.1)

Taking only small shifts δ ≤ max(2, k) at x = ∞ is enough to generate interesting so-
lutions of the sixth Painlevé equation. Checking the classification of the algebraic Painlevé
VI solutions in [22], we conclude that all “seed” algebraic solutions (with respect to Okamoto
transformations) can be generated in this way; see [32, Sec. 4.1]. Formula (5.4) in the following
theorem is valid for any δ if the syzygy (U2, V2,W2) is right; however, we specify the syzygy
only if δ ≤ max(2, k).

Theorem 5.1. Let z = ϕ(x) be a rational covering, and let F (x), G(x), H(x) be polynomials
in x. Let k be the order of the pole of ϕ(x) at x = ∞. Suppose that the direct pull-back of
E(e0, e1, 0, e∞; t; z) with respect to ϕ(x) is a Fuchsian equation with the following singularities.

• Four singularities are x = 0, x = 1, x = ∞, and x = t, with the local monodromy
differences d0, d1, dt, and d∞, respectively. The point x = ∞ lies above z = ∞.

• All other singularities in P
1
x \ {0, 1, t,∞} are apparent singularities. The apparent

singularities above z = 0 (respectively, above z = 1, z = ∞) are the roots of F (x) = 0
(respectively, G(x) = 0, H(x) = 0). Their local monodromy differences are equal to
the multiplicities of those roots.

Let Δ = degF +degG+degH, and let δ ≤ max(2, k) be a nonnegative integer such that Δ+δ
is even. Suppose that (U2, V2,W2) is a syzygy between the three polynomials F , G, H such that

degU2 =
Δ
2 − degF, deg V2 =

Δ
2 − degG, degW2 <

Δ
2 − degH (5.2)

for δ = 0, and

degU2 <
Δ+δ
2 − degF, degV2 <

Δ+δ
2 − degG, degW2 =

Δ−δ
2 − degH (5.3)

if δ > 0. Then the numerator of the (simplified) rational function

U2W2

G

(
(e0 − e1 + e∞)

2

ϕ′

ϕ
− (FU2)

′

FU2
+

(HW2)
′

HW2

)

+
(e0 − e1 − e∞)

2

V2W2

F

ϕ′

ϕ− 1
+

(e0 + e1 − e∞)

2

U2V2

H

ϕ′

ϕ (ϕ − 1)
, (5.4)

has degree 1 in x, and the x-root of it is an algebraic solution of PV I(d0, d1, dt, d∞ + δ; t).
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Proof. We use a Schlesinger transformation that removes the apparent singularities and shifts
the local monodromy difference at x = ∞ by δ. The matrix for its inverse has the form (4.8)
with entry degrees given by (4.15) or (5.1). The syzygy (U2, V2,W2) is identified as (4.13). Let
(U1, V1,W1) be the syzygy in (4.12). We have

A =
HW1

e0 + e1 − e∞
, B =

2e∞FU1 + (e1 − e0 + e∞)HW1

(e0 − e1)2 − e2∞
, (5.5)

C =
HW2

e0 + e1 − e∞
, D =

2e∞FU2 + (e1 − e0 + e∞)HW2

(e0 − e1)2 − e2∞
. (5.6)

Let h be a constant,

h =
2e∞

(e0 + e1 − e∞)(e0 − e1 + e∞)(e0 − e1 − e∞)
. (5.7)

Then

det

(
A B

C D

)
= hF H (U2W1 − U1W2) . (5.8)

By the second part of Theorem 4.4, we may assume that this determinant is equal to F GH;
this would affect the lower-left entry only by a C(t)-multiple. With this assumption, U2W1 −
U1W2 = G/h. Put K = F GH.

Using the form (4.18), we have

S′ =
1√
K

(
D′ −B′

−C ′ A′

)
− K ′

2
√
K3

(
D −B

−C A

)
(5.9)

and

S−1S′ =
1

K

(
AD′ −BC ′ BA′ −AB′

CD′ −DC ′ DA′ −CB′

)
− K ′

2K

(
1 0

0 1

)
. (5.10)

The lower-left entry of S−1S′ is equal to

h
(FU2)

′HW2 − FU2(HW2)
′

K
. (5.11)

Let M be the 2×2 matrix on the right-hand side of formula (7.4) in the Appendix. The entries
on the second row of S−1M are the following, from left to right:

2e∞√
K

(
FU2 +

e0 − e∞ ϕ

e0 + e1 − e∞
HW2

)
, (5.12)

