
Journal of Mathematical Sciences, Vol. 256, No. 3, July, 2021

AROUND THE BAER–KAPLANSKY THEOREM

P. A. Krylov, A. A. Tuganbaev, and A. V. Tsarev UDC 512.541

Abstract. Using examples of modules and a number of familiar Abelian groups, we demonstrate the
Kaplansky method of proving isomorphism theorems for endomorphism rings.

Keywords and phrases: Abelian group, endomorphism ring, isomorphism theorem for endomorphism
rings, Baer–Kaplansky theorem, Kaplansky method.

AMS Subject Classification: 16D10, 16D70, 20K30

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
1. Some Definitions and Notation in Abelian Group Theory . . . . . . . . . . . . . . . . . . 279
2. Primary Properties of Endomorphisms of Abelian Groups . . . . . . . . . . . . . . . . . . 282
3. Finite Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
4. The Case of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
5. Baer–Kaplansky Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6. Topological Isomorphisms of Endomorphism Rings . . . . . . . . . . . . . . . . . . . . . . 289
7. Definability of p-groups by Radical of Endomorphism Rings . . . . . . . . . . . . . . . . . 292

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Introduction

One of the central problems concerning endomorphism rings is the question of how much the en-
domorphism ring defines an Abelian group or a module. In the simplest formulation, the results that
positively solve this problem (they are usually called the isomorphism theorems for endomorphism
rings) have the following form: if EndA ∼= EndB, then A ∼= B. A stronger formulation of the iso-
morphism theorem has the following form: a given ring isomorphism ψ : EndA → EndB is induced
by some group or module isomorphism ϕ : A → B, i.e., ψ(h) = ϕhϕ−1, h ∈ EndA. (In the case of
modules, as a rule, semilinear module isomorphisms arise.) Theorems of this kind are related to the
following problem: For which modules are all the automorphisms of their endomorphism rings inner
automorphisms?

On endomorphism rings, we can define the finite topology and consider continuous isomorphisms
of endomorphism rings. They contain more information about the original modules. In this case, we
deal with topological isomorphism theorems.

This paper is a survey. Its goal is to give a detailed account of several characteristic isomorphism
theorems for endomorphism rings of modules and Abelian groups. What is noteworthy, to prove these
theorems, one of the modifications of the Kaplansky method is applied.

Sections 1 and 2 contain some necessary information about Abelian groups and their endomorphism
rings. Here we accept agreement on notation and terms.

In Sec. 3, we consider the finite topology on the endomorphism rings. In the remaining Secs. 4–
7, isomorphism theorems for endomorphism rings are considered. Moreover, in Sec. 4, we consider
the classical case of vector spaces over division rings and fields. Here there is the most transparent
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situation for this problem. In Sec. 5, we prove the Baer–Kaplansky theorem for p-groups. It can serve
as a standard for theorems of this kind. In Sec. 6, we prove some theorems of topological isomorphism.
In the last section, we show that for p-groups with unbounded basic subgroups, in the Baer–Kaplansky
theorem, one can confine ourselves to an isomorphism between Jacobson radicals of endomorphism
rings.

1. Some Definitions and Notation in Abelian Group Theory

The word “group” means an Abelian group with additive notation, with the exception of the
automorphism group. Most often, we denote the group by the letters A or G.

In Abelian group theory, direct sums and direct products play a very important role. The direct

sum of the groups A1, A2, . . . , An is denoted by A1 �A2 � . . .�An or
n⊕

i=1
Ai. We denote by

⊕

i∈I
Ai the

direct sum of the groups Ai, i ∈ I.
For an element a of the group A, the least positive integer n with na = 0 is called the order of a; it

is denoted by o(a). If such an integer n does not exist, then we set o(a) = ∞ and say that the element
a is of infinite order.

Each Abelian group belongs to one of the following three classes of groups: periodic groups, torsion-
free groups, and mixed groups. In a periodic group, every element is of finite order; in a torsion-free
group, on the contrary, all nonzero elements are of infinite order. A mixed group contains both nonzero
elements of finite order and elements of infinite order. In a mixed group A, the subgroup t(A) consisting
of all elements of finite order is called the periodic part or the periodic subgroup of the group A.

A group A is called a primary group or a p-group if the order of any element of A is a power of a
fixed prime integer p. A torsion group A is equal to the direct sum of p-groups tp(A) for various p; the
groups tp(A) are called p-components of the group A. If A is a mixed group, then the p-component of
its torsion part t(A) is called the p-component of A.

There are several known classes of groups which are direct sums of cyclic groups. A group is said to
be bounded if the orders of all its elements are bounded by some positive integer. A bounded group is
the direct sum of cyclic p-groups. If every element of a torsion group A is of order not divisible by a
square of a positive integer, then A is called an elementary group. An elementary group is the direct
sum of cyclic groups of prime orders.

For a group A, a subgroup H of A is said to be fully invariant if αH ⊆ H for every endomorphism
α of the group A. The torsion part of the group and its p-components are fully invariant subgroups.
For every n ∈ N, we set

nA = {na | a ∈ A}, A[n] = {a ∈ A | na = 0}.
The subgroups nA and A[n] are fully invariant in A.

Let p be some prime integer, A be a group, and let a ∈ A. The largest nonnegative integer k such
that the equation pkx = a has a solution in A is called the p-height hAp (a) of the element a in the

group A. If the equation pkx = a is solvable for any positive integer k, then a is called an element
of infinite p-height, hAp (a) = ∞. If A and p are clear, then we write hp(a) and h(a) and call h(a) the
height of the element a.

One says that a subgroup B of the group A is pure (in A) if the equation nx = b ∈ B, which has a
solution in the group A, also has a solution in the subgroup B. The subgroup B is pure if and only if
B ∩ nA = nB for all n ∈ Z.

We give some properties of free or divisible groups. A free group is the direct sum of some number
of copies of the group Z. A divisible group D is the direct sum of quasi-cyclic groups Zp∞ for various
p and copies of the group Q,

D =
⊕

p

⊕

mp

Zp∞ �

⊕

m0

Q.
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The cardinal numbers m0 and mp over all p form a complete independent system of invariants of the
divisible group D. A group is said to be reduced if it does not have a nonzero divisible subgroup. Every
group is representable in the form A = D�V , where D is a divisible group and V is a reduced group.
The subgroup D is uniquely determined; it is called the divisible part of the group A. The subgroup V
is called the reduced part of the group A. It is uniquely determined up to isomorphism. Every group
A can be embedded in a divisible group E as a subgroup, and E does not have a proper divisible
subgroup containing A. Such a group E is called the divisible hull of the group A. Any two divisible
hulls E1 and E2 are isomorphic over A, i.e., there exists an isomorphism E1 → E2 fixing the elements
of A.

A subgroup B of the p-group A is called a basis subgroup if the following three conditions hold:

(1) B is the direct sum of cyclic groups;
(2) B is a pure subgroup of the group A;
(3) the factor group A/B is a divisible group.

Every p-group contains basis subgroups. Any two basis subgroups are isomorphic.
Let B be a basis subgroup of the group A. We have

B = B1 ⊕B2 ⊕ . . .⊕Bn ⊕ . . . , where Bn =
⊕

mn

Zpn .

For every n, there are direct decompositions

A = B1 ⊕B2 ⊕ . . .⊕Bn ⊕An and An = Bn+1 � An+1

In addition, the group An does not contain a cyclic direct summand of the order � pn.

For p-groups, the following classical results of Kulikov are of great importance.

Theorem 1.1 (see [11, Theorem 27.5, Corollary 27.2]). Every bounded pure subgroup is a direct sum-
mand. In any p-group G, every element of order p and of finite height can be embedded in a cyclic
direct summand of G.

Therefore, if an element x of the p-group A is of finite height, then there exists a decomposition
A = 〈y〉 � Y such that the element x has a nonzero component in 〈y〉.

In Abelian group theory, the Z-adic topology and the p-adic topology are often used. In the Z-adic
topology of the group A, the subgroups nA, n ∈ N, form a basis of neighborhoods of zero. In the
p-adic topology, the subgroups pkA, k � 0, form a basis. The structure of groups that are complete in
these topologies is known (see [11, Chap. 7], [18, Sec. 11]); such groups have a complete independent
system of invariants consisting of cardinal numbers. The class of groups that are complete in the Z-adic
topology coincides with the class of reduced algebraically compact groups.

For a torsion-free group A, the rank r(A) of A is the cardinality of some maximal linearly indepen-
dent system of elements of the group A, and the p-rank rp(A) of the group A is the dimension of the
vector space A/pA over the field Zp,

rp(A) = dimZp(A/pA).

We have the inequality

rp(A) � r(A).

