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GENERALIZED INTERPOLATION PROBLEM
OF THE KOREVAAR–DIXON TYPE

R. A. Gaisin UDC 517.53

Abstract. In this paper, we study the generalized interpolation problem in the class of entire functions
of exponential type defined by a certain majorant from the convergence class.
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1. Introduction. In this paper, we consider the generalized interpolation problem in the class of
entire functions of exponential type, which is determined by a certain majorant from the convergence
class. The ordinary interpolation problem of the Korevaar–Dixon type in the class of entire functions
determined by a non-quasi-alalytical majorant was examined in [3]. In a narrower class, where the
majorant possesses the concavity property, a similar problem with nodes at points of a certain subse-
quence of natural numbers was earlier considered by Berndtsson. By an ingenious method based on
an estimate of a solution of the ∂-problem obtained by Hörmander, Berndtsson proved a solvability
criterion for this interpolation problem. In papers of Pavlov, Korevaar, and Dixon, interpolation se-
quences were successfully applied in many problems of complex analysis; moreover, a relationship with
approximative properties of power systems {zpn} and with well-known Pólya and MacIntyre problems
was detected.

In [3], an interpolation criterion in a more general sense was stated for an arbitrary sequence of real
numbers; the proof of the main theorem in [3] was based on the modified Berndtsson method. In this
paper, we transfer this result to the case where given values of an entire function are constrained by
certain minimal restrictions, namely, natural conditions imposed by the convergence class.

Let L be the class of all continuous functions l = l(x) on R+ such that 0 < l(x) ↑ ∞ as x → ∞,

W =

⎧
⎨

⎩
w ∈ L :

∞

1

w(x)

x2
dx < ∞

⎫
⎬

⎭
, Ω = ω ∈ W :

ω(x)

x
↓ , x → ∞ .

The set W is called the convergence class and functions w from W are called weights (non-quasi-
analytic weights; see [3]).

Definition 1 (see [1]). An increasing sequence {pn} of natural numbers is called a Pavlov–Korevaar–
Dixon interpolation sequence if there exists a function ω ∈ Ω depending only on the sequence {pn} such
that for any sequence {bn} of complex numbers, |bn| ≤ 1, there exists an entire function f possessing
the following properties:

(1) f(pn) = bn, n ≥ 1, (2) Mf (r) = max
|z|≤r

|f(z)| ≤ eω(r).

Let Λ = {λn} be an arbitrary sequence of real numbers, 0 < λn ↑ ∞. A sequence Λ is called an
interpolation sequence if there exists a function w ∈ W depending only on this sequence such that
for any sequence {bn} of complex numbers, |bn| ≤ 1, there exists an entire function f possessing the
properties (1) and (2), but with the function w.

Necessary and sufficient conditions under which a sequence {pn} (pn ∈ N) is an interpolation se-
quence were obtained in [1] for the class Ω, and in [3] for the class W .
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Definition 2. Let β be a function from the class W . A sequence Λ = {λn} (0 < λn ↑ ∞) is called
an interpolation sequence in the wide sense if there exists a function w ∈ W depending only on the
sequence Λ such that for any sequence {bn} of complex numbers, |bn| ≤ eβ(λn) (n ≥ 1), there exists
an entire function f possessing the following properties:

(1 ) f(λn) = bn, n ≥ 1, (2 ) Mf (r) = max
|z|≤r

|f(z)| ≤ ew(r).

The problem (1 )–(2 ) is called the generalized Korevaar–Dixon interpolation problem, whereas the
condition

|bn| ≤ eβ(λn) n ≥ 1, (1)

where β is a fixed function from the class W , is called the natural condition.
The aim of this paper is to prove an interpolation criterion for a sequence Λ in the wide sense.

2. Auxiliary results. Let

n(t) =
λn≤t

1

be the counting function of a sequence Λ and

N(t) =

t

0

n(x)

x
dx.

Without loss of generality, we assume that λ1 = 1; this allows us to simplify some calculations.

Lemma 1. Let τn = min
k=n
≥1

|λn − λk|, hn = min(τn, 1),

Kn = ξ :
hn
4

≤ |ξ − λn| ≤ hn
2

, n ≥ 1.

Then in rings Kn, the following estimates hold :

(1) sup
k=n

ln
λk − z

λk − λn
≤ ln 2; (2) sup

k
ln

λk + z

λk + λn
≤ ln

4

3
;

(3) ln 1− z2

λ2
n

≤ ln 10 + | lnhn|+ lnλn.

