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Relation between Fourier series and Wiener algebras

Roald M. Trigub

Abstract. New relations between the Banach algebras of absolutely convergent Fourier integrals of
complex-valued measures of Wiener and various issues of trigonometric Fourier series (see classical mono-
graphs by A. Zygmund [1] and N. K. Bary [2]) are described. Those bilateral interrelations allow one to
derive new properties of the Fourier series from the known properties of the Wiener algebras, as well as new
results to be obtained for those algebras from the known properties of Fourier series. For example, criteria,
i.e. simultaneously necessary and sufficient conditions, are obtained for any trigonometric series to be a
Fourier series, or the Fourier series of a function of bounded variation, and so forth. Approximation proper-
ties of various linear summability methods of Fourier series (comparison, approximation of function classes
and single functions) and summability almost everywhere (often with the set indication) are considered.

The presented material was reported by the author on 12.02.2021 at the Zoom-seminar on the theory
of real variable functions at the Moscow State University.

Keywords. Wiener algebra, Fourier series, Fourier–Stieltjes series, best approximation, modulus of
smoothness, convergence of summation methods in the norm and almost everywhere, Lebesgue points,
d-points, strong summability, grouped series.

1. The Banach algebras of Wiener and Beurling

If µ is a finite complex-valued Borel measure on R, and |µ| is its total variation (see, e.g., [3,
chapter XI]), then

W =W (R) =

f : f(x) =

∫
R

e−itxdµ(t), ∥f∥W = |µ|(R)

 .

This is a Banach algebra (with pointwise multiplication). Then,

W0 =W0(R) =

f : f(x) = ĝ(x) =

∫
R

g(t)e−itxdt, ∥f∥W0 =

∫
R

|g|


is an ideal in W (R). After joining unity to W0, we have

W1 =W1(R) = {f : f0 + c, ∥f∥W1 = ∥f0∥W0 + |c|, c ∈ C} .

Those algebras have a local property, so functions from different algebras can differ only in a neigh-
borhood of ∞. If, for instance, f ∈W , f(∞) = lim

|x|→∞
f(x) = 0 (this is necessary), and f is a function

of bounded variation in a neighborhood of ∞, then f ∈ W0(R) (see, e.g., [4, 6.1.3c]). In the case of
functions of several variables, the Vitali variation is considered.

The properties of the indicated algebras, which were known at that time, were collected in the
survey article [5]. It contains theorems of Wiener, Titchmarsh, Beurling, Carleman, Krein, Sz.-Nagy,
Stein, etc. The list of references includes 175 items.
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If the measure µ ≥ 0 in the definition of W (R), then we have a cone W+(R) of positive definite
functions, with ∥f∥W+ = f(0) and ∥fg∥ = ∥f∥ · ∥g∥.

There is also the Beurling algebra

W ∗
0 (R) =

f : f(x) =

∫
R

e−itxg(t)dt, ∥f∥W ∗
0
=

∞∫
0

esssup
|x|≥t

|g(x)| dt

 .

(See the theorem in [6], and its generalization in [4, 6.4.9].) For the properties of this algebra, see [7].
Here are some properties of the Wiener algebras, including those that were obtained recently. They

will be used below.
A. If f ∈W (R), then f is uniformly continuous on R, and ∀x ∈ R, the improper integral

→+∞∫
→0

f(x+ t)− f(x− t)

t
dt

converges (not necessarily absolutely). If f̃ is trigonometrically conjugate to f (the Hilbert transform),
then after its extension by continuity, ∥f̃∥W0 = ∥f∥W0 .

B. If ∥fn∥W ≤ 1 (n ∈ N) and lim
n→∞

fn(x) = f(x), whereas f ∈ C(R), then ∥f∥W ≤ 1.

C. (the Wiener 1/f -theorem). If f ∈ W1(R) and f(x) ̸= 0 for x ∈ R ∪ {∞}, then 1

f
∈ W1(R) as

well (see the reference in [5]).
D. If ∈ W (R) (W0(R), W+(R)), and lf is a piecewise linear continuous function defined by its

values lf (k) = f(k), k ∈ Z (broken line), then ∥lf∥W ≤ ∥f∥W (∥lf∥W0 ≤ ∥f∥W0 , lf ∈W+(R)) [9, 10].
The relevant story is as follows. This inequality for W+ can be found already in Feller’s book [8,

XIX, 9, Problems 15 and 16] (with reference to Larry A. Shepp). Since any measure µ = |µ|−(|µ|−µ),
then the inequality in question,with 3 as a coefficient rather than 1, is true for any real measure, and
with 6 for any complex-valued measure. Goldberg [9] proved this inequality, perhaps not knowing this
particular case. At the same time, the authors of paper [10] did not know about paper [9] (the reference
to paper [9] was added at the last moment, when it was revealed by a graduate student of DonNU).

For the currently available applications, see Section 2.

E. If f ∈W0 ∩ L1(R), then f̂ ∈ L1(R) and ∥f ||W0 =
1

2π

∫
R

∣∣∣f̂ ∣∣∣ [11, Theorem 8].

F. Let f ∈ ACloc(R), f(∞) = 0, f0(x) = sup
|t|≥|x|

|f(t)|, and f1(x) = esssup
|t|≥|x|

|f ′(t)| < ∞. If, addition-

ally, A1 =
1∫
0

f1(x) log
2

x
dx <∞ and

A01 =

∞∫
1

 ∞∫
t

f0(x)f1(x)dx

 1
2

dt

t
<∞,

then f ∈W0(R) and ∥f∥W0(R) < c(A1 +A01) [12].
It is important here that only the simultaneous decrease of the function and its derivative is taken

into account.
G1. If A1 < ∞, f(x) = O

(
1

|x|α

)
(α > 0), f ′(x) = O

(
1

|x|β

)
(β ∈ R), and α + β > 1, then

f ∈W0(R). Generally speaking, one cannot assume that α+ β < 1 [12].
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G2. If f ∈ Lp(R) (p ∈ (1,∞)), f ′ ∈ Lq(R) (q ∈ (1,∞)), and
1

p
+

1

q
> 1, then f ∈W0. One cannot

assume that
1

p
+

1

q
< 1 [13].