2e∞
(e0 − e1 + e∞)

√
K

(
2e2∞ϕ− e20 + e21 − e2∞

e0 − e1 − e∞
FU2 − (e0 + e∞ϕ)HW2

)
. (5.13)

The lower-left entry of the matrix S−1MS is the following:

2e∞h
(e0 + e1 − e∞)F 2U2

2 + 2(e0 − e∞ϕ)FHU2W2 + (e0 − e1 − e∞)ϕH2W 2
2

K
. (5.14)

We use the syzygy relation to rewrite this expression in an attractive form. Here is a symmetric
expression equal to (5.14):

2e∞h

(
(e0 − e1 − e∞)

V2W2

F
ϕ+ (e0 − e1 + e∞)

U2W2

G
(ϕ− 1) + (e0 + e1 − e∞)

U2V2

H

)
. (5.15)

According to (1.3), the lower left-entry of the pulled-back Fuchsian system is equal to (5.15)
times ϕ′/4e∞ϕ(1−ϕ), minus (5.11). Up to the constant multiple −h, we get expression (5.4) for
the lower-left entry of the pulled-back Fuchsian equation. By the Jimbo–Miwa correspondence,
this entry must determine the Painlevé VI solution. �
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We give now alternative forms of expression (5.4). Let us introduce the following notation:

f0 =
e1 − e0 + e∞

2
, f1 =

e0 − e1 + e∞
2

, f∞ =
e0 + e1 − e∞

2
. (5.16)

Besides, for a function ψ of x, let [ψ] denote the logarithmic derivative ψ′/ψ of ψ. The
expression (5.4) can be written as follows:

U2W2

G

(
f1 [ϕ]−

[
FU2

HW2

])
− f0

V2W2

F
[ϕ− 1]− f∞

U2V2

H

[
ϕ

ϕ− 1

]
. (5.17)

Thanks to the syzygy relation, we have

(FU2)
′HW2 − FU2(HW2)

′ = FU2(GV2)
′ − (FU2)

′GV2 = GV2(HW2)
′ − (GV2)

′HW2,

hence these alternative expressions expressions for (5.17) hold:

f1
U2W2

G
[ϕ]− V2W2

F

(
f0 [ϕ− 1]−

[
GV2

HW2

])
− f∞

U2V2

H

[
ϕ

ϕ− 1

]
, (5.18)

f1
U2W2

G
[ϕ]− f0

V2W2

F
[ϕ− 1]− U2V2

H

(
f∞

[
ϕ

ϕ− 1

]
−

[
FV2

GW2

])
. (5.19)

Besides, these expressions for (5.17) can be derived:

f1
U2W2
G

(
[ϕ]− 1

e∞

[
FU2
HW2

])
− f0

V2W2
F

(
[ϕ− 1]− 1

e∞

[
GV2
HW2

])
− f∞ U2V2

H

[
ϕ

ϕ−1

]
, (5.20)

f1
U2W2
G [ϕ]− f0

V2W2
F

(
[ϕ− 1]− 1

e1

[
GV2
HW2

])
− f∞U2V2

H

([
ϕ

ϕ−1

]
− 1

e0

[
FU2
GV2

])
, (5.21)

f1
U2W2
G

(
[ϕ]− 1

e0

[
FU2
HW2

])
− f0

V2W2
F [ϕ− 1]− f∞U2V2

H

([
ϕ

ϕ−1

]
− 1

e0

[
FU2
GV2

])
. (5.22)

All these expressions are supposed to simplify greatly to a rational function with the denomi-
nator of degree 3 in x, and the numerator linear in x. The root of the numerator determines
a Painlevé VI solution.

Remark 5.2. If one of the components of (U2, V2,W2) is equal to zero, then expression (5.4)
simplifies to a single multiplicative term, and the extra ramification point of ϕ(x) is a zero of
the numerator. For example, if (U2, V2,W2) = (H, 0,−F ), then expression (5.4) becomes

−(e0 − e1 + e∞)

2

ϕ′

ϕ

FH

G
. (5.23)

The extra ramification point is a zero of ϕ′(x). If the covering z = ϕ(x) satisfies specifications
of Theorem 2.1, then the last numerator FH simplifies out for e0 = 1/k0, e∞ = 1/k∞; similarly,
the last denominator G simplifies out for e1 = (k1 − 1)/k1. For comparison, in the proof of
Theorem 2.1 we assumed that e0 = 1/k0, e1 = 1/k1, e∞ = (k∞ − 1)/k∞; the composite
Schlesinger transformation there corresponds to a syzygy with the third component equal to
zero.