Assume that a sequence Λ has a finite upper density

lim
n→∞

n

λn
= τ < ∞.

Then

q(z) =
∞

n=1

1− z2

λ2
n

is an entire function of the exponential type.

Lemma 2 (see [3]). Let a sequence Λ = {λn} (1 = λ1 < λn ↑ ∞) have a finite upper density,
hn = min min

k=n
|λk − λn|, 1 ,

q(z) =

∞

k=1

1− z2

λ2
k

.

Then in the rings

Kn = ξ :
hn
4

≤ |ξ − λn| ≤ hn
2

,
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the following estimate holds:

ln
1

|q(z)| −
λn

0

ν(λn; t)

t
dt ≤ m(λn),

where ν(λn; t) is the number of points λk = λn from the segment h : |h− λn| ≤ t ,

m(λn) = ln 10 + lnλn + | lnhn|+ n(2λn) ln 8 + 2N(2λn) + 20 lnMq(λn).

Corollary 1. If
∞

n=1

1

λn
< ∞ and | lnhn| ≤ w1(λn), n ≥ 1,

for a certain function w1 ∈ W , then for z ∈ Kn we have

ln
1

|q(z)| −
r

0

ν(z; t)

t
dt ≤ w2(r),

where w2 is a function from W .

Corollary 1 easily follows from Lemma 2, if we take into account the fact that the convergence of

the series
∞

n=1
1/λn is equivalent to the convergence of the integrals

∞

1

n(r)

r2
dr,

∞

1

N(r)

r2
dr,

∞

1

lnMq(r)

r2
dr

(see [2, 6]). Further, since

− ln

λn/2≤λk≤2λn,
k=n

1− λn

λk
= −

|λk−λn|≤λn

ln 1− λn

λk
+

λk≤λn/2

1− λn

λk
= −Σ1(λn) +A,

for Σ1(λn) and A we have

0 ≤ A =

λk≤λn/2

ln
λn

λk
− 1 ≤

λk≤λn/2

ln 1 +
λ2
n

λ2
k

≤ lnMq(λn),

Σ1(λn) = −
λn

0

ν(λn; t)

t
dt+N1(2λn)− n1(2λn) ln 2.

Thus, the following assertion holds.

Lemma 3. The following estimate is valid :

− ln
k=n

λn/2≤λk≤2λn

1− λn

λk
−

λn

0

ν(λn; t)

t
dt ≤ n(2λn) +N(2λn) + lnMq(λn),

where ν(λn; t) is the number of points λk = λn from the segment h : |h− λn| ≤ t .

Lemma 4 (see [5]). Let w ∈ W . Then

v(z) = w∗(|z|),
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where

w∗(r) =
∞

1

ln 1 +
r2

t2
dw(t), r = |z|,

is a subharmonic function in C.

3. Solvability criterion for the generalized interpolation problem. Let

Λ = {λn}, 0 < λn ↑ ∞, lim
n→∞

n

λn
= τ < ∞.

Theorem 1. A sequence Λ is an interpolation sequence in the wide sense if and only if there exists a
function w ∈ W such that

(a)

∞

n=1

1

λn
< ∞; (b) − ln

λn/2<λk<2λn

k=n

1− λn

λk
≤ w(λn), n ≥ 1.

Note that Lemma 3 and the conditions (a) and (b) imply that

ln
1

hn
≤ w0(λn), n ≥ 1,

where hn = min min
1≤k=n

|λn − λk|, 1 and w0 is a function from the class W .

The proof of sufficiency in Theorem 1 is based on a certain existence theorem for ∂-equations
obtained by Hörmander. We recall this theorem.

Theorem 2 (see [1]). Let ϕ = ϕ(z) be a subharmonic function in C and g ∈ C∞(C). Then there
exists a solution u ∈ C∞(C) of the equation ∂u/∂z = g satisfying the condition

C

|u|2e−ϕ 1 + |z|2 −2
dλ ≤

C

|g|2e−ϕdλ, (2)

under the condition that the right-hand side is finite (here λ is the Lebesgue measure).