The simplest sufficient condition consists in that f and f ′ ∈ L2(R) (Titchmarsh–Beurling). In

other cases, the condition
1

p
+

1

q
= 1 is not sufficient (see an important example in the introduction of

survey [5]; this example was examined in [14]).
H. Functions from W ∗

0 ⊂W0 can decrease arbitrarily slowly as |x| → ∞. At the same time, in the
case of convexity, the integral condition in item A may be sufficient as well if we take into account
the asymptotics of the Fourier transform of a convex function. Namely, if f is convex on [a,+∞) and
f(∞) = 0, then ∀x ∈ R \ [−2, 2],

∞∫
a

f(t)eitxdt =
i

x
f

(
a+

π

|x|

)
eiax + θF (|x|) ,

where F decreases on [2,+∞),
∞∫
2

F ≤ V∞
a (f) (total variation), and |θ| ≤ c (see, e.g., [4, 6.4.7 b]).

Here is an example (see [7]):

f0(x) =

{
x sin π

x , |x| ≤ 1

0, |x| ≥ 1
∈W ∗

0 .

For the application of this algebra, see Section 4.

2. Trigonometric Fourier series

In what follows, all functions are assumed to be 2π-periodic, and T = [−π, π].
If f ∈ L1(T), then its Fourier series can be written in the form

f ∼
∑
k∈Z

f̂kek, ek = eikt, f̂k =
1

2π

∫
T

f(t)e−iktdt (k ∈ Z).

The Fourier–Stieltjes series (or that of a measure) with the coefficients∫
T

e−iktdµ(t)

is determined analogously.
If the measures of the points π and −π are identical, then the measure µ can be considered 2π-

periodic.

Theorem 1 [11]. The series
∑
k

ckek is the Fourier series of a measure (function) if and only if

there exists φ ∈W (R) (φ ∈W0(R)), with the condition φ(k) = ck (k ∈ Z).
In addition, the variation of the measure on T equals

|µ|(T) =
∫
T

d |µ| = min
φ

∥φ∥W (φ(k) = ck, k ∈ Z)
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and the minimum is reached at φ0(x) =
∫
T e

−itxdµ(t).
In the class of entire functions of exponential type at most π, all such extensions φ look like

φ(x) = φ0(x) + c sinπx.

The measure µ is positive ⇔ ∃φ ∈W+(R).

Let
∑
k

ckek be a trigonometric series. How can we determine from its coefficients whether it is a

Fourier series or belongs to a narrower class than L1(T)?
We obtain several criteria.

Criterion 1. The series
∑
k

ckek is a Fourier (Fourier–Stieltjes) series if and only if ∃φ ∈W0(R)

(φ ∈W (R)), with the condition φ(k) = ck (k ∈ Z). It can be verified on the broken line with the nodes
(k, ck). The function increases on T (the measure is positive) if and only if this broken line belongs to
W+

0 .

Proof. Theorem 1 and property D are applied.

Criterion 2. The series
∑
ckek is the Fourier series of a function from AC(T) if and only if

∃φ ∈ W0(R), with the condition φ(k) = ck (k ∈ Z), for which φ1 ∈ W0(R) as well, where φ1(x) =
xφ(x). This can be verified on two broken lines.

Proof. This criterion follows from Criterion 1.

Criterion 3. The series
∑
ckek is the Fourier series of a function of bounded variation on T if

and only if φ ∈W0(R) and φ1 ∈W (R) (both functions from Criterion 2).

Proof. It should be taken into account that f ∈ V (T) if and only if

V (f) = sup
n

∫
T

∣∣∣∣∣∑
k

k

(
1− |k|

n

)
+

f̂ke
ikt

∣∣∣∣∣ dt <∞

(see [2, Chapter 1, Section 60]) and make use of Theorem 1, D and B.

If f ∈ L1(T), then the conjugate function exists almost everywhere, but it may be not Lebesgue-
integrable.

Criterion 4. If f ∈ L1(T), then the conjugate function f̃ ∈ L1(T) iff the broken line with nodes
(k, f̂ksign k) (k ∈ Z) belongs to W0(R).

Proof. This criterion follows from Criterion 1.

The criterion for the convergence of a Fourier series in L1(T) is formulated in a similar way.

We also apply the properties of Wiener algebras to Fourier series.

Theorem 2. If
∑
k

ckek ∼ dµ (the Fourier series of the measure), lim
|k|→∞

ck = 0 (this is necessary),

and
∑
k

|ck − ck+1| <∞, then
∑
k

ckek is a Fourier series.

Proof. Taking the broken line φ ∈W (R) from Criterion 1 and applying the theorem given above after
the definition of W1, we derive that φ ∈W0(R). It remains to apply Criterion 1 once more.
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Theorem 3 (new sufficient conditions).
1). If

∞∑
m=1

1

m

( ∞∑
k=m

sup
|k|≥m

|ck| sup
|k|≥m

|ck − ck+1|

) 1
2

<∞,

then
∑
k

ckek is a Fourier series.

2). If the sequence {ck}∞−∞ ∈ lp only for a certain p ∈ (2,+∞), and {ck − ck+1}∞−∞ ∈ lq , where
1
p + 1

q > 1, then
∑
k

ckek is a Fourier series (if p ≤ 2,this is a Fourier series in L2(T)).