For a mixed group A, the rank of the factor group A/t(A) is called the torsion-free rank of the mixed
group A. Usually, one says simply the “rank” instead of the “torsion-free rank.” A torsion-free group
G is of rank 1 if and only if G is isomorphic to some subgroup of the group Q.

The tensor product of torsion-free groups also is a torsion-free group. For a torsion-free group A,
the tensor product A � Q is a Q-space and

r(A) = dimQ(A � Q).

280



We have a group embedding A → A � Q, a �→ a � 1, a ∈ A. The group A � Q is called the divisible
hull of the group A.

For torsion-free groups, there are very useful notions related to divisibility of elements by prime
integers. Let p1, p2, . . . , pn, . . . be a sequence of all prime integers which is ordered in ascending order.
The sequence of p-heights

χ(a) =
(
hp1(a), hp2(a), . . . , hpn(a), . . .

)

is called the characteristic of the element a of the torsion-free group A. One writes χA(a) if one wants
to specify the group in which the p-height and characteristics are calculated.

Any ordered sequence (k1, k2, . . . , kn, . . .) of nonnegative integers and the symbols ∞ is called a
characteristic. Characteristics can be compared. Namely, we assume

(
k1, k2, . . . , kn, . . .

)
�

(
l1, l2, . . . , ln, . . .

)
,

if kn � ln for all n ∈ N. The relation � turns the set of all characteristics into a complete lattice.
Now we introduce an equivalence relation on the set of all characteristics which leads to some

basic concept for torsion-free groups: the concept of type. Two characteristics (k1, k2, . . . , kn, . . .) and
(l1, l2, . . . , ln, . . .) are said to be equivalent if kn = ln only for a finite number of the subscripts n and,
for such n, the symbols kn and ln are finite.

In the set of characteristics, equivalence classes are called types. If χ(a) ∈ t for some type t, then one
says that the element a is of type t and we write t(a) = t or tA(a) = t. If χ(a) = (k1, k2, . . . , kn, . . .),
then we write

t(a) =
[
(k1, k2, . . . , kn, . . .)

]
=

[
(ki)

]
,

i.e., any type is represented by the characteristic belonging to this type. The ordering on the set of
characteristics induces the ordering on the set of types.

A torsion-free group A, in which all nonzero elements the same type t, is said to be homogeneous of
type t. In addition, we write t(A) = t. A group of rank 1 is homogeneous. By one of Baer’s theorems,
two torsion-free groups A, B of rank 1 are isomorphic if and only if t(A) = t(B).

A torsion-free group A is said to be fully decomposable if it is the direct sum of groups of rank 1.
Any two decompositions of the fully decomposable group into the direct sum of groups of rank 1 are
isomorphic. Let A =

⊕

i∈I
Ai be a fully decomposable torsion-free group, r(Ai) = 1, i ∈ I. For every

type t, we denote by At the direct sum of all groups Ai of type t; if A does not have such At, then
At = 0. The ranks r(At), where t runs over the set of all types, form a complete independent system
of invariants of the group A. We set Ω(A) = {t(Ai) | i ∈ I}. The decomposition

A =
⊕

t∈Ω(A)

At

is called the canonical decomposition of the group A.
In comparison with completely decomposable groups, separable groups form a broader class. A

torsion-free group A is said to be separable if every finite subset of elements of A is contained in some
fully decomposable direct summand of the group A.

Abelian groups and modules over the ring of integers Z cannot be distinguished; they are the same
objects. The Abelian group theory can be considered a branch of module theory in which the specificity
of the ring Z is used. All concepts and constructions of the theory of modules are applicable to Abelian
groups.

In the theory of Abelian groups, various other rings also occur, in addition to the ring Z. A glance at
Abelian groups as modules over some rings is sometimes useful. Thus, divisible torsion-free groups are
precisely vector spaces over the field Q. The modules over the ring of residue classes Zpn are bounded
p-groups whose orders do not exceed pn.

From the point of view of the Abelian group theory, the most important ring is the ring of p-adic

integers Ẑp. It is known that p-groups and primary Ẑp-modules coincide. The groups complete in the
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p-adic topology are naturally Ẑp-modules. The ring Ẑp is an example of a complete discrete valuation
domain. Theories of abelian groups and modules over discrete valuation domains are related theories.
The latter is described in some detail in the book [18].

2. Primary Properties of Endomorphisms of Abelian Groups

If A and B are two Abelian groups, then Hom(A,B) is the group of all homomorphisms from A
into B, and EndA (sometimes End(A)) is the endomorphism ring of the group A.

We give some elementary properties of endomorphism rings. All of them are valid for endomorphism
rings of arbitrary modules.

Let A = B � C be some direct decomposition of the group A. The projection of the group A onto
the direct summand B with kernel C is the homomorphism π : A → B, which is defined as follows. If
a ∈ A and a = b+ c, where b ∈ B and c ∈ C, then π(a) = b. We denote by i : B → A the embedding
of the group B in the group A. Then iπ ∈ EndA and (iπ)2 = iπ, i.e., iπ is an idempotent of the
ring EndA. It is called an idempotent endomorphism of the group A. We set ε = iπ and identify
ε with π. Thus, we assume that the projection π is an endomorphism of A acting on B identically
and annihilating C. It is clear that 1− ε also is an idempotent orthogonal to ε. In addition, B = εA
and C = (1 − ε)A = ker ε, whence A = εA � (1 − ε)A. The obtained decomposition holds for any
idempotent ε of the ring EndA.

More generally, if A = A1 � A2 � . . . � An is some direct decomposition of the group A, then we
denote the projection A → Ai with kernel

⊕

j �=i

Aj by εi and obtain Ai = εiA (i = 1, 2, . . . , n); in

addition, {εi | i = 1, 2, . . . , n} is a complete orthogonal system of idempotent endomorphisms of the
group A.

Proposition 2.1. There is a bijective correspondence

A = ε1A � . . . � εnA �→ EndA = (EndA)ε1 � . . . � (EndA)εn

between finite direct decompositions of the group A and decompositions of the ring EndA into direct
sums of left ideals, where {εi | i = 1, 2, . . . , n} is a complete orthogonal system of idempotents of the
ring EndA.

Proof. We have already proved that for a given direct decomposition A = A1�A2�. . .�An, there exists
a complete system {εi | i = 1, 2, . . . , n} of orthogonal idempotents of the ring EndA such that Ai = εiA
for all i. This system leads to the decomposition EndA = (EndA)ε1 � (EndA)ε2 � . . .� (EndA)εn of
the ring EndA into the direct sum of left ideals.

Conversely, if EndA = L1�L2�. . .�Ln, where Li are left ideals of the ring EndA, then we write 1 =
ε1+ε2+ . . .+εn, εi ∈ Li, and obtain a complete orthogonal system {εi | i = 1, 2, . . . , n} of idempotents
of the ring EndA. It is easy to verify that we have the decomposition A = ε1A� ε2A� . . .� εnA. The
constructed correspondence is bijective. �

We consider several standard relations between a group and its endomorphism ring related to
idempotent endomorphisms. The following properties directly follow from Proposition 2.1.

(a) If ε is an idempotent of the ring EndA, then εA is an indecomposable direct summand of the group
A if and only if ε is a primitive idempotent.

(b) Let ε and ω be two idempotents of the ring EndA. There exist canonical group isomorphisms
Hom(ωA, εA) ∼= ε(EndA)ω and canonical ring isomorphisms End(εA) ∼= ε(EndA)ε.

Indeed, let ϕ : ωA → εA be some homomorphism. It can be extended to an endomorphism ϕ of the
group A such that ϕ annihilates the complement summand (1 − ω)A of ωA. We obtain the required

isomorphism f : Hom(ωA, εA) → ε(EndA)ω from the correspondence ϕ
f�−→ εϕω. Indeed, if εψω ∈

ε(EndA)ω for some ψ ∈ EndA, then εψω|ωA is a homomorphism ωA → εA and f : εψω
∣
∣
ωA

�→ εψω.
For ε = ω, we have the isomorphism End(εA) ∼= ε(EndA)ε; this is a ring isomorphism.

282



Let A = B � C and ε : A → B be the projection with kernel C. We can assume that EndB
is a subring of the ring EndA if we identify EndB with ε(EndA)ε by the use of the isomorphism
constructed in the property (b).

We consider two primary facts on relations between isomorphisms of groups and isomorphisms of
their endomorphism rings.

(c) If two groups A and C are isomorphic, then their endomorphism rings are isomorphic. More
precisely, every group isomorphism ϕ : A → C induces the ring isomorphism ψ : EndA → EndC
which acts by the rule ψ : η �→ ϕηϕ−1,η ∈ EndA.