Proof of Theorem 1. Sufficiency. We choose a function ψ ∈ C∞ such that 0 ≤ ψ(z) ≤ 1, ψ(z) = 1 for
|z| < 1/4, and ψ(z) = 0 for |z| > 1/2. We set

A(z) =

∞

n=1

bnΨn(z − λn), Ψn(z) = ψ
z

hn

where {bn} is an arbitrary given sequence of complex numbers satisfying the natural condition (1).
Since A(z) = bkΨk(z−λk) for z ∈ Bk = {z : |z−λk| < hk/2} and A(z) = 0 if z belongs to the exterior
of the union of the disks Bn, n ≥ 1, we obviously conclude that A ∈ C∞. Further, since |λk−λn| ≥ hn
for k = n, we obtain A(λk) = bkψ(0) = bk, k ≥ 1.

Let

ϕ(z) = 2 ln

∞

n=1

1− z2

λ2
n

+ v(z),

where v is a subharmonic function to be specified below. Since the sequence Λ has a finite upper
density, we see that

q(z) =
∞

n=1

1− z2

λ2
n

is an entire function of the exponential type and ϕ is a subharmonic function. We have

Mϕ(r) = max
|z|=r

|ϕ(z)| ≤ 2 ln

∞

n=1

1 +
r2

λ2
n

+Mv(r).
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Further,
∞

n=1

ln 1 +
r2

λ2
n

=

∞

0

ln 1 +
r2

t2
dn(t). (3)

Integrating by parts the Stiltjes integral (3), we obviously obtain

∞

0

ln 1 +
r2

t2
dn(t) = 2r2

∞

1

n(t)

t(t2 + r2)
dt ≡ w1(r).

The fact w1 ∈ W is proved immediately.
We construct a subharmonic function v such that the value of Mv(r) (the maximum of the modulus

of v) admits an upper estimate in terms of a certain function from the class W and, moreover, the
right-hand side in (2) for the function g = ∂A/∂z is finite. Let

Kn = ξ :
hn
4

< |ξ − λn| < hn
2

, n ≥ 1.

Note that the rings Kn, n ≥ 1, do not intersect pairwise. This fact follows from the inequality

hn
2

+
hn+1

2
≤ λn+1 − λn, n ≥ 1.

Hence we can write

C

∂A

∂ξ

2

e−ϕdλ =

n
{ξ:|ξ−λn|>hn/2}

∂A

∂ξ

2

e−ϕdλ

+

∞

n=1 Kn

∂A

∂ξ

2

e−ϕdλ+

∞

n=1 {ξ:|ξ−λn|<hn/4}

∂A

∂ξ

2

e−ϕdλ. (4)

Obviously, the first and last integrals on the right-hand side of Eq. (4) vanish. Further,

A(ξ) = bnψ
ξ − λn

hn
, ξ ∈ Kn.

Assuming that ψ = ψ(w,w), where w = x+ iy = (ξ − λn)/hn, we obtain

∂ψ

∂ξ
=

∂ψ

∂w

∂w

∂ξ
=

∂ψ

∂w

1

hn
.

This implies
∂ψ

∂ξ
=

1

2hn

∂ψ

∂x
+ i

∂ψ

∂y
≤ 1

hn

∂ψ

∂x
, ξ ∈ Kn.

Since |bn| ≤ eβ(λn), n ≥ 1, where β is a function from the class W , we have

C

∂A

∂ξ

2

e−ϕdλ ≤ C1

∞

n=1

Tn,

where

Tn =
e2β(λn)

h2n
Kn

e−v(ξ)
∞

k=1

1− ξ2

λ2
k

−2

dλ(ξ),

β ∈ W and C1 = max
|x|≤1/2

|∂ψ/∂x|2.
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For each fixed n and ξ ∈ Kn we have

p(ξ) =
∞

k=1

1− ξ2

λ2
k

=

λk≤λn/2

1− ξ2

λ2
k λn/2<λk<2λn

k=n

1− ξ2

λ2
k λk≥2λn

1− ξ2

λ2
k

1− ξ2

λ2
n

.