Proof. 1) We should take a broken line with nodes (k, ck). According to Property F, this broken line
belongs to W0(R), and we should apply Theorem 1.

2) Analogously, we should apply Property G2.

Corollary. The condition

sup
|k|≥m

|ck| sup
|k|≥m

|ck − ck+1| = O

(
1

m log3+εm

)
is sufficient if ε > 0, but not if ε = 0. The latter is confirmed by the counterexample

∑
k

sign k
log(|k|+2)ek.

Now, let us give an example of the motion in the opposite direction (from the Fourier series to the
Wiener algebras).

Theorem 4. ∀f ∈W0(R), there exists such an even function g that g ↗ +∞ and gf ∈W0(R).
See also corollary in Section 4.

Proof. We should apply Salem’s theorem for Fourier series (see [1, Chapter 1 and remarks to Section 11
of Chapter IV]) and Property D.

3. Linear methods for summability of Fourier series

We are going to discuss various aspects of convergence in the norm of C(T) and Lp(T)).
Fejér (1904) was the first who studied the convergence of the arithmetic means of partial Fourier

sums (the (C, 1)-summation method),

σn(f ;x) =
1

n+ 1

n∑
k=0

Sk(f ;x) =
∑
k

(
1− |k|

n+ 1

)
+

f̂ke
ikx →

n→+∞
f(x).

In essence, the Abel–Poisson summation method was known earlier,

fr(x) =
∑
k

r|k|f̂ke
ikx →

r↗1
f(x).

These are convolution integral operators with positive Fejér and Poisson kernels, since (1− |x|)+ ∈
W+

0 (R) and e−|x| ∈W+
0 (R).

The general linear summability methods determined by a single function φ : R → C, which is
sometimes called the method generator,

Φε(f) ∼
∑
k

φ(kε)f̂kek, (3.1)

789



have been studied for a long time. As early as 1968, there arose a question about a comparison of
various methods. Namely, for r = 1− 1

n+1 ∀f ∈ Lp(T), 1 ≤ p ≤ ∞ (L∞ = C(T)), we have

∥f − fr∥p ≍ ∥f − σn(f)∥p

(two-sided inequality with absolute positive constants [15, 16]). In [16], instead of the (C, 1)-ones, the
(C,α)-means are indicated, for any α > 0, with the constants depending on α, of course.

For those means to converge, the norms of the operators Φε must be bounded with respect to ε,
whereas, for the convergence on polynomials, it must be lim

x→0
ϕ(x) = ϕ(0) = 1.

Let us further assume that φ is bounded and continuous almost everywhere. The continuity almost
everywhere instead of everywhere was added by the author [4].

Theorem 5 (the general comparison principle).
I. Let φ and ψ ∈ C(R), from the condition ψ(x) = 1 it follows that φ(x) = 1 (this is also necessary),

and the “transition function” g =
1− φ

1− ψ
after the extension by continuity belongs to W (R). In this

case, if p ∈ [1,+∞] and ε > 0, then

∥f − Φε(f)∥p ≤ ∥g∥W ∥f −Ψε(f)∥p .

If, in addition, ψ ∈W0(R), then, if p = ∞, the factor ∥g∥W0
cannot be decreased.

II. The same inequality, but with a certain factor independent of f and ε is also valid if g ∈
W1\W0(R) and g(x) ̸= g(∞) ∀x ∈ R.

Proof. I is in [4, 7.1.11], with the transition in the inequality from p = ∞ to any p ≥ 1.
II follows from I and the Wiener 1/f -theorem.

The comparison in Lp for p ∈ (1,+∞), is considered below (see the lemma and its application
below in this section).

The Gagliardo–Nirenberg inequality (1959) for various partial and mixed derivatives of the functions
of any number of variables in various Lp-norms is well-known.

Let us consider the following question in the one-dimensional case:
When is the inequality

∥Q(D)f∥q ≤ a ∥P (D)f∥p ,

where D = d
dx , P is a polynomial of degree r ∈ N, Q is a polynomial of degree s ∈ N ∪ {0}, and the

constant a does not depend on f ∈W r
p , fulfilled?

Note that if the inequality is valid for all functions satisfying the condition P (D)f = 0, then
Q(z) ≡ cP (z).

If p and q ∈ [1,+∞], three criteria – for the sets T, R, and R+ – were found in [17].
For instance, for the semiaxis R+ = [0,+∞), the criterion reads as follows.

If p > 1 and/or q <∞, then

sup
z:Rez≤0

∣∣∣∣Q(z)

P (z)

∣∣∣∣ <∞.

But if p = 1 and q = ∞, then s < r and ∀δ < 0,

sup
z:Rez≤δ

∣∣∣∣Q(z)

P (z)

∣∣∣∣+ sup
x∈R

|Q(ix)|
|P (ix)|+ |P ′(ix)|

<∞.
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Here is an example of a sharp inequality for the semiaxis:
If P (z) = (z − λ)Q(z) and Reλ > 0, then ∀p ≥ 1,

∥Q(D)f∥p ≤
(
p− 1

pReλ

) p−1
p

∥P (D)f∥p .

3.1 Approximation of a class of functions

The question is as follows:
sup

∥f (r)∥≤1

∥f − un(f)∥ = ?

Here, {un} is a sequence of linear bounded operators in Lp(T).
If, following Marcinkiewicz, we introduce the operators

u0,n(f ;x) =
1

2π

∫
T

un(f
θ;x)dθ,

where fθ(x) = f(x+ θ), we obtain

u0,n(f) ∼
∑
k

λk,nf̂kek (multipliers, convolutions).