For η1, η2 ∈ EndA, we have the relations

ψ(η1 + η2) = ψ(η1) + ψ(η2), ψ(η1η2) = ψ(η1)ψ(η2), ψ(idA) = idC .

Consequently, ψ is a ring homomorphism. Further, if 0 = η ∈ EndA, then it is clear that ϕηϕ−1 = 0,
i.e., kerψ = 0. Now let ξ ∈ EndC; then ψ(ϕ−1ξϕ) = ξ; therefore, ψ is a ring isomorphism.

(d) Let A = A1 � A2 and C be groups. If ψ : EndA → EndC is a ring isomorphism, then the group
C has the decomposition C = C1 �C2, where ψ induces isomorphisms EndAi → EndCi, i = 1, 2.

We denote by ε the projection A → A1 with kernel A2. Then ω = ψ(ε) is an idempotent of the
ring EndC. We have the relation C = C1 � C2, where C1 = ωC and C2 = kerω. The isomorphism ψ
induces the ring isomorphism ε(EndA)ε → ω(EndC)ω and, therefore, the ring isomorphism EndA1 →
EndC1; see property (b). The second isomorphism EndA2 → EndC2 can be proved similarly.

In some cases, the endomorphism ring can be easily calculated. For example, we have EndZ ∼= Z,

EndZn
∼= Zn, EndQp

∼= Qp, where Qp = {s/t ∈ Q | (t, p) = 1}, EndQ ∼= Q, EndZp∞ ∼= End Ẑp
∼= Ẑp.

By considering direct sums of groups, we can obtain examples of endomorphism rings in the matrix
form. First, we consider the corresponding construction.

Let us have the direct sum of groups A =
n⊕

i=1
Ai. We construct the square matrix

(
αji

)
=

⎛

⎜
⎜
⎝

α11 α12 . . . α1n

α21 α22 . . . α2n

. . . . . . . . . . . .
αn1 αn2 . . . αnn

⎞

⎟
⎟
⎠

with elements αji ∈ Hom(Ai, Aj). For such matrices, one can define ordinary matrix operations of
addition and multiplication. It is easy to see that addition and multiplication of matrices are always
feasible and lead to matrices of the same form. As a result, we obtain a ring of matrices of the indicated
type; such rings are called formal matrix rings or generalized matrix rings, (see [19–21]). The standard
isomorphism from the ring of operators of a finite-dimensional vector space onto the matrix ring in
the case of Abelian groups (and modules) takes the following form.

Proposition 2.2. The endomorphism ring of the group A =
n⊕

i=1
Ai is isomorphic to the ring of all

matrices
(
αji

)
of order n, where αji ∈ Hom(Ai, Aj).

Now we can continue the list of endomorphism rings. Namely, there are isomorphisms

End(Z � Q) ∼=
(

Z 0
Q Q

)

, End(Zn � Z) ∼=
(

Zn Zn

0 Z

)

,

End(Zpn � Zpm) ∼=
(

Zpn Zpn

Zpn Zpm

)

(n < m), End(Zp∞ � Q) ∼=
(

Ẑp Q̂p

0 Q

)

,

where Q̂p is the field of p-adic numbers.
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The part of algebra that studies endomorphism rings of Abelian groups can also be referred to
the theory of Abelian groups and to the theory of endomorphism rings of arbitrary modules. The
monograph [17] is entirely devoted to various aspects of the theory of endomorphism rings of Abelian
groups.

3. Finite Topology

On the ring of endomorphisms of any module, we can define one very useful topology. This is the
so-called finite topology, which is an example of a linear topology. A linear topology on a module (ring)
is a topology for which there is a basis of neighborhoods of zero consisting of submodules (left ideals)
and the corresponding residue classes form a basis of open sets. Examples of linear topologies are the
Z-adic topology and the p-adic topology on Abelian groups.

Let M be a right module over by some ring and EndM its endomorphism ring. The finite topology
is defined on the ring EndM with the use of the following subbasis of neighborhoods of zero:

Ux = {α ∈ EndM | α(x) = 0},
where x runs over all the elements of the module M . It is clear that Ux are left ideals of the ring
EndM . The ideals

UX = {α ∈ EndM | αX = 0}
form a basis of neighborhoods of zero where X runs over all finite subsets of the module M . Since we
have UX =

⋂

x∈X
Ux, the residue classes α+UX , for all finite subsets X of the module M , form a basis

of neighborhoods of the element α ∈ EndM . The finite topology is always a Hausdorff topology. We
formulate the main theorem about the finite topology.

Theorem 3.1. The endomorphism ring of any module M is a topological ring which is complete in
the finite topology.

Proof. Since Ux are left ideals, it is obvious that the addition and the subtraction are continuous in the
ring EndM . Now we verify that the multiplication is continuous. We take arbitrary endomorphisms
α, β ∈ EndM , and let αβ + Ux be a neighborhood of the element αβ. Since Uβ(x)β ⊆ Ux, we have

(α+ Uβ(x))(β + Ux) ⊆ αβ + Ux,

which implies that the multiplication is continuous.
Thus, EndM is a topological ring. We prove this ring is complete. We assume that {αi}i∈I is a

Cauchy sequence in ring EndM . By the definitions of the finite topology and a Cauchy sequence,
the set of subscripts I is ordered with respect to the order which is dual to the order on the finite
subsets of the module M . For a given element x ∈ M , there exists a subscript i0 ∈ I such that
αi − αj ∈ Ux for all i, j > i0. This means that αi(x) = αj(x) for quite large subscripts i and j. There
exists an endomorphism α of the module M such that α(x) the common value of all such αi(x). Then
α − αi ∈ Ux for i > i0. Thus, α is the limit of this Cauchy sequence {αi}i∈I . We obtain that every
Cauchy sequence converges in the ring EndM ; this means that EndM is complete. �

When applying the finite topology, the most important are the completeness of the ring endomor-
phisms and continuous isomorphisms between endomorphism rings.

Sometimes, the finite topology can be defined in terms of the endomorphism ring itself.

Proposition 3.2. The following assertions hold.

1. Let V be a vector space over some division ring. The finite topology of the operator ring EndV
of the space V will be defined if we take the set of left annihilators of primitive idempotents as a
subbasis of neighborhoods of zero.
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2. Let G be a reduced p-group. The finite topology of the ring EndG can be defined if we take the set
of left annihilators of elements αε as a subbasis neighborhoods of zero, where α ∈ EndG and ε is
a primitive idempotent. If the group G does not have elements of infinite height, then it suffices to
take only left annihilators of primitive idempotents.

3. If G is a separable torsion-free group, then the finite topology of the ring EndG can be similarly
defined by taking the set of left annihilators of primitive idempotents as a subbasis of neighborhoods
of zero.

Proof. 1. Let x be an arbitrary vector of the space V , X be the subspace in V generated by the vector
x, and let ε : V → X be the projection. The relation Ux = (EndV )(1 − ε) means that Ux is a left
annihilator of the primitive idempotent ε.

2. For every element x ∈ G, there exists of cyclic direct summand 〈y〉 of the group G with o(x) �
o(y). Consequently, there exists an endomorphism α ∈ EndG which maps y onto x. Let ε : G → 〈y〉
be the projection. Then Ux coincides with the left annihilator of the element αε and ε is a primitive
idempotent. If the group G does not have elements of infinite height, then for the finite topology, the set
of left ideals Ux is a subbasis of neighborhoods of zero, where element x runs over only elements such
that 〈x〉 is a direct summand of the group G. If ε : G → 〈x〉 is the projection, then Ux = (EndV )(1−ε),
similarly to item 1.

3. Similarly to item 2, a subbasis of neighborhoods of zero can be defined as the set of left ideals
Ux, where x runs over only elements such that 〈x〉∗ is a direct summand of the group G, where 〈x〉∗
is a pure subgroup generated by the element x. �

4. The Case of Vector Spaces

Of course, isomorphic groups have isomorphic endomorphism rings. In general, the converse problem
is much more difficult. In its most general form, it can be formulated as follows: how are two groups
connected if their endomorphism rings are isomorphic to each other? For example, will these groups be
isomorphic? The natural formulation of this problem is suggested by the property (c) in Sec. 2. Will a
given ring isomorphism ψ : EndA → EndB be induced by some group isomorphism ϕ : A → B, i.e.,
whether the formula ψ(η) = ϕηϕ−1 holds for all η ∈ EndA?

When passing to modules, new versions of the formulation of the problem arise. Thus, we can
consider modules over different rings. In this situation, semilinear isomorphisms of modules are used.