Since Re ξ > 0 for ξ ∈ Kn, n ≥ 1, we have

1 +
ξ

λk
≥ 1. (5)

Further, for λk ≤ λn/2 and n ≥ n0 we have

1− ξ2

λ2
k

≥ |ξ|2
λ2
k

− 1 ≥ 4 1− 1

2λn

2

− 1 ≥ 1. (6)

Taking into account the estimates (5) and (6) we obtain

p(ξ) ≥
λn/2<λk<2λn

k=n

1− ξ

λk λk≥2λn

1− ξ2

λ2
k

1− ξ2

λ2
n

(7)

for ξ ∈ Kn, n ≥ n0. Applying Lemma 1, for ξ ∈ Kn (n ≥ 1) we have

1− ξ

λk
= 1− λn

λk

|ξ − λk|
|λn − λk| ≥

1

2
1− λn

λk
, k = n. (8)

Now we estimate the value 1− ξ2/λ2
n for ξ ∈ Kn:

1− ξ2

λ2
n

≥ hn
4

|ξ + λn|
λ2
n

≥ hn
4λn

.

As was noted above, the conditions (a) and (b) imply that

1

hn
≤ ew0(λn), n ≥ 1,

where w0 is a function from the class W . Therefore, for n ≥ 1 we have the following estimate for
ξ ∈ Kn:

1− ξ2

λ2
n

≥ e−w2(λn), w2 ∈ W. (9)

The required estimate for the first product in (7) in terms of a function from W easily follows from
the conditions (a) and (b) if we take (8) into account. It remains to estimate the product

λk≥2λn

1− ξ2

λ2
k

.

Since
|ξ|2
t2

≤ λn + 1/2

2λn

2

≤ 1

2
+

1

4λ1

2

<
2

3
,

we have

ln 1− ξ2

t2
≥ ln 1− |ξ|2

t2
≥ −3

|ξ|2
t2

,

as the function ϕ(α) = ln(1−α) + 3α increases for α < 2/3. Since |ξ|/λn ≤ 3/2 for ξ ∈ Kn, n ≥ 1, we
have

ln 1− ξ2

t2
≥ −C2

λ2
n

t2
, C2 =

27

4
.
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Hence we have

ln
λk≥2λn

1− ξ2

λ2
k

=

∞

2λn

ln 1− ξ2

t2
dn(t) ≥ −C2

∞

2λn

λ2
n

t2
dn(t) ≥ −2C2λ

2
n

∞

2λn

n(t)

t3
dt. (10)

Let

w3(r) ≡ r2
∞

2r

n(t)

t3
dt =

∞

2

n(sr)

s3
ds.

One can easily verify that w3 ∈ W .
Since p(ξ) ≥ β > 0 on

n≤n0

Kn, due to the estimates (7)–(10) and the conditions (a) and (b) of the

theorem we finally conclude that there exists a function w4 ∈ W such that for all n ≥ 1 we have

p(ξ) ≥ e−w4(λn), ξ ∈ Kn. (11)

We set

w∗(r) =
∞

1

ln 1 +
r2

t2
dw∗

4(t) + w∗
4(1) + 1 ln(1 + r2),

where w∗
4 = w4 + β. Then v(z) = Cw∗(|z|) is the required function for some C > 0. Indeed, by

Lemma 4, v is a subharmonic function in C, whereas Mv(r) = Cw∗(r) is a function of the class W (cf.
above arguments concerning the function w1).

It remains to prove that
∞

n=1
Tn < ∞. Taking into account the estimate (11) and the definition of

the function v, we have

Tn ≤ e2β(λn)

h2n
Kn

e−Cw∗ |ξ| +2w4(λn)dλ(ξ) ≤ C3 exp 2β(λn) + 2w4(λn)− Cw∗ λn − 1

2
,

C3 = 3/16π. Note that

w∗(r) = 2r2
∞

1

w∗
4(t)

t(t2 + r2)
dt+ ln(1 + r2) ≥ 2r2w∗

4(r)

∞

r

dt

t(t2 + r2)
≥ 1

2
w∗
4(r),

and also
w∗(λn)

w∗(λn − 1
2 )

≤ M, n ≥ 1.

Therefore,
∞

n=1

Tn ≤ C3

∞

n=1

e−
C
M

w∗(λn)+2w∗
4(λn) ≤ C3

∞

n=1

e(−C/M+4)w∗(λn).

The definition of the function w∗(r) implies that w∗(r) ≥ (w∗
4(1) + 1) ln(1 + r2); therefore,

∞

n=1

Tn ≤ C3

∞

n=1

1

(1 + λ2
n)

C4
,

where

C4 =
C

M
− 4 w∗

4(1) + 1 >
1

2

due to the choice of the constant C from the definition of the function v (it suffices to set C > 5M).
Then, obviously, the last series converges.