In the context of Theorem 5.1, there is a syzygy with zero component satisfying degree
specifications (5.2) or (5.3) if and only if one of the following conditions holds:

δ = 0, degF + degG = degH, (5.24)

δ > 0, degF + degH = degG− δ, (5.25)

δ > 0, degG+ degH = degF − δ. (5.26)

Remark 5.3. As mentioned with examples in Sec. 3, the upper-right entry of the transformed
equation determined in a similar way a solution of another Painlevé VI equation. Accordingly,
if we have a proper syzygy (U1, V1, W1) determining the upper row of the Schlesinger ma-
trix, we can use the same formula (5.4) with (U2, V2,W2) replaced by (U1, V1,W1) to compute
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a solution of PV I(d0, d1, dt,−d∞ − δ). Note that this Painlevé VI equation is the same as
PV I(d0, d1, dt, d∞+ δ+2). Particularly, it is contiguous (and related by Okamoto transforma-
tions) to PV I(d0, d1, dt, d∞ + δ).

Moreover, an algebraic solution of PV I(d0, d1, dt,−d∞ − δ′) can be obtained by using The-
orem 5.1 with its δ replaced by δ′ + 2, that is, using the lower-right entry of a pull-back by
contiguous Schlesinger transformation. It appears that the same algebraic solution is obtained
regardless whether the lower-left entry or the upper-right entry of appropriately contiguous
Schlesinger transformations is used.

6. More algebraic Painlevé VI solutions

Here we apply Theorem 5.1 to compute a few algebraic Painelevé VI solutions. Implicitly,
we employ RS-transformations of the hypergeometric equation E(1/3, 1/2, 0, 2/5; t; z) with
respect to the covering z = ϕ̂12(x) Additionally, we note that a fractional-linear version of
ϕ̂12(x) can be used to pull-back E(1/3, 1/2, 0, 1/4; t; z) and E(1/3, 1/2, 0, 1/2; t; z).

The implied RS-pullback transformation for the equation E(1/3, 1/2, 0, 2/5; t; z) is

RS2
4

(
1/3

3+3+3+3

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 2/5
5+4+1+1+1

)
. We work mainly with the covering z = ϕ12(x)

rather than with the normalized z = ϕ̂12(x), and apply reparametrization (2.11) and nor-
malizing fractional-linear transformation (2.12) at the latest. Theorem 5.1 has to be applied
with (F,G,H) =

(
F12, P12, x

2
)
and δ = 0. The Painlevé solution must solve PV I(2/5, 2/5, 2/5,

8/5; t), which is the same equation as PV I(2/5, 2/5, 2/5, 2/5; t). The degree specifications (5.2)
are degU2 = 2, deg V2 = 0, degW2 < 4. Up to a constant multiple, there is one syzygy satis-
fying these bounds,(

x2 + (s+ 6)x+ 1, −1
2 , −3(s+ 4)

(
x3 − (

7
2s+ 11

)
x2 + (s+ 7)x+ 1

) )
. (6.1)

With this syzygy, expression (5.4) is equal to −3(s+4)(3sx+8s+20)/10G12. After reparamet-
rization (2.11) and normalizing fractional-linear transformation (2.12), the x-root gives the
following solution y32(t12) of PV I(2/5, 2/5, 2/5, 2/5; t12):

y32 =
(u− 1)2(u+ 3)2(3u2 + 1)

3(u+ 1)3(u− 3)(u2 + 4u− 1)
. (6.2)

The solutions y31(t12) and y32(t12) are presented in [29, Sec. 7] as well, but reparametrized u �→
−(s+3)/(s− 1). With the Okamoto transformations, these two solutions can be transformed
to, respectively, the Great Icosahedron and Icosahedron solutions of Dubrovin–Mazzocco [9].