Let R and S be two rings, A be a right R-module, and B be a right S-module. An additive
isomorphism ϕ : A → B is called a semilinear isomorphism of the modules A and B if there is a ring
isomorphism τ : R → S such that ϕ(ar) = ϕ(a)τ(r) for all a ∈ A and r ∈ R. In addition, one says
that a ring isomorphism (or an algebra isomorphism) of endomorphism rings ψ : EndR A → EndS B
is induced by a semilinear isomorphism ϕ : A → B if ψ(η) = ϕηϕ−1, η ∈ EndR A.

This section and the following two sections are directly related to the definability problem of a
group (module) by its endomorphism ring. First of all, we turn to the case of vector spaces and their
operator rings. By virtue of the simple (from the point of view of module theory) structure of vector
spaces, a number of ideas and methods, which we will continue to apply here, appear in a rather simple
and direct form.

We will consider the right vector spaces over division rings.

Theorem 4.1 (Baer [2]). Let V and W be two vector spaces over division rings D and F , respec-
tively. Then every ring isomorphism from the operator ring EndD V onto EndF W is induced by some
semilinear isomorphism from V onto W .

Proof. Let ψ : EndD V → EndF W be a ring isomorphism. Further, for convenience, we write α∗
instead of ψ(α), where α ∈ EndD V . We fix a nonzero vector a ∈ V . Let ε : V → aD be the projection,
where aD is the one-dimensional subspace generated by the vector a. Then aD = εV . Since ε is an
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idempotent of the ring EndD V , we have that ε∗ is an idempotent of the ring EndF W . Consequently,
ε∗W is an one-dimensional direct summand of the space W . Let b be some nonzero vector in ε∗W .
Then bF = ε∗W . By the property (b) from Sec. 2, we identify the rings EndD(aD) and ε(EndD V )ε;
we also identify the rings EndF (bF ) and ε∗(EndF W )ε∗. Consequently, ψ induces the ring isomorphism
EndD(aD) → EndF (bF ).

Note the following fact. For a fixed element d ∈ D, there exists a unique operator σd ∈ EndD(aD)
which acts by the rule σd(ad

′) = add′, where d′ ∈ D. In particular, σd(a) = ad. The correspondence d �→
σd defines a ring isomorphism D → EndD(aD). There exists a similar isomorphism F → EndF (bF ).
We denote by τ the composition of isomorphisms

D → EndD(aD)
ψ−→ EndF (bF ) → F

In addition, the relation σ∗
d(b) = bτ(d) holds.

We construct the required semilinear isomorphism from V onto W . For an arbitrary vector x ∈ V
we take an operator α of the space V such that x = α(a). We define the mapping ϕ : V → W by
setting ϕ(x) = α∗(b). The mapping ϕ is well defined, i.e., it is independent of the choice of operator
α. Indeed, if x = α1(a), α1 ∈ EndD(V ), then (α− α1)(a) = 0 and (α− α1)ε = 0. Therefore,

(
(α− α1)ε

)∗
= (α∗ − α∗

1)ε
∗ = 0;

consequently, (α∗ − α∗
1)(b) = 0 and α∗(b) = α∗

1(b).
We take another vector y ∈ V and take β ∈ EndD V with y = β(a). Then x + y = (α + β)(a);

therefore,
ϕ(x+ y) = (α+ β)∗(b) = α∗(b) + β∗(b) = ϕ(x) + ϕ(y).

Thus, ϕ is an additive homomorphism.
We show that ϕ is a semilinear mapping, i.e., we verify that the relation ϕ(xd) = ϕ(x)τ(d) holds

for any x ∈ V and d ∈ D. Let x = α(a), as above. Then xd = α(a)d = α(ad) Since ϕ(x) = α∗(b), we
have

ϕ(x)τ(d) = α∗(b)τ(d) = α∗(bτ(d)
)
.

On the other hand, since xd = α(ad) = ασd(a), we have

ϕ(xd) = (ασd)
∗(b) = α∗(σ∗

d(b)) = α∗(bτ(d)
)
.

Thus, ϕ(xd) = ϕ(x)τ(d).

If ϕ(x) = α∗(b) = 0 for some x ∈ V , then (αε)∗ = α∗ε∗ = 0. This implies that αε = 0 and
x = αε(a) = 0, i.e., kerϕ = 0. For every vector z ∈ W , there exists an operator γ ∈ EndF W with
z = γ(b). Let γ = α∗ for some α ∈ EndD V . Then z = γ(b) = α∗(b) = ϕ(x), where x = α(a). We
obtain that ϕ is a bijection; in other words, ϕ is a semilinear isomorphism.

We take an arbitrary operator μ ∈ EndD V and a vector z ∈ W . Then we take a vector x ∈ V with
z = ϕ(x) and an operator α ∈ EndD V with x = α(a). Then z = ϕ(x) = α∗(b). Now we have the
relations

μ∗(z) = (μα)∗(b) = ϕ
(
μα(a)

)
= ϕμ(x) = (ϕμϕ−1)(z).

Thus, ψ(μ) = μ∗ = ϕμϕ−1, i.e., the isomorphism ψ is induced by the isomorphism ϕ. �
If the space V is of finite dimension m, then the ring EndD V is isomorphic to the matrix ring

Mm(D) of order m over the division ring D. Then we have the following partial case of Theorem 4.1.

Corollary 4.2. If the rings Mm(D) and Mn(F ) are isomorphic, then m = n and the division rings
D and F are isomorphic.

We consider the situation where D and F are fields. We identify any element d ∈ D with its action
on V . In short, we assume that D is the center of the ring EndD V . Similarly, we identify the field
F with the center of the ring EndF W . Under ring isomorphisms, the center passes onto the center.
Therefore, under the conditions of Theorem 4.1, we can assume that V and W are spaces over the same
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field, say F . However, in this case we can only prove that the ring isomorphism ψ : EndF V → EndF W
is induced by some semilinear F -space isomorphism V → W .

Since the rings EndF V and EndF W are F -algebras, it is natural to go further and assume that ψ is
an F -algebra isomorphism, i.e., ψ(sα) = sψ(α) for all s ∈ F and α ∈ EndF V . Under this assumption,
taking into account the equalities ψ(s · idV ) = sψ(idV ) = s · idW , we obtain that the isomorphism
of F -algebras EndF V , EndF W acts identically on F . In general, the isomorphisms between the
endomorphism algebras EndF V and EndF W are precisely ring isomorphisms that leave the elements
of the center in place. Taking this into account, we can write down the following result.

Corollary 4.3. Let V and W be two vector spaces over the field F . Then every isomorphism of
endomorphism algebras EndF V and EndF W is induced by some isomorphism of spaces V and W .

Isomorphism theorems have one important application. Let ψ be an automorphism of the F -algebra
EndF V . By Corollary 4.3, there exists an automorphism (invertible operator) ϕ of the space V such
that ψ(α) = ϕαϕ−1 for every α ∈ EndF V . Since automorphisms of the space V coincide with
invertible elements of the algebra EndF V , the last relation means that ψ is an inner automorphism
of the algebra EndF V .

Corollary 4.4. The following assertions hold.

1. Every automorphism of the algebra endomorphisms of the vector space over the field is inner.
2. (Skolem and Noether). Every automorphism of the matrix algebra Mn(F ) is an inner automorphism.

We might say that Baer’s proof of Theorem 4.1 in [2] is of a geometric character. In the proof
of Theorem 4.1, we used the method which is called the Kaplansky method. Relevant reasoning first
appeared in his book [15]. The essence of Kaplansky’s method is as follows. The primitive idempotents
of the operator ring correspond to the indecomposable subspaces; they are one-dimensional in this case.
In order to construct an isomorphism from the space V onto the space W , we transfer the properties
of such summands by means of operators in order to obtain necessary elements of the space W . In
one or another form, the Kaplansky method will be applied several times in the remaining sections of
this paper.

5. Baer–Kaplansky Theorem

We state and prove, perhaps, the most famous result on the definability of Abelian groups or
modules by their endomorphism rings. We are talking about the following remarkable theorem.

Theorem 5.1 (Baer [1], Kaplansky [15]). If A and C are torsion groups with isomorphic endomor-
phism rings, then every ring isomorphism EndA → EndC is induced by some group isomorphism
A → C.

Proof. We can restrict ourself to the case of p-groups. Indeed, we have

A =
⊕

p∈P
tp(A), C =

⊕

p∈P
tp(C),

where tp(A) and tp(C) are the p-components of the groups A and C, respectively. Then

EndA =
∏

p∈P
End tp(A), EndC =

∏

p∈P
End tp(C).

Since

End tp(A) =
⋂

(n, p)=1

nEndA, End tp(C) =
⋂

(n, p)=1

nEndC,

every ring isomorphism EndA → EndC must map End tp(A) onto End tp(C). Therefore, it suffices to
assume that A and C are p-groups.
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Then we proceed with a fixed ring isomorphism ψ : EndA → EndC. For every η ∈ EndA, we write
ψ(η) = η∗.