Then, taking into account that the class of functions satisfying the condition
∥∥f (r)∥∥ ≤ 1 is translation

invariant with respect to the shift f → fθ, we obtain that, for this class,

∥f − u0,n(f)∥ ≤ ∥f − un(f)∥

(for more details, see [4, 7.1.1]).
Let us restrict ourselves to consideration of the operators Φε(f), with ε = 1

n (for instance, n ∈ N).

Theorem 6. If, for r > 0 (r is not necessarily integer), the derivative (in the Weyl sense)

f (r) ∼
∑
k

ei
rπ
2
signk|k|rf̂kek

and

f̃ ∼ −i
∑
k

signkf̂kek,

then, if a and b ∈ C, a± bi ̸= 0, and p ∈ [1,∞], we have∥∥∥∥∥f −
∑
k

φ

(
k

n

)
f̂kek

∥∥∥∥∥
p

≤ 1

nr
∥g∥W0

∥∥∥af (r) + bf̃ (r)
∥∥∥
p
,

where

g(x) =
[1− φ(x)]e−i rπ

2
signx

(a+ bi signx)|x|r
.

Theorem 6 follows from the comparison principle (Theorem 5).
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The story is as follows. Bernstein (1911) proved, for the class Lip α (α ∈ (0, 1]), that

sup
f :ω(f ;h)≤hα

∥f − σn(f)∥∞ ≍


1

nα
if α ∈ (0, 1),

log n

n
if α = 1.

(3.2)

Jackson, in his dissertation (1911), constructed polynomials satisfying the condition

∥f − τn(f)∥∞ ≤ cω

(
f ;

1

n

)
∞
. (3.3)

The first book on approximation theory (de la Vallée Poussin, 1919) included the Weierstrass approxi-
mation theorem, the Chebyshev alternance theorem, as well as the Markov, Lebesgue, Fejér, Jackson,
Bernstein, and de la Vallée Poussin theorems.

The modulus of smoothness of order r (ω1 = ω) and step h > 0 equals

ωr(f ;h)p = sup
0<δ≤h

∥∆r
δf(·)∥p ,

where ∆r
δ(f) is the r-th difference of the step δ > 0. Those moduli were introduced by Bernstein for

r ≥ 2(1913), and their main properties were determined by Marchaud (1927). It turned out [18] that
for any r ∈ N,

min
τn

∥f − τn(f)∥p ≤ c(r)ωr

(
f ;

1

n

)
p

. (3.4)

This implies both Jackson’s theorems; see [4, 19,20].
For approximation of the Lip 1 class, which is the main case,Jackson makes use of the Dirichlet

kernel to the fourth power (with the corresponding normalization) instead of the second power used by

Fejér. Then, he approximated any continuous function by broken lines with equidistant nodes
{
kπ

n

}
,

which already belong to Lip 1.
As mentioned in [20, p. 236], “Bernstein almost proved Jackson’s theorem”.
If we take of the Dirichlet kernel to the third power (with the corresponding norming), then,

estimating the kernel moments in a similar way, we obtain O
(
ω2

(
f ;

√
lnn
n

))
, and not better. If we

apply the comparison principle (dealing with the kernel coefficients, i.e.with the operator spectrum),
we obtain the exact order ω2

(
f ; 1

n

)
[21].

But in order to apply the comparison principle, it turned out possible to replace ωr(f ;h) by the
equivalent linearized modulus

ω̃r(f ;h)p =
1

h

∥∥∥∥∥∥
h∫

0

∆r
δf(·)

∥∥∥∥∥∥
p

,

where sup over δ ∈ (0, h] is replaced by the integral mean in δ:

ω̃r(f ;h)p ≤ ωr(f ;h)p ≤ c(r)ω̃r(f ;h)p.

The left inequality is obvious. To prove the right inequality, the author used the classical Lindemann
theorem about the transcendence of the exponential function values [4, 8.3.5 b)].
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Note that there are various inequalities of the Marchaud type (for the moduli of smoothness of non-
integer order in various metrics, see [22]). In 1957, when nothing was known in Dnipropetrovsk about
such inequalities, A.F. Timan deduced the Marshaud inequality from direct and inverse theorems of
approximation theory in the following way. The direct theorem gives an estimate from above of the
best polynomial approximation via ωr1 . Then, using Bernstein’s method and basing on the inequality
for the polynomial derivative (it is also possible to do if the metric changes), we arrive at the upper
estimate ωr2 for r2 < r1. A.F. Timan proposed me to give a direct proof of this inequality. But I,
a fifth-year student of the DSU at that time, did not succeed. We learned about Marchaud’s article
(1927) three years later.

Note also that after Kolmogorov’s paper (1935), a lot of mathematicians (S.M. Nikolskii, B. Sz.-
Nagy, S.A. Telyakovskii, and others [23]) were engaged in the study of asymptotics of approximation
of a function class.

3.2 Approximation of individual functions

Quite a long ago, the author found exact two-sided estimates for the approximation of individual
functions via the known and new operators [24]. The estimates of approximations from above were
known earlier.

Examples. (Rogozinski and Bernstein sums)∥∥∥∥f(·)− 1

2

[
Sn

(
f ; ·+ π

2n

)
+ Sn

(
f ; · − π

2n

)]∥∥∥∥ ≍ ω2

(
f ;

1

n

)
,∥∥∥∥f(·)− 1

2

[
Sn(f ; ·) + S

(
f ; ·+ π

n

)]∥∥∥∥ ≍ ω

(
f ;

1

n

)
.

In [24], the polynomials of the Rogozinski–Bernstein type determined by the function φ = φr were
also indicated. There holds for them, with ε = 1

n (see [1]),

∥f − Φε(f)∥ ≍ ω̃r(f ; ε) ≍ ωr(f ; ε).