The full RS-transformation RS2
4

(
1/3

3+3+3+3

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 2/5
5+4+1+1+1

)
with δ = 0 gives us

a solution of PV I(2/5, 2/5, 2/5,−8/5; t) via the upper-right entry of the pulled-back Fuchsian
equation. As mentioned at the end of previous section, we can use the same expression (5.4)
with appropriate syzygy (U1, V1,W1) for the triple

(
F12, P12, x

2
)
to compute the Painlevé VI

solution. The degree constraints are the following:

degU1 = 2, deg V1 = 0, degW1 = 4, deg(17U1F12 + 7V1G12) < 6. (6.3)

Let S3 be the syzygy
(−x2, 0, F12

)
. One can take (U1, V1,W1) to be equal to syzygy (6.1)

plus 24
7 S3. Here is the final expression for a solution ŷ32(t12) of PV I(2/5, 2/5, 2/5,−8/5; t12 ),

obtained after application of reparametrization (2.11) and normalizing fractional-linear trans-
formation (2.12):

ŷ32 =
(u− 1)2(u+ 3)2(13u4 − 2u2 + 5)(9u6 − 55u4 + 195u2 + 299)

13(u + 1)3(u− 3)(u2 + 3)(u2 + 4u− 1)(9u6 − 47u4 + 499u2 + 115)
. (6.4)
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It is instructive to observe that to get a solution of PV I(2/5, 2/5, 2/5, −2/5; t12), we have
to consider a Schlesinger transformation with δ = 2. Then we have the following degree
constraints for the two syzygies:

degU1 = 3, deg V1 = 1, degW1 < 3, degU2 < 3, deg V2 < 1, degW2 = 3.

We can take the same syzygy (6.1) for (U2, V2,W2), and derive the same solution (6.2) of
PV I(2/5, 2/5, 2/5, 2/5; t12 ). We can take (U1, V1,W1) to be equal to the syzygy (6.1) times
x− s/2− 1, plus the syzygy 3(s + 4)S3. Application of expression (5.4) to this syzygy gives
the following solution ỹ32(t12) of PV I(2/5, 2/5, 2/5,−2/5; t12):

ỹ32 =
(u− 1)2(u+ 3)2(3u2 + 1)(7u8 − 108u6 + 314u4 − 588u2 + 119)

7(u+ 1)3(u− 3)(u2 + 3)(u2 + 4u− 1)(3u6 − 37u4 + 209u2 + 17)
. (6.5)

The same covering z = ϕ12(x) can be applied to pull-back the Fuchsian equations E(1/3, 1/2,
0, 1/4; t; z) and E(1/3, 1/2, 0, 1/2; t; z) to isomonodromic matrix equations with four singular
points. Put

λ(x) =
t∗12x

x+ t∗12 − 1
. (6.6)

The fractional-linear transformation λ(x) fixes the points x = 0 and x = 1, and moves x = ∞
to x = t∗12. Theorem 2.1 can be applied to ϕ̂12(λ(x)) with k0 = 3, k1 = 2, k∞ = 4. Put
t60 = λ(t12) and y61 = λ(y26). Explicitly, we have

t60 =
(u− 1)(u+ 3)3

(u+ 1)(u− 3)3
, y61 =

(u+ 3)2(u2 − 5)

5(u+ 1)(u− 3)(u2 + 3)
. (6.7)

In the current application of Theorem 2.1, the branches x = t and x = y are given by, respec-
tively, x = t60 and x = y61. We conclude that y61(t60) is a solution of PV I(1/4, 1/4, 1/4,
−1/4; t60). The same solution is given in [20, p. 25], reparametrized with u �→ (s− 3)/(s+1).

Currently, the implied RS-transformation is

RS2
4

(
1/3

3 + 3 + 3 + 3

∣∣∣∣ 1/2

2 + 2 + 2 + 2 + 2 + 2

∣∣∣∣ 1/4

5 + 4 + 1 + 1 + 1

)
.

To get a solution of PV I(1/4, 1/4, 1/4, 1/4; t), we use the upper-right entry of the pulled-back
equation. In order to apply Theorem 5.1, we substitute x �→ 1/x in expression (2.9) of ϕ12(x).

Accordingly, let F̃12(x) and P̃12(x) denote the polynomials x4F12(1/x) and x6P12(1/x), respec-

tively. A suitable syzygy between
(
F̃12(x), P̃12(x), x

)
is the same as in (6.1) except for that the

coefficients to x2 and x of the third component have to be interchanged. The expression as
in (5.14) is (s + 3)/2. After application of back substitutions x �→ 1/x, (2.11) and fractional-
linear transformation λ−1 (2.12), we get the following solution of PV I(1/4, 1/4, 1/4, 1/4; t62):

y62 = − (u+ 3)2

3(u+ 1)(u− 3)
. (6.8)

The parametrization in [14, p.588] and [4, (10)] is related by u �→ −3/(2s − 1). Boalch notes
that this solution is equivalent to [8, (E.29)].