If A is a cyclic or quasi-cyclic p-group, then it is easy to see that A ∼= C (see Section 2 about the
structure of endomorphism rings of such groups). Then we divide the proof into three cases.

Case 1: A is a bounded group. Then A is the direct sum of cyclic p-groups. Let g be one of the
generators of some cyclic direct summand of the group A of the largest order pk. If ε : A → 〈g〉 is
the projection, then ε is an idempotent of the ring EndA and ε∗ is an idempotent of the ring EndC.
Consequently, ε∗C is a direct summand of the group C. By the property (d) from Sec. 2, the iso-
morphism ψ induces the ring isomorphism End〈g〉 → End(ε∗C). Therefore, ε∗C is a cyclic group 〈h〉
of order pk. Now we can construct the required isomorphism ϕ : A → C. For any element a ∈ A,
we take an endomorphism η ∈ EndA with a = η(g) and define a mapping ϕ : A → C such that
ϕ(a) = η∗(h). Similarly to the proof of Theorem 4.1, we can verify that the mapping ϕ is well defined,
ϕ is an isomorphism and ϕ induces ψ.

Case 2: A = B � D, where B is a bounded group and D is a nonzero divisible group. Let 〈g〉 be a
cyclic direct summand of maximal order pk in the group B, E be a direct summand of the group D
which is isomorphic to the group Zp∞, and let

E = 〈d1, d2, . . . , dn, . . .〉, pd1 = 0, pdn+1 = dn for n � 1.

We denote by ε : A → 〈g〉 and π : A → E the corresponding projections. Similarly to Case 1, we
obtain that ε∗C is a cyclic direct summand of the group C and π∗C is a direct summand of the group
C which is isomorphic to the group Zp∞ . We define two groups ε∗C and π∗C with the use of their
generators:

ε∗C = 〈h〉, π∗C = 〈e1, e2, . . . , en, . . .〉, pe1 = 0, pen+1 = en for n � 1.

We represent an arbitrary element a ∈ A in the form a = a1 + a2, where a1 ∈ B, a2 ∈ D, and take
an endomorphism η ∈ EndA such that η(g) = a1, η(dn) = a2 for some n. We construct a mapping
ϕ : A → C by setting ϕ(a) = η∗(h + en). First, we show that ϕ does not depend on the choice of η
and n. We take η1 ∈ EndA such that η1(g) = a1 and η1(dm) = a2, and we can assume that m � n.
Then we obtain the relations

(η − η1)(g) = 0, (pm−nη − η1)(dm) = 0.

Therefore, (η − η1)ε = 0 and the endomorphism (pm−nη − η1)π annihilates E[pm]. Therefore, the
endomorphism (pm−nη − η1)π is divided by pm. Then the endomorphism

(
(pm−nη − η1)π

)∗
is also

divided by pm; consequently, it annihilates the element em. Thus, we obtain that η∗(h) = η∗1(h) and
η∗(en) = pm−nη∗(em) = η∗1(em), whence η∗(h+ en) = η∗1(h+ em).

Similarly to Case 1, we refer to the proof of Theorem 4.1 for the verification of the property that ϕ
is an isomorphism inducing the isomorphism ψ.

Case 3: A has an unbounded basis subgroup. It follows from properties of basis subgroups (see Sec. 1)
that there exist decompositions

A = 〈a1〉 � 〈a2〉 � . . . � 〈ak〉 � Ak, k ∈ N,

such that Ak = 〈ak+1〉�Ak+1 and o(ak) = pnk , where 1 � n1 < n2 < . . . < nk < . . .. Let εk : A → 〈ak〉
be the projection. For distinct subscripts j and k, we define an endomorphism γjk of the group A as
follows. The endomorphism γjk maps the direct summand, which is complementary to 〈ak〉 in the
above decomposition of A, onto 0. It also maps from ak onto aj (respectively, onto pnj−nkaj) if j < k
(respectively, j > k). Then

(1) γjkεk = γjk = εjγjk for all j = k;

(2) γkjγjk = p|nj−nk|εk, for all j = k;
(3) γijγjk = γik if i < j < k or i > j > k.
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The endomorphisms ε∗k and γ∗jk of the group C also satisfy conditions (1)–(3). The subgroups ε∗kC
are cyclic direct summands of the group C of orders coinciding with the orders of the groups εkA, by
the property (d) from Sec. 2. It follows from the condition (2) that the endomorphism γ∗k,k+1 maps

ε∗k+1C onto ε∗kC. We set ε∗kC = 〈ck〉 and show that we can choose the generators ck to satisfy the
relations γ∗k,k+1(ck+1) = ck for all k. Indeed, if the elements c1, c2, . . . , ck are already chosen and the

element c′k+1 generates the subgroup ε∗k+1C, then γ∗k,k+1(c
′
k+1) = tck for some t ∈ Z. Further, it follows

from (2) that γ∗k+1,k(tck) = pnk+1−nkc′k+1; by considering the orders of the elements, that (p, t) = 1.

We take the element ck+1 = sc′k+1, where st ≡ 1(modpnk). Then γ∗k,k+1(ck+1) = ck. Furthermore, it

follows from (3) that γ∗jk(ck) = cj for all j < k.

For an arbitrary element a ∈ A, we take an endomorphism η ∈ EndA such that η(ak) = a for some
k ∈ N. We define the mapping ϕ : A → C by setting ϕ(a) = η∗(ck). We verify that the mapping
ϕ is well defined. Let η1(aj) = a, where η1 ∈ EndA and j � k. Then (ηγkj − η1)εj = 0, whence
(η∗γ∗kj − η∗1)ε∗j = 0; therefore, η∗(ck) = η∗1(cj).

Finally, similarly to the proof of Theorem 4.1, we can verify that the constructed mapping ϕ is an
isomorphism which induces the isomorphism ψ. �

Similarly to the case of vector spaces, we obtain a corollary related to automorphisms of torsion
groups.

Corollary 5.2. For a torsion group G, every automorphism of the endomorphism ring of G is inner.

6. Topological Isomorphisms of Endomorphism Rings

On the endomorphism ring, we have the finite topology, so it is natural to consider isomorphisms of
endomorphism rings that are continuous in both directions. They more accurately determine the struc-
ture of the source module. We call such isomorphisms topological and discuss theorems of topological
isomorphism.

Thus, by a topological isomorphism ψ : EndA → EndC, we mean a ring isomorphism ψ such that
ψ and ψ−1 are continuous with respect to the finite topology. It can be directly verified that every
group isomorphism A → C induces a topological ring isomorphism EndA → EndC. We also pay
attention to the fact that the ring isomorphisms appearing in Theorems 4.1 and 5.1 are topological.
This follows from Proposition 3.2.

In this section, all groups are torsion-free. Most of the concepts related to torsion-free groups are
defined in Sec. 1. In addition, we recall that a type is said to be idempotent if it contains a characteristic
consisting of the symbols 0 and ∞. The type of torsion-free group A of rank 1 is idempotent if and
only if A is isomorphic to the additive group of some subring of the rational number field Q.

Every Abelian group A is a natural left module over its endomorphism ring. Let A be torsion free. In
this case, the Q-algebra EndA�Q is called the quasi-endomorphism ring or the quasi-endomorphism
algebra of the group A. The action of the ring EndA on the group A extends to the action of the
ring EndA�Q on the divisible hull A�Q of the group A. Thus, we get the left (EndA�Q)-module
A � Q.

We assume that the group A is embedded in the Q-space A � Q by identifying an element a ∈ A
with the element a � 1. We accept the same agreement with respect to EndA and EndA � Q.

Pure fully invariant subgroups of the group A are briefly called pfi-subgroups. It is easy to verify
that the correspondences

H �→ H � Q, W �→ W ∩A

are mutually inverse isomorphisms between the lattice of pfi-subgroups of the group A and the
submodule lattice of the (EndA � Q)-module A � Q.

We recall that a group A is said to be irreducible if it does not have a proper pfi-subgroup. The
irreducibility of the group A is equivalent to the irreducibility of the (EndA � Q)-module A � Q.
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Definition 6.1. A torsion-free group G is said to be fully transitive if for any its elements a, b = 0
with χ(a) � χ(b), there exists an endomorphism α ∈ EndG with α(a) = b.

Homogeneous separable groups and algebraically compact groups are simplest examples of fully
transitive groups.

Lemma 6.2. A homogeneous fully transitive torsion-free group G is irreducible. In addition, if G is
of an idempotent type, then every its pure subgroup contains a generator of the EndG-module G.