V. V. Zhuk [25] proved that

∥f − σn(f)∥ ≍ ω2

(
f ;

1

n

)
+ nω2

(
F̃ ;

1

n

)
,

where F̃ is the conjugate of the periodic integral
x∫
0

(
f(t)− f̂0

)
dt. For a simple proof based on the

comparison principle, see [4, 5.8.8]. The case p ∈ (1,+∞) is considered below in this section.
After the paper by Ditzian and Ivanov [26], such relations are often referred to as “strong converse

inequalities”. For the Bernstein polynomials used by Stechkin in [18] (see (3.4)), a special modulus
of smoothness had to be introduced [27]. Thus, an answer to the question of V. I. Ivanov [28] was
obtained.

Let us present only one result for linear means of Fourier series on the torus Td.

For the Bochner–Riesz means (|x| is the Euclidean norm in Rd, r ∈ N, δ >
d− 1

2
, ε > 0, and {ej}d1

is a standard basis in Rd), we have∥∥∥∥∥∥f −
∑
k∈Zd

(
1− ε2r|k|2r

)δ
+
f̂kek

∥∥∥∥∥∥ ≍ sup
0<δ≤ε

∥∥∥(∆+
2,δ

)r
f
∥∥∥ ,
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where

∆+
2,δf(x) =

d∑
j=1

[f(x− δej)− 2f(x) + f(x+ δej)] ,

or (the answer in another form),

ω̃0
2r(f ;h) =

∥∥∥∥∥∥∥
∫

|u|≤1

2r∑
ν=0

(−1)ν
(
2r

ν

)
f (·+ (ν − r)hu) du

∥∥∥∥∥∥∥
on the right (see survey [29]).

Let us now consider separately the issue concerning the approximation of functions in Lp(T) norm,
for p ∈ (1,+∞). According to the M. Riesz projection theorem (see, e.g., [4, 2.4.7]), we have∥∥∥∥∥∥

∑
k≥0

f̂kek

∥∥∥∥∥∥
p

+

∥∥∥∥∥∑
k<0

f̂kek

∥∥∥∥∥
p

≤ c0(p)∥f∥p
(
c0(p) =

2p2

p− 1

)
.

It immediately follows from this that for f̃ ∼ −i
∑
k

f̂ksign kek, there holds

∥f̃∥p ≤ c0(p)∥f∥p [p ∈ (1,+∞)] . (3.5)

It is easy to verify (see also [2, chapter VIII, section 20] that, for f1(x) = f(x) sinnx and f2(x) =
f(x) cosnx, we get

Sn(f ;x) = f̃1(x) cosnx− f̃2 sinnx+
1

2π

∫
T

f(x+ t) cosntdt.

Therefore, with regard for inequality (3.5) for any n, we obtain

∥Sn(f)∥p ≤ ∥f̃1∥p + ∥f̃2∥p + (2π)
− 1
p ∥f∥p ≤

≤ c0(p) (∥f1∥p + ∥f2∥p) + ∥f∥p ≤
≤ c1(p)∥f∥p (c1(p) = 2c0(p) + 1) . (3.6)

By virtue of the Lebesgue inequality, we get

∥f − Sn(f)∥p ≤ [c1(p) + 1]ET
n (f)p, ET

n (f)p = min
τn

∥f − τn∥p,

and convergence of Sn as n→ ∞ follows.

Lemma. If v(λ) =
∑
k∈Z

|λk − λk+1| <∞, then for p ∈ (1,+∞), we have

∥∥∥∥∥∑
k∈Z

λkf̂kek

∥∥∥∥∥
p

≤ c(p) [v(λ) + |λ0|] ∥f∥p .
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Proof. Assuming S−1(f) = S̃−1(f) = 0, we obtain

n∑
k=0

λkf̂kek =

n−1∑
k=0

∆λk(Sk(f) + iS̃k(f)) + λn(Sn(f) + iS̃n(f)),

where ∆λk = λk − λk+1. Taking into account (3.6) and the inequality |λk| ≤ v(λ) + |λ0|, we get∥∥∥∥∥
n∑

k=0

λkf̂kek

∥∥∥∥∥
p

≤ v(λ)c1(p)
(
∥f∥p + ∥f̃∥p

)
+ [v(λ) + |λ0|]

(
∥f∥p + ∥f̃∥p

)
.

Now, applying (3.6), we have that, as n→ ∞,∥∥∥∥∥
∞∑
k=0

λkf̂kek

∥∥∥∥∥
p

≤ c2(p)∥f∥p.

But in this case, ∥∥∥∥∥
−1∑
−∞

λkf̂kek

∥∥∥∥∥
p

=

∥∥∥∥∥
∞∑
k=1

λ−kf̂−ke−k

∥∥∥∥∥
p

≤ [c2(p) + 2v(λ) + 2|λ0|] ∥f∥p,

which completes the proof.

Thus, we have the following estimate for the multiplier norm in Lp(T):

Λf ∼
∑
k∈Z

λkf̂kek ⇒ ∥Λ∥Lp→Lp ≤ c(p) [v(λ) + |λ0|] .

Let us consider σn(f) as the only example.

Proposition.If p ∈ (1,+∞), then

∥f − σn(f)∥p ≍ ω

(
f ;

1

n

)
p

.

Proof. For comparison, let us take the polynomials

τn(f) =
∑
k

φ

(
k

n

)
f̂kek, φ(x) =

(
1− x2

)
+
+ ix (1− |x|)+ ,

for which

∥f − τn(f)∥p ≍ ω

(
f,

1

n

)
p

for any p ∈ [1,+∞] (see [4, p. 362]). Taking into account that if λ ̸= 0, then V∞
−∞(f(λ·)) = V∞

−∞(f),
we have to check, by the lemma, that

g(x) =
1− (1− |x|)+

1− φ(x)
and

1

g(x)
∈ V (R).