We may also consider the RS-transformations RS2
4

(
1/3

3+3+3+3

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 1/2
5+4+1+1+1

)
.

We have to compute syzygies between
(
F̃12(x), P̃12(x), x

2
)
. The “lower” syzygy (U2,V2,W2)

gives a solution of PV I(1/2, 1/2, 1/2, 5/2; t), or equivalently, PV I(1/2, 1/2, 1/2,−1/2; t). Inci-
dentally, we get the same function y62(t60) as the z-root of the lower-left entry, although the
syzygy (U2, V2,W2) is different,(

x2 − 2(s + 3)x+ 1, −1

2
, 3(s + 4)

(
x3 + (2s + 11)x2 + (s2 + 5s+ 7)x− 1

2
s− 1

))
. (6.9)
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Hence, y62(t60) is a solution of PV I(1/2, 1/2, 1/2,−1/2; t60 ) as well. As for the syzygies
(U1, V1,W1) for the upper row of the Schlesinger matrix, we take δ = 0 or δ = 2, and get
the syzygies(

−2

3
x2 − 2

3
(s+ 3)x+

1

3
,−1

6
, x4 + (3s+ 16)x3 + (3s2 + 25s+ 58)x2 + . . .

)
,

(
x3 + (s+ 7)x2 − (2s+ 5)x+ 1,−1

2
(x+ 1),

3

2
(s+ 4)2(2x2 + (2s+ 9)x− 1)

)
.

Eventually, we derive these solutions y63(t60) and y64(t60) of

PV I(1/2, 1/2, 1/2,−5/2; t60 ) and PV I(1/2, 1/2, 1/2, 1/2; t60 ),

respectively,

y63 = − (u+ 3)2(u2 + 7)

7(u+ 1)(u − 3)(u2 + 3)
, y64 =

(u− 1)(u + 3)2

(u− 3)(u2 + 3)
. (6.10)

Algebraic solutions of PV I(1/2, 1/2, 1/2, 1/2; t) are investigated in [15] and [14]. In par-
ticular, the solution t60/y64 is presented in [15, 6.4] and [14, p. 598], reparametrized by
u �→ 3(s + 1)/(s − 1). The equation PV I(1/2, 1/2, 1/2, 1/2; t) is related to Picard’s equation
PV I(0, 0, 0, 1; t) via an Okamoto transformation.

7. Appendix

Recall that the sixth Painlevé equation is, canonically,

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(
1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
, (7.1)

where α, β, γ, δ ∈ C are parameters. As is well-known [16], its solutions define isomonodromic
deformations (with respect to t) of the 2× 2 matrix Fuchsian equation with 4 singular points
(λ = 0, 1, t, and ∞),

d

dz
Ψ =

(
A0

z
+

A1

z − 1
+

At

z − t

)
Ψ,

d

dz
Ak = 0 for k ∈ {0, 1, t}. (7.2)

The standard correspondence is due to Jimbo and Miwa [16]. We choose the traceless nor-
malization of (7.2), so we assume that the eigenvalues of A0, A1, At are, respectively, ±θ0/2,
±θ1/2, ±θt/2, and that the matrix A∞ := −A1−A2−A3 is diagonal with the diagonal entries
±θ∞/2. Then the corresponding Painlevé equation has the parameters

α =
(θ∞ − 1)2

2
, β = −θ20

2
, γ =

θ21
2
, δ =

1− θ2t
2

. (7.3)

We refer to the numbers θ0, θ1, θt and θ∞ as local monodromy differences.
For any numbers ν1, ν2, νt, ν∞, we denote by PV I(ν0, ν1, νt, ν∞; t) the Painlevé VI equation

for the local monodromy differences θi = νi for i ∈ {0, 1, t,∞}, via (7.3). Note that chang-
ing the sign of ν0, ν1, νt or 1 − ν∞ does not change the Painlevé equation. Fractional-linear
transformations for the Painlevé VI equation permute the 4 singular points and the numbers
ν0, ν1, νt, 1− ν∞.