Proof. We assume that H is a nonzero pfi-subgroup of the group G. Let a ∈ H and b ∈ G be
some nonzero elements. We take a positive integer n with χ(a) � χ(nb). Then α(a) = nb for some
α ∈ EndG. Since the subgroup H is fully invariant, we have nb ∈ H. Since the subgroup H is pure,
b ∈ H. Consequently, H = G; therefore, G does not contain a proper pfi-subgroup.

If the group G is of idempotent type, then every its nonzero pure subgroup contains element a = 0
with characteristic χ(a) consisting of 0 and ∞. Then χ(a) � χ(b) for any nonzero element b ∈ G.
Therefore, b ∈ (EndG)a and (EndG)a = G, i.e., the element a generates the EndG-module G. �

Theorem 6.3 (see [16]). Let G and H be two homogeneous fully transitive torsion-free groups whose
types are idempotent. Then every topological ring isomorphism between EndG and EndH is induced
by some group isomorphism between G and H.

Proof. Let ψ : EndG → EndH be some topological ring isomorphism. For convenience, we use the
following notation:

V = G � Q, W = H � Q, R = EndG � Q, S = EndH � Q.

Then V is a faithful irreducible R-module and W is a faithful irreducible S-module by Lemma 6.2.
Further, we set

D = EndR V, F = EndS W, K = EndD V, L = EndF W.

Here D and F are division rings by the Schur lemma. By the familiar density theorem of Jacobson–
Chevalley for irreducible modules, the ring R is dense in the finite topology of the ring K, and the
ring S is dense in the finite topology of the ring L.

We identify the ring EndG (respectively, EndH) with its image under the canonical embedding
EndG → R (respectively, EndH → S). Then finite topology of the ring EndG (respectively, EndH)
coincides with the topology induced by the finite topology of the ring K (respectively, L). Therefore,
ψ � idQ is a topological ring isomorphism of R and S which is also denoted by ψ. Since R (respec-
tively, S) is dense in the complete ring K (respectively, L), we have that ψ can be uniquely extended
to the ring isomorphism K → L which is also denoted by ψ. As above, we write η∗ instead of ψ(η).

Let g be some fixed generator of the EndG-module G which exists by Lemma 6.2. We denote by
A the subspace of the D-space V generated by the element g and consider the projection π : V → A.
Then π ∈ K and π2 = π. Hence (π∗)2 = π∗ and π∗ : W → π∗W is the projection. In addition,

D ∼= EndD A ∼= πKπ ∼= π∗Lπ∗ ∼= EndF (π
∗W )

Consequently, dimF (π
∗W ) = 1; see the property (b) from Sec. 2 about the isomorphism EndD A ∼=

πKπ and a similar isomorphism for the ring L. In π∗W ∩H, we take some element h generating the
EndH-module H.

We define the mapping ϕ : G → H as follows. For an arbitrary element a ∈ G, we take an
endomorphism η ∈ EndG with a = η(g). We set ϕ(a) = η∗(h). We verify that the action of ϕ does
not depend on the choice of endomorphism η. If a = η1(g), where η1 ∈ EndG, then (η − η1)(g) = 0.
Consequently, (η − η1)π = 0, since the D-space A is one-dimensional. Hence (η∗ − η∗1)π∗ = 0 and
(η∗ − η∗1)(h) = 0, i.e., η∗(h) = η∗1(h). Thus, the mapping ϕ is well defined.

It remains to verify that ϕ is an isomorphism which induces the isomorphism ψ. In general, it
repeats the corresponding places in the proof of Theorem 4.1. �
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Of course, in an indirect form, the proof of Theorem 6.3 is based on the Kaplansky method.
If we apply Theorem 6.3 to a homogeneous fully transitive group, then we obtain the result which

is similar to Corollaries 4.4 and 5.2.

Corollary 6.4. For a homogeneous fully transitive torsion-free group of idempotent type, every topo-
logical automorphism of its endomorphism ring is inner.

We apply Theorem 6.3 to homogeneous separable torsion-free groups defined in Sec. 1. It is easy to
prove that such a group is fully transitive. In addition, it follows from Proposition 3.2(3) that every
isomorphism between endomorphism rings of two separable torsion-free groups is topological. Then
we have the following result.

Corollary 6.5. If G and H are two homogeneous separable torsion-free groups of idempotent types,
then every isomorphism EndG → EndH is induced by some isomorphism G → H.

We also have the following assertion.

Corollary 6.6. Let G and H be two fully decomposable torsion-free groups such that types of all
homogeneous components of these groups are idempotent. Then every isomorphism EndG → EndH
is induced by some isomorphism G → H.

Proof. Let the canonical decompositions of the groups G and H be of the form

G =
⊕

t∈Ω(G)

Gt, H =
⊕

t∈Ω(H)

Ht,

where Gt and Ht are so-called homogeneous components of the groups G and H, respectively. Let
ψ : EndG → EndH be some ring isomorphism. For every t ∈ Ω(G), we denote by εt the projection
G → Gt. There are isomorphisms

EndGt
∼= εt(EndG)εt ∼= ψ(εt)(EndH)ψ(εt) ∼= End

(
ψ(εt)H

)
.

Since Gt is a homogeneous group of idempotent type, ψ(εt)H also is a homogeneous group of idem-
potent type. By Corollary 6.5, we have the isomorphism Gt

∼= ψ(εt)H, whence Ω(G) ⊆ Ω(H). By
symmetry, we obtain the converse inclusion. Thus, Ω(G) = Ω(H).

Now we can construct an isomorphism from the group G into the group H by the Kaplansky
method. For every type t ∈ Ω(G), we fix the direct summand At of rank 1 of the group Gt. We take
a nonzero element at ∈ At with characteristic consisting of the symbols 0 and ∞. Let πt : G → At

be the projection. Then ψ(πt)H is a direct summand of rank 1 of the group Ht. In ψ(πt)H, we take
a nonzero element bt with characteristic consisting of the symbols 0 and ∞. Then {at}t∈Ω(G) is a
generator system of the EndG-module G and {bt}t∈Ω(H) is a generator system of the EndH-module
H. Any element a of the group G can be represented in the form

a = αt1(at1) + αt2(at2) + . . .+ αtk(atk),

where αt1 , αt2 , . . . , αtk ∈ EndG. Then we set

ϕ(a) = ψ(αt1)(bt1) + ψ(αt2)(bt2) + . . .+ ψ(αtk)(btk).

Similarly to the proof of Theorems 4.1, 5.1, and 6.3, we can verify that the mapping ϕ is well-defined
and it is an isomorphism which induces the isomorphism ψ. �

At the end of this section, we use topological isomorphisms to extend the Baer–Kaplansky theorem
(Theorem 5.1) to the case of arbitrary groups.

First, we have the following useful fact. Let A be a group and ε be an idempotent of the ring EndA.
Then the canonical isomorphism End(εA) ∼= ε(EndA)ε, specified in the property (b) of Sec. 2, is
topological if we assume that End(εA) is provided by the finite topology which coincides on ε(EndA)ε
with the topology induced by the finite topology of the ring EndA.
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We recall that the torsion part of the mixed group G, i.e., the largest torsion subgroup of G, is
denoted by t(G). In addition, if G is a torsion group, then t(G) = G and t(G) = 0 for a torsion-free
group G.

Theorem 6.7 (May [23]). The following assertions hold.

1. Let G and H be two groups and ψ : EndG → EndH be a topological isomorphism. Then there exists
an isomorphism ϕ : t(G) → t(H) such that ψ(η) and ϕηϕ−1 coincide on t(H) for every η ∈ EndG.

2. Let T be a torsion group and H be an arbitrary group. Then every topological isomorphism EndT →
EndH is induced by an isomorphism T → H.

Proof. 1. The required isomorphism ϕ can be constructed by the Kaplansky method which is restricted
here to the torsion parts of the groups G and H. It is only necessary to clarify the following point.
If ε is an idempotent of the ring EndG and εG ∼= Zpk , k � 1, then it is clear that ψ(ε)H ∼= Zpk .

Let εG ∼= Zp∞. Then End(εG) ∼= Ẑp (Ẑp is the ring or group of p-adic integers) and, consequently,

End
(
ψ(ε)H

) ∼= Ẑp. It follows from this property that ψ(ε)H ∼= Zp∞ or ψ(ε)H ∼= Ẑp. The theorem

that End(εG) and End
(
ψ(ε)H

)
are topologically isomorphic rings was mentioned before. However, the

finite topologies on the rings EndZp∞ and End Ẑp are distinct, since the first topology is the p-adic
topology and the second topology is the discrete topology. Therefore, ψ(ε)H ∼= Zp∞ is only possible.
Now the way to the application of the Kaplansky method is open.