As was stated above, Mv(r) = Cw∗(r), w∗ ∈ W . Therefore,

Mϕ(r) ≤ w5(r), (12)
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where w5 = 2w1 + Cw∗ is a function of the class W .
Now we apply Theorem 2 to g = ∂A/∂z. Since the function ϕ is chosen so that e−ϕ has a noninte-

grable singularity at each point λn, we have u(λn) = 0, n ≥ 1.
Consider the equation

∂u

∂z
=

∂A

∂z
, u(λn) = 0, n ≥ 1. (13)

We set f = A− u, where u is a solution of Eq. (13) (it exists due to Hörmander’s theorem). Clearly,
f is an entire function and f(λn) = bn, n ≥ 1.

Since |f |2 is subharmonic in the whole plane, for any ρ > 0, in particular, for 1 ≤ ρ = r (see [4]) we
have

|f(z)|2 ≤ 1

πρ2
|ξ−z|≤ρ

|f(ξ)|2dλ(ξ) ≤ 1

πr2
|ξ|≤2r

|f(ξ)|2dλ(ξ), r = |z|.

Since |f |2 ≤ 2 |A|2 + |u|2 , we have

1

πr2
|ξ|≤2r

|f |2dλ(ξ) ≤ 2

πr2
|ξ|≤2r

|A|2dλ(ξ) + 2

πr2
|ξ|≤2r

|u|2dλ(ξ).

Since A(ξ) = 0 outside the circles Bk, k ≥ 1, the first integral in the right-hand side is really taken
over the set

B(r) =
k

Bk ∩ ξ : |ξ| ≤ 2r , where Bk = ξ : |ξ − λk| ≤ hk
2

,

where Bk do no intersect pairwise. But for ξ ∈ Bk, k ≥ 1, we have

|A(ξ)| = |bk| ψ
ξ − λk

hk
≤ eβ(λk), β ∈ W,

so that this integral does not exceed 8eβ(2r+1) ≤ 8eβ(3r), r ≥ 1. Therefore,

|f(z)|2 ≤ 8eβ(3r) +

|ξ|≤2r

|u|2 e−ϕ

1 + |ξ|2 2 1 + |ξ|2 2
eϕdλ(ξ), r = |z|.

Applying to the last integral the estimate (2) from Hörmander’s theorem, we obtain

|f(z)|2 ≤ 8eβ(3r) + exp 2 ln(1 + 4r2) +Mϕ(2r)

C

|g|2e−ϕdλ.

Taking into account the convergence of the last integral and the estimate (12), we conclude that

|f(z)| ≤ ew6(|z|), where w6 ∈ W . This means that the function f = A − u is a solution of the
generalized interpolation problem. The sufficiency is proved.

Necessity. Let Λ = {λn} be an interpolation (in the wide sense) sequence and w̃ be a function from
the class W (its existence is stated in Definition 2). Therefore, there exists an entire function f , which
is a solution of the generalized interpolation problem for b1 = 1 and bn = 0, n > 1. From the Jensen
inequality, taking into account the property (2 ) from the definition of an interpolation (in the wide
sense) sequence (Definition 2), we obtain

n(r) ≤ lnMf (er) ≤ w̃(er).

As was said above, the following integral and series converge simultaneously:
∞

1

n(r)

r2
dr,

∞

n=1

1

λn
.
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To prove the condition (b), we fix n and choose an entire function f , which solves the generalized
interpolation problem for bn = 1 and bk = 0, k = n.

The following representation holds:

f(z) =

λn/2<λk<2λn,
k=n

1− z

λk
G(z), (14)

where G is an entire function (if neither of λk, k = n, lies in the interval (λn/2, 2λn), then we take
G = f). For λn/2 < λk < 2λn we have

1− z

λk
≥ 1− 4λn

λk
≥ 1, |z| = 4λn.

This implies that |G(z)| ≤ |f(z)|, |z| = 4λn. By the maximum principle for the modulus we have

G(λn) ≤ MG(4λn) ≤ Mf (4λn) ≤ ew̃(4λn). (15)

On the other hand, from (14) we have

G(λn) =

λn/2<λk<2λn,
n=k

1− λn

λk

−1

, (16)

since f(λn) = 1. The relations (15) and (16) imply

− ln

λn/2<λk<2λn,
k=n

1− λn

λk
≤ w̃(4λn), n ≥ 1,

where w̃ is a function from the class W .
The theorem is proved.
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