Similarly, for any numbers ν1, ν2, νt, ν∞ and a solution y(t) of PV I(ν0, ν1, νt, ν∞; t), we denote
by E(ν0, ν1, νt, ν∞; y(t); z) a Fuchsian equation (7.2) corresponding to y(t) by the Jimbo–Miwa
correspondence. The Fuchsian equation is determined uniquely up to conjugation of A0, A1, At

by a diagonal matrix (dependent on t only). In particular, y(t) = t can be considered as
a solution of PV I(e0, e1, 0, e∞; t). The equation E(e0, e1, 0, e∞; t; z) is a Fuchsian equation
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with 3 singular points, actually without the parameter t. Its solutions can be expressed in
terms of Gauss hypergeometric series with local exponent differences e0, e1, and e∞ ± 1. We
refer to E(e0, e1, 0, e∞; t; z) as a matrix hypergeometric equation, and treat it as a matrix
form of Euler’s ordinary hypergeometric equation. In particular, the monodromy group of
E(1/3, 1/2, 0, 1/5; t; z) or E(1/3, 1/2, 0, 2/5; t; z) is the icosahedral group.

The following matrix form of the hypergeometric equation is considered within the Jimbo–
Miwa correspondence [16]:

d

dz
Ψ =

1

4e∞z (1− z)

(
e20 − e21 + e2∞ − 2e2∞z e2∞ − (e0 + e1)

2

(e0 − e1)
2 − e2∞ 2e2∞z − e20 + e21 − e2∞

)
Ψ. (7.4)

When considered as a “constant” isomonodromic system, this equation corresponds to the
function y(t) = t as a solution of the equation PV I(e0, e1, 0, e∞; t) within the Jimbo–Miwa
correspondence. The function y(t) = t solves PV I(e0, e1, 0, e∞; t) in the following sense: if we
multiply both sides of (7.1) by y − t and simplify each fractional term, the nonmultiples of

y − t on the right-hand side form the expression 1
2

(
dy
dt

)2
− dy

dt +
1
2
y(y−1)
t(t−1) .

Here is a solution of (7.4), well defined if e0 is not a positive integer,

z−
1
2
e0(1− z)−

1
2
e1

⎛
⎝(e0 + e1 − e∞) 2F1

(
1
2
(−e0−e1−e∞), 1+ 1

2
(−e0−e1+e∞)

1−e0

∣∣∣ z )
(e0 − e1 + e∞) 2F1

(
1
2
(−e0−e1+e∞), 1+ 1

2
(−e0−e1−e∞)

1−e0

∣∣∣ z )
⎞
⎠ . (7.5)

If e0 �= 0, then an independent solution can be obtained by flipping the sign of e0 and e1 in
this expression. (If we would flip the sign of e0 only, the Fuchsian equation would be different.)
Up to constant multiples, local solutions at singular points have the following asymptotic first
terms:

at z = 0 :

(
e0 + e1 − e∞
e0 − e1 + e∞

)
z−

1
2
e0 or

(
e0 + e1 + e∞
e0 − e1 − e∞

)
z

1
2
e0 ; (7.6)

at z = 1 :

(
e0 + e1 − e∞
e0 − e1 − e∞

)
(1− z)−

1
2
e1 or

(
e0 + e1 + e∞
e0 − e1 + e∞

)
(1− z)

1
2
e1 . (7.7)

Hypergeometric solutions at z = 1 can be obtained from (7.5) by the substitutions z �→ 1− z,

e0 ↔ e1 and applying the matrix
( 1 0

0 −1

)
to the solution vector. Due to the normalization, at

z = ∞ we have a basis of solutions(
1

0

)
z

1
2
e∞ +O

(
z

1
2
e∞−1

)
,

(
0

1

)
z−

1
2
e∞ +O

(
z−

1
2
e∞−1

)
. (7.8)

Explicitly, a hypergeometric basis at z = ∞ is

z
1
2
(e1+e∞)(1− z)−

1
2
e1

⎛
⎝ 4e∞(e∞ − 1) 2F1

(
1
2
(−e0−e1−e∞), 1

2
(e0−e1−e∞)

−e∞

∣∣∣ 1
z

)
e2∞−(e0−e1)2

z 2F1

(
1+ 1

2
(−e0−e1−e∞), 1+ 1

2
(e0−e1−e∞)

2−e∞

∣∣∣ 1
z

)
⎞
⎠ , (7.9)

z
1
2
(e1−e∞)(1− z)−

1
2
e1

⎛
⎝ e2∞−(e0+e1)2

z 2F1

(
1+ 1

2
(−e0−e1+e∞), 1+ 1

2
(e0−e1+e∞)

2+e∞

∣∣∣ 1
z

)
4e∞(e∞ + 1) 2F1

(
1
2
(−e0−e1+e∞), 1

2
(e0−e1+e∞)

e∞

∣∣∣ 1
z

)
.

⎞
⎠ . (7.10)
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