2. Let ψ : EndT → EndH be some topological isomorphism. Since ψ is continuous, we have that
for an arbitrary element y ∈ H, there exist elements x1, x2, . . . , xn ∈ T such that if α ∈ EndT and
α(xi) = 0, i = 1, 2, . . . , n; then we have ψ(α)(y) = 0. There exists a positive integer m such that
mxi = 0 for all i. Hence ψ(m · idT )(y) = (m · idH)(y) = my = 0. Consequently, H is a torsion group
and we can use Theorem 5.1. �

7. Definability of p-groups by Radical of Endomorphism Rings

One can raise the question of the determinability of a group not by the whole ring of endomorphisms
but by some part of it. It follows from Theorem 7.1 that a p-group with an unbounded basic subgroup
is determined by the Jacobson radical of its endomorphism ring (as a ring without unity). Other
similar results are given in the remarks. The section is based on the paper [14]. Various facts about
radicals of endomorphism rings are given in the fourth part of the monograph [17].

Let us make one terminological remark. Group terms applied to a ring, ideal, or module refer to their
additive groups. The same applies to the individual elements of these objects. Thus, for example, the
order of an element of a ring (an ideal or a module) means its order as an element of the corresponding
additive group.

Let G be some group. Then J(EndG) is the Jacobson radical of its endomorphism ring and K(G)
is the torsion subgroup of the ideal J(EndG). It is clear that K(G) is an ideal in EndG and the ring
K(G) is not unital . We often write K instead of K(G).

Theorem 7.1. Let G be a p-group whose basis subgroup is an unbounded group, and G′ an arbitrary
p-group. Then every ring isomorphism ψ : K(G) → K(G′) is induced by some group isomorphism
ϕ : G → G′, i.e., ψ(η) = ϕηϕ−1 for any η ∈ K(G).

First, we prove a series of auxiliary assertions. But first we note that any ring isomorphism EndG →
EndG′, of course, induces the ring isomorphism K(G) → K(G′).

Up to the end of the section, G is some p-group and N(EndG) is the nil-radical of the ring EndG,
i.e., the sum of all nil-ideals of EndG. We also define the Pierce ideal P(G) of the group G; namely,
we set

P(G) =
{
α ∈ EndG | x ∈ G[p], h(x) < ∞ ⇒ h(x) < h

(
α(x)

)}
.
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It is easy to verify that P(G) is an ideal of the ring EndG. We also have the relation

P(G) =
{
α ∈ EndG | α((pnG)[p]

) ⊆ (
pn+1G

)
[p] for all n � 0

}
.

Various facts about the Pierce ideal can be found in [17, Sec. 20]. The most important of these is the
inclusion J(EndG) ⊆ P(G). Consequently, we have the inclusions

N(EndG) ⊆ J(EndG) ⊆ P(G). (∗)
Further, we prove that the torsion parts of these ideals coincide. First, we note that if I is an ideal of
some ring, then t(I) is also an ideal. In addition, t(EndG) is a p-group in our case.

Lemma 7.2. There exist the relations

t
(
N(EndG)

)
= t

(
J(EndG)

)
= t

(
P(G)

)
.

Proof. It follows from (∗) that it suffices to show that every element of t
(
P(G)

)
is nilpotent. Let

α ∈ t
(
P(G)

)
. Then pnα = 0 for some n ∈ N and αG ⊆ G[pn]. Let α′ = α

∣
∣
G[pn+1]

. Since α ∈ P(G), it

is clear that (α′)m = 0 for some m ∈ N. Then αm+1 = 0. �
We recall that the ideal K(G) is denoted by the single letter K.

Lemma 7.3. The ideal K is not bounded if and only if the group G has an unbounded basis subgroup.

Proof. We assume that there is a decomposition G = 〈a〉 � 〈b〉 � H, o(a) < o(b). We define an
endomorphism α of the group G by setting α(b) = a and α

(〈a〉�H
)
= 0. Then α ∈ K and o(α) = o(a).

This proves that the ideal K is not bounded if G has an unbounded basis subgroup. To prove the
converse, we assume that G = A � D, where pnA = 0 for some n and D is a divisible group. Let
β ∈ K. Then pnβ = 0, since a divisible group does not have nonzero endomorphisms of finite order.
Consequently, pnK = 0. �

We use the following notation. For an endomorphism η ∈ K and a subset L ⊆ K, we denote by L · η
the set {λη | λ ∈ L}; the set η · L is similarly defined.

Lemma 7.4. Let G be a group with unbounded basis subgroup, t be a positive integer, and let η ∈ K.
The relation K[pt] · η = 0 holds if and only if ηG ⊆ ptG.

Proof. Let α ∈ K. Clearly, ptα = 0 ⇔ (ptα)G = 0. Therefore, if ηG ⊆ ptG, then K[pt] · η = 0. To prove
the converse, we assume that ηG � ptG. We construct an endomorphism λ ∈ K[pt] with λη = 0. We
take an element x ∈ ηG such that x /∈ ptG. Then h(x) < t. Consequently, there exists a decomposition
G = 〈y〉 � Y , and x = psy + u, where psy = 0, s < t, and u ∈ Y (see Sec. 1). Let o(y) = pn and
m = min{n, t}; then m > s. Since a basis subgroup of the group G is not bounded, Y has a direct
summand 〈z〉 of order pk with k > m. We define an endomorphism λ by setting λ(y) = pk−mz and

λY = 0. Then λ ∈ K[pt] and λ(x) = pk−(m−s)z = 0. Consequently, λη = 0, which is required. �

Proposition 7.5. If the conditions of Lemma 7.4 hold and η ∈ K[pt], then K[pt] · pt−1η = 0 if and
only if the group G has decompositions G = 〈y〉 � Y = 〈η(y)〉 � X such that o(η(y)) = pt.

Proof. First, we assume that K[pt] · pt−1η = 0. Then (pt−1η)G � ptG by Lemma 7.4. Consequently,
there exists a direct summand 〈y〉 of G with η(pt−1y) /∈ ptG. This implies that the element η(pt−1y) is
of order p and of height t− 1. Therefore, 〈η(y)〉 is a direct summand in G (see Sec. 1). It is also clear
that o(η(y)) = pt.

To prove the converse, we assume that the group G has the mentioned decompositions. The height
of the element pt−1η(y) is less than t; this implies that (pt−1η)G � ptG. It follows from Lemma 7.4
that K[pt] · pt−1η = 0. �

We introduce one new notion.
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Definition 7.6. A right K-module T is said to be strongly homogeneous if T is a torsion group and
for any nonzero σ, τ ∈ T , the intersection σK∩τK contains an element α with o(α) = min{o(σ), o(τ)}.
Proposition 7.7. Let the conditions of Lemma 7.4 hold and let η ∈ K[pt] such that K[pt] · pt−1η = 0.
The subgroup ηG is a cyclic group if and only if ηK is a strongly homogeneous K-module.

Proof. By Proposition 7.5, there exist decompositions

G = 〈y〉 � Y = 〈x〉 � X

such that η(y) = x and o(x) = o(η) = pt.
First, we assume that ηG is a cyclic group. Then we have ηG = 〈x〉. Let endomorphisms τi ∈ K

satisfy ητi = 0, i = 1, 2. Let o(ητi) = pni . Then ni � t, i = 1, 2; without loss of generality, we
assume that n1 � n2. There exist elements gi ∈ G, i = 1, 2 such that ητi(gi) = pt−nix. We have the
decomposition G = 〈z〉�Z such that the order of the element z exceeds the orders of the elements g1
and g2. We take endomorphisms σi ∈ K such that σi(z) = gi and σiZ = 0, i = 1, 2. We set λi = ητiσi,
i = 1, 2. Then λiZ = 0 and λi(z) = pt−nix; therefore, o(λi) = pni = o(ητi), i = 1, 2. Further, we have
that pn2−n1λ2 = λ1 and λ1 ∈ (ητ1)K∩(ητ2)K. In addition, the order of the element λ1 is equal to the
minimal order of the elements ητ1 and ητ2.

To prove the converse, we assume that ηG = 〈x〉. Then there exists an element g such that η(g) = w
for some w /∈ 〈x〉. If o(w) = ps, then it is clear that s � t. Again, we take a decomposition G = 〈z〉�Z
with the property that the order of the element z strictly exceeds the orders of the elements y and
g. In such the situation, there exist endomorphisms σ, τ ∈ K such that σ(z) = y, τ(z) = g and
σZ = 0 = τZ. Then we have ησ(z) = x, ητ(z) = w, o(ησ) = pt and o(ητ) = ps. We assert that the
intersection (ησ)K∩(ητ)K does not contain elements of order ps. We assume the contrary: there exist
α, β ∈ K such that the element ησα = ητβ is of order ps. Let a be an arbitrary element of the group G.
We have α(a) = mz + z′ and β(z) = nz + z′′ for some integers m and n and elements z′, z′′ ∈ Z. Now
we have ησα(a) = mx, ητβ(a) = nw and mx = nw. Since w /∈ 〈x〉, we have that p divides n. Then
ps−1ητβ(a) = 0 and ps−1ητβ = 0. The obtained contradiction completes the proof. �

We now state the main auxiliary result.