This is obvious if g(0) = g(+0), since g(x) = 1 for |x| ≥ 1 and g′ is bounded for 0 0 < |x| < 1.
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Let us also present a new asymptotic formula for the approximation of individual functions, with

the error ω2m

(
f ;

1

n

)
, m ∈ N.

Theorem 7 ([30]). Let α > 0, 2m > α, and mα = max {k : kα < 2m} . If φ(0) = 1, φ(2m) ∈

V ∩ Lip δ (∃δ > 0) on

[
0,

2

3

]
, φ ∈ V ∩ Lip δ (locally) for x ≥ 1

3
, and |φ(x)| + |φ′(x)| = O

(
1
x

)
as

x→ +∞, then ∀f ∈ C(T) as ε→ +0, we have

f(x)−
∑
k∈Z

φ (εα|k|α) f̂keikx == −2

mα∑
k=1

φ(k)(0)

k!

1

C1+kα

∞∫
1

∆̇2mf(x)

u1+kα
du+O (ω2m(f ; ε)) ,

where

∆̇2mf(x) =
k∑

ν=0

(
k

ν

)
(−1)νf (x+ (k − 2ν)h)u

is the symmetric difference, and, for q > 1,

Cq = Cq(m) = (−1)m22m+1

∞∫
0

sin2m t

tq
dt.

The theorem is applicable, e.g., to the Gauss–Weierstrass means (φ(x) = e−|x|), to the Picard

means
[
φ(x) =

(
1

1+x

)β
, β ≥ 1

]
, and to the Riesz means.

Let us also note the relation between trigonometric series and Fourier integrals due to the author.
Let n ∈ Z and let both f and f (r) ∈ V (n,∞), with r ≥ 0 integer, and let f (ν)(∞) = 0 forν ∈ [0, r]).

Then, for 0 < |x| ≤ π, we have

∞∑
k=n

f(k)eikx =

∞∫
n

f(t)eitxdt+
1

2
f(n)einx

+ einx
r−1∑
ν=0

(−i)ν+1

ν!
h(ν)(x)f (ν)(n) +

θ

πr
V∞
n

(
f (r)

)
(
h(x) =

1

x
− 1

2
cotan

x

2
, |θ| ≤ 3

)
.

One arrives at the classical Euler–Maclaurin formula as x → 0 (see [4, 4.5.1]). For r = 1, when the
sum on the right is absent, a similar formula was obtained earlier by E.S. Belinsky (see [4, 4.5.1]).

For a generalization to functions of any number of variables, see [31].

4. Summability almost everywhere. A non-linear summation method. Some open
problems

Kolmogorov [1, 2] gave an example of a Fourier series diverging everywhere. Luzin (1913) conjec-
tured that the Fourier series of a function from L2(T) converges almost everywhere [2]. This conjecture
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was proved by Carleson (a report at the ICM in Moscow in 1966). When presenting this report, Kol-
mogorov said that this was the best result in the analysis within the past ten years. Hunt immediately
strengthened the Carleson theorem for functions from Lp(T) with p > 1 [32].

A question: For what functions φ

lim
ε→0

Φε(f ;x) = f(x)

almost everywhere, for any f ∈ L1(T)?
Immediately after the appearance of Fejér’s theorem (see Section 3), Lebesgue proved that

lim
n→∞

σn(f ;x) = f(x)

almost everywhere, i.e. at those points x where

lim
|h|→0

1

h

h∫
0

∣∣f(x+ t)− f(x)
∣∣dt = 0

(the so-called Lebesgue points or l-points).
For general singular integrals, the criterion of summability at all Lebesgue points was proved by

D. K. Faddeev (1936). For the convolution operators Φε(f), this criterion has a simple form (see [7]
or [4, 8.1.3]):

φ(0) = 1, φ ∈W ∗
0 (R). (4.7)

The set of the points of differentiability of the function F (x) =
x∫
0

f (d-points) is wider than the set

of l-points. Hahn proved [33] that the means σn(f ;x) may diverge at d-points. The means (C,α), for
α > 1, already converge at all d-points (Hardy).

Theorem 8. (Criterion for σn) [34]
For

lim
n→∞

σn(f ;x) = F ′(x)

to be valid for the function f ∈ L1(T) at its d-point x, it is necessary and sufficient that the Fourier
series of the continuous function

Fx(t) =
1

t

x+t∫
x

f(u) du

converge at t = 0.

Making use of one of the examples of divergent Fourier series of a continuous function, we obtain
the Hahn theorem [34].

Here is a general sufficient condition for summability at d-points.

Theorem 9. [35] Let φ ∈ W0(R) (this is necessary). If also φ(0) = 1 and φ′
1 ∈ W0(R), where

φ1(x) = xφ(x), then ∀f ∈ L1(T), we have

lim
ε→0

Φε(f ;x) = F ′(x)

at all its d-points. By this, the condition φ′
1 ∈W0(R) is not necessary, while the condition φ′

1 ∈W (R)
is not sufficient.
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Examples. Classical Riesz methods: φ(x) =
(
1 − |x|α

)β
+
, α > 0, β > 1; Gauss–Weierstrass

methods: φ(x) = e−|x|α , α > 0; and Picard methods: φ(x) = 1(
1+|x|α

)β , α > 0, β > 0. At the same

time, the Rogozinski and Bernstein means may diverge at d-points.
Note that summability at d-points gives rise to summability at l-points, and summability at l-points

gives rise to convergence on C(T) and, further, on L1(T).
Form Theorem 9 and Criterion (4.7), it follows that

f, f ′1 ∈W0(R) ⇒ f ∈W ∗
0 (R),

where f1(x) = xf(x).
Marcinkiewicz (1938) proved the uniform convergence of the arithmetic means of square partial

sums for continuous periodic functions of two variables as well as the convergence almost everywhere for
f ∈ L1 log+ L1(T2). L. V. Zhizhiashvili [36], using the maximal Hardy–Littlewood function, proved the
convergence of the indicated means almost everywhere for all f ∈ L1(T2) (for more general theorems,
see survey [37]). In [38], it was proved that at the Lebesgue points, unlike the one-dimensional case,
summability may fail for sums of the Marcinkiewicz type.