Proposition 7.8. A p-group G has an unbounded basis subgroup if and only if there exists a sequence
1 < n1 < n2 < . . . of positive integers, and there exist elements η1, η2, . . . of K such that the following
conditions hold for every i � 1.

(1) o(ηi) = pni ;
(2) K[pni ] · pni−1ηi = 0;
(3) ηiK is a strongly homogeneous K-module;
(4) the mapping fi : K ηi → K ηi+1, αηi �→ αηiηi+1, α ∈ K, is a monomorphism.

In addition, for a given sequence 1 < n1 < n2 < . . . and given endomorphisms ηi ∈ K satisfying
properties (1)–(4), there exist elements d1, d2, . . . in G such that for every i � 1, we have

o(di) = pni , ηi(di+1) = di, ηiG = 〈di〉, 〈di〉 ”— is a direct summand of the group G.

Proof. Let G have a unbounded basis subgroup. Then for any i � 1, there exists an element ai ∈ G of
order pni , where 1 < n1 < n2 < . . ., and the relations

G = 〈ai〉 � 〈a2〉 � . . . � 〈at〉 � Ht, Ht = 〈at+1〉 � Ht+1.

hold. We define endomorphisms ηi by setting ηi(ai+1) = ai and assuming that ηi annihilates all
summands complement to 〈ai+1〉. It is clear that ηi is of order pni . It follows from Propositions 7.5
and 7.7 that the conditions (2) and (3) hold. The condition (4) is directly verified.

To prove the converse, it suffices to note that by Lemma 7.3, it follows from the condition (1) that
G has an unbounded basis subgroup.
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Now we assume that the conditions (1)–(4) hold and verify the existence of the elements di with
required properties. By Proposition 7.5, for every i � 1, there exist decompositions G = 〈yi〉 � Yi =
〈xi〉 � Xi such that ηi(yi) = xi and o(xi) = pni . It follows from Proposition 7.7 that ηiG = 〈ηi(yi)〉.
This implies the relation G = 〈yi〉 � ker ηi. Consequently, we have xi+1 = kiyi + zi, where ki is an
integer and ηi(zi) = 0.

We assume that p divides ki. Then

pni−1ηiηi+1G = pni−1〈ηi(xi+1)〉 = pni−1〈kixi〉 = 0.

On the other hand, we have pni−1ηiηi+1 = fi(p
ni−1ηi) and fi is an injection. This is a contradiction.

Thus, ki is relatively prime to p.
Let d1 = x1 and let t be a positive integer such that for all i = 1, 2, . . . , t, the element di is already

defined in such a way that di = mixi, where the integer mi is relatively prime to p and ηi(di+1) = di
for every i < t. It follows from the relations xt+1 = ktyt + zt (see the above) that ηt(xt+1) = ktxt.
Since kt and mt are relatively prime to p, there exists an integer mt+1 that is also relatively prime
to p such that the relations

ηt(mt+1xt+1) = mt+1ktxt = mtxt = dt

hold. We set dt+1 = mt+1xt+1. Thus, for every i, the group 〈di〉 = 〈xi〉 is a direct summand of the
group G of order pni , which is required. The remaining properties of the elements di are valid by the
choice of di. �
Proof of Theorem 7.1 We assume that the symbol K′ denotes the ideal K(G′), and K denotes K(G), as
above. Let ψ : K → K′ be some ring isomorphism of nonunital rings. For an endomorphism α ∈ K, we
set α′ = ψ(α) ∈ K′. By Proposition 7.8, there exist positive integers n1 < n2 < . . . and endomorphisms
ηi ∈ K satisfying the conditions(1)–(4) of Proposition 7.8. The corresponding properties are preserved
under ring isomorphisms, whence the endomorphisms η′i ∈ K′ satisfy similar conditions (1′)–(4′). We
apply Proposition 7.8 again and obtain that there exist elements di ∈ G and d′i ∈ G′ with the following
properties. These elements generate direct summands of order pni and ηi(di+1) = di, ηiG = 〈di〉,
η′i(d

′
i+1) = d′i, η

′
iG

′ = 〈d′i〉.
We define the mapping ϕ : G → G′ as follows. For an element x ∈ G, we take a positive integer

k with o(x) < pnk . Let ε be an endomorphism of the group G such that ε(dk) = x and ε annihilates
the complement to 〈dk〉 summand. Then ε ∈ t

(
P(G)

)
= K by Lemma 7.2. We set ϕ(x) = ε′(d′k).

The mapping ϕ is well defined. Indeed, we assume that x = ω(dj) for some j � k and ω ∈ K. Then
dk = (ηkηk+1 · . . . · ηj−2ηj−1)dj , which implies (εηk · . . . · ηj−2ηj−1 − ω)dj = 0. Therefore,

(εηk · . . . · ηj−2ηj−1 − ω)ηjηj+1G = 〈(εηk · . . . · ηj−2ηj−1 − ω)dj〉 = 0.

It follows from (4) that (εηk · . . . · ηj−2ηj−1 − ω)ηj = 0, whence we have ε′η′k · . . . · η′j−1η
′
j = ω′η′j . As

a result, we obtain the relation ω′(d′j) = ε′(d′k) which means that the action of ϕ does not depend on
the choice of the element dk and endomorphism ε.

Finally, similarly to the proof of Theorem 4.1, it is directly verified that ϕ is an isomorphism which
induces the isomorphism ψ. �

Remarks 1. It is interesting that a group with a sufficiently rich divisible subgroup is determined
by its topological endomorphism ring in the class of all groups. Namely, May proved (see [22]) the
following assertion: Let a group G contain copies of the groups Q and Zp∞ for every prime p. Then for
any group H, every topological isomorphism EndG → EndH is induced by some isomorphism G → H
(cf. Theorem 6.7).

There are not many papers devoted to the definability of torsion-free groups by endomorphism
rings. The paper [3] of Bazzoni and Metelli is very important. They proved that a separable torsion-
free group G is determined by its endomorphism ring in the class of all such groups if and only if every
direct summand of rank 1 of the group G is divided by almost all prime integers. It should be noted
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that torsion-free groups often have few endomorphisms, and, generally speaking, the endomorphism
ring has little effect on the original group. For torsion-free groups, the isomorphism theorem is a very
rare phenomenon.

For mixed groups, on the contrary, there is a rather rich literature on isomorphism theorems. But
we immediately point out that even for mixed groups G with G/t(G) ∼= Q, the following two central
questions have negative answers.

(i) Will the isomorphism G ∼= H follow from the isomorphism EndG ∼= EndH?
(ii) Is every automorphism of the ring EndG inner?

The corresponding examples can be found in the paper of May and Toubassi (see [31]).
If the isomorphism theorem is invalid for some groups, we can extend the problem and try to find

conditions for isomorphism of endomorphism rings of two given groups G and H. May and Toubassi
(see [35]) did this for mixed groups of rank 1 with totally projective torsion parts.

Various other results connected with the determination of mixed groups by their endomorphism
rings are contained in the papers May and Toubassi [23, 29, 30].

At the end of Sec. 1, we pointed out the close connections of Abelian groups with modules over
domains of discrete valuation. The ring Qp of rational numbers with denominators relatively prime
to p gives an example of such a domain. In fact, the Qp-modules coincide with the groups G such that
nG = G for all integers n with (n, p) = 1.

Ẑp is a complete discrete valuation domain. It is the completion of the ring Qp in the p-adic topology.

The Ẑp-modules are also called p-adic modules.
Many papers are devoted to isomorphism theorems for endomorphism rings (or endomorphism

algebras) of mixed modules over discrete valuation domains. It is clear that all the results obtained

in this case are applicable, in particular, to Qp-modules and Ẑp-modules. Unfortunately, even if we
accept the strongest assumptions, i.e., if we consider a complete discrete valuation domain R and
topological isomorphisms of endomorphism R-algebras, even for mixed modules of rank 1, the two
central questions formulated above have a negative solution. This follows, for example, from the paper
of May [28].

Most results on the isomorphism problem for mixed modules refer to modules with totally projective
torsion submodules or to Warfield modules. A typical result here is the following theorem of May and
Tubassi [32]: Let M be a mixed module of rank 1 over a discrete valuation domain R with totally
projective torsion submodule. If N is a module of rank 1, then every isomorphism EndR M → EndR N
is induced by some isomorphism M → N . It follows from the paper of Göbel and