Note that, for f ∈ L1(Td), where d ≥ 2, there may exist Lebesgue points of two different types (for
the criteria for functions φ with compact support, see [39]).

Now, let us consider a nonlinear summability method, namely, strong summability introduced by
Hardy and Littlewood [1, 2]:

ρn(f ;x) =
1

n+ 1

n∑
k=0

∣∣f(x)− Sk(f ;x)
∣∣ ≥ ∣∣f(x)− σn(f ;x)

∣∣. (4.8)

Let {nk}∞1 be a sequence of natural numbers with nk+1 > nk. When ∀f ∈ C(T)

lim
m→∞

1

m

∥∥∥ m∑
k=1

∣∣f(·)− Snk(f ;x)
∣∣∥∥∥

∞
= 0 ?

Salem (1955) proved the sufficiency of the power growth for nm (see [2, Chapter VII, Section 8]) and
the general necessary condition log nm = O

(√
m
)
. It turned out that given the convexity of {nk},

this is a necessary and sufficient condition. It was proved independently in [40, 41] (Carleson talked
about that at a conference in Budapest in 1979). See also [42]. For generalizations to the multiple case
(partial sums over cubes, etc.), see [43].

Unlike (C, 1)-means, strong means can diverge at Lebesgue points (Hardy and Littlewood, 1913),
but they always converge almost everywhere (Marcinkiewicz–Zygmund, see [1, 2]).

O. D. Gabisoniya [44] determined a set of total measure on T, for which the convergence takes
place:

lim
n→∞

[2πn]∑
k=1


n

k

k
n∫

k−1
n

∣∣f(x+ t)− f(x)
∣∣dt


2

= 0.

We note now that σn, and the more so strong means, possess a saturation order:

lim
n→∞

n
∥∥f − σn(f)

∥∥
∞ = 0 ⇒ f = const,
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and a saturation class (Aleksits, 1941),∥∥f − σn(f)
∥∥
∞ = O

( 1
n

)
(n→ ∞) ⇔ ω(f̃ , h) = O(h) (h→ +0).

A formula like the Voronovskaya one and its inversion can also be written. If f̃ ′ ∈ C(T), then

f(x)− σn(f ;x) =
f̃ ′(x)

n
+ o
( 1
n

)
uniformly in x ∈ T. If

f(x)− σn(f ;x) =
h(x)

n
+ o
( 1
n

)
for a certain function h ∈ C(T), then f̃ ′(x) = h(x) (see [24]).

Theorem 10. If p = 1 or p = ∞, then

1) sup
f :ω(f ;h)p≤hα,α∈(0,1]

∥∥ρn(f)∥∥p ≍


1

nα
if α ∈ (0, 1);

lnn

n
if α = 1;

2) sup
f :ω2(f ;h)p≤h

∥∥ρn(f)∥∥p ≍ lnn

n
.

Lemma. Let ET
n (f)p = min

τn

∥∥f − τn
∥∥
p
.

1) If p = 1, then ρn(f)1 ≍
1

n+ 1

n∑
k=0

Ek(f)1;

2) If p = +∞ and ∀εn ↘ 0, then

sup
f :Ek(f)≤εk,k∈N∪{0}

ρn(f)∞ ≍ 1

n+ 1

n∑
k=0

εk.

Proof. For the case p = +∞, the inequality∥∥ρn(f)∥∥p ≤ c
1

n+ 1

n∑
k=0

ET
k (f)p (4.9)

was proven in [45]. Adding the generalized Minkowski inequality, we can use the same proof for
p ∈ [1,+∞) as well (the constant c does not change).

If p = 1, then

ρn(f)1 =
1

n+ 1

n∑
k=0

∥∥f − Sk(f)
∥∥
1
≥ 1

n+ 1

n∑
k=0

ET
k (f)1.

If p = ∞, we should apply inequalities (4.9) and (4.8), as well as an example of the function from [47]
for which

f1(x) =

∞∑
k=1

(εk−1 − εk) cos kx,

ET
n (f1) ≤ εn, ρn(f1) ≥ |f1(0)− σn(f1; 0)| =

1

n+ 1

n∑
k=0

εk.

as εn ↘ 0.
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We have also to take into account the classical Bernstein theorem [19]:

For any sequence εn ↘ 0, there exists a function f satisfying the condition ET
k (f) = εk, k ≥ 0.

Proof. 1) The upper bound for the approximation in Theorem 10 follows from the above lemma and
Jackson’s theorem, and the lower bound follows from the corresponding result for σn (see (3.2)).

2) From Lemma and Zygmund’s theorem [19], we get:

ω2(f ;h) = O(h) ⇔ ET
n (f) = O

( 1
n

)
.

In the same way, one can study the approximation of the class of functions with the condition
ωr(f ;h) ≤ ψ(h) (or ωr(f̃ , h) ≤ ψ(h)), where ψ ↘ 0 as h↘ 0, and r ∈ (0, 2].

Here are some more open problems.
a) What are the saturation order and the saturation class for ρn(f)?
b) What is the special modulus of continuity ω∗, for which∥∥ρn(f)∥∥∞ ≍ ω∗(f ; εn),

where εn ↘ 0 and does not depend on f?
c) D. Gát [47] proved that if nk+1 > nk

(
1 + 1

kδ

)
, where k ∈ N and δ ∈

(
0, 12
)
, then almost

everywhere

lim
m→∞

1

m+ 1

∣∣∣f(x)− 1

m+ 1

m∑
k=0

Snk(f ;x)
∣∣∣ = 0.

This is a good result. However, a problem about such a convergence at all Lebesgue points has been
posed long ago (Zalcwasser, 1936).

See also the theorems about grouped series in [48, 49].

Acknowledgements

The author thanks E. Liflyand for his help in the preparation of this manuscript and stimulating
discussions.

REFERENCES

1. A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge (2003).

2. N. K. Bary, A Treatise on Trigonometric Series. Pergamon Press, New York (1964).

3. B. M. Makarov and A. N. Podkorytov, Lectures on Real Analysis [in Russian]. BHV-Petersburg, St.-
Petersburg (2011).

4. R. Trigub and E. Belinsky, Fourier Analysis and Approximation of Functions. Kluwer–Springer, Berlin
(2004).

5. E. Liflyand, S. Samko, and R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: An
overview,” Anal. Math. Phys., 2(1), 1–68 (2012).

6. A. Beurling, “On the spectral synthesis of bounded functions,” Acta Math., 81, 225–238 (1949).

7. E. S. Belinsky, E. R. Liflyand, and R. M. Trigub, “The Banach algebra A∗ and its properties,” Fourier
Anal. Appl., 3, 103–120 (1997).

800



8. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York (1966).

9. R. R. Goldberg, “Restrictions of Fourier transforms and extension of Fourier sequences,” J. Appr. Theory,
3, 149–155 (1970).

10. E. Liflyand and R. Trigub, “Wiener algebras and trigonometric series in a coordinated fashion,” Constr.
Appr., 53 (2021).

11. R. M. Trigub, “Summability of trigonometric Fourier series at d-points and a generalization of the Abel–
Poisson method,” Izv. Ross. Akad. Nauk Ser. Math., 79(4), 838–858 (2015).

12. E. Liflyand and R. Trigub, “Conditions for the absolute convergence of Fourier integrals,” J. Appr. Theory,
163(4), 438–459 (2011).

13. E. Liflyand, “On absolute convergence of Fourier integrals,” Real Anal. Exch., 36(2), 349–356 (2010/2011).

14. A. Miyachi, “On some singular Fourier multipliers,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28, 267–315
(1981).

15. H. S. Shapiro, “Some Tauberian theorem with applications to approximation theory,” Bull. Amer. Math.
Soc., 74, 500–504 (1968).

16. R. M. Trigub, “Linear summation methods and absolute convergence of Fourier series,” Izv. Akad. Nauk
SSSR Ser. Matem., 32(1), 24–49 (1968).

17. R. M. Trigub, “On comparison of linear differential operators,” Matem. Zamet., 82(3), 426–440 (2007).

18. S. B. Stechkin, “On the order of best approximations for continuous functions,” Izv. Akad. Nauk SSSR Ser.
Matem., 15(3), 219–242 (1951).

19. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Dover, New York (1994).

20. R. A. Devore, and G. G. Lorentz, Constructive Approximation, Springer, Berlin (1993).

21. R. M. Trigub, “Exact order of approximation of periodic functions by linear polynomial operators,” East
J. Appr., 15(1), 25–50 (2009).

22. Yu. Kolomoitsev and S. Tikhonov, “Hardy–Littlewood and Ulyanov inequalities,” Mem. Amer. Math. Soc.
arXiv:1711.08163.2017 (to be published).

23. V. A. Baskakov and S. A. Telyakovskii, “On the approximation of differentiable functions by Fejér sums,”
Matem. Zamet., 32(2), 129–140 (1982).

24. R. M. Trigub, “Constructive characteristics of some function classes,” Izv. Akad. Nauk SSSR Ser. Matem.,
29(3), 615–630 (1965).

25. V. V. Zhuk, “On the approximation of periodic functions by linear summation methods for Fourier series,”
Dokl. Akad. Nauk SSSR, 173(1), 30–33 (1967).

26. Z. Ditzian and K. G. Ivanov, “Strong converse inequalities,” J. Anal. Math., 61, 61–111 (1993).

27. R. M. Trigub, (2013). “Exact order of approximation of periodic functions with Bernstein–Stechkin poly-
nomials,” Matem. Sborn., 204(12), 127–146.

28. V. I. Ivanov, “Direct and converse theorems of the theory of approximation of periodic functions in the
works by S. B. Stechkin and their development,” Trudy IMM UrO Ross. Akad. Nauk, 16(4), 5–17 (2010).

29. R. M. Trigub, “On various moduli of smoothness and K-functionals,” Ukr. Matem. Zh., 72 (7), 971–996
(2020).

30. R. M. Trigub, “Asymptotics of the approximation of continuous periodic functions by linear means of their
Fourier series,” Izv. Akad. Nauk SSSR Ser. Matem., 84(3), 185–202 (2020).

31. E. Liflyand and U. Stadtmüller, A multidimensional Euler–Maclaurin formula and its application,” in:
Complex Analysis and Dynamical Systems V, Contemporary Mathematics, eds. M. Agranovsky et al., 591,
AMS, Providence, RI, pp. 183–194 (2013).

801



32. J. Arias de Reyna, Pointwise Convergence of Fourier Series, Springer, Berlin (2002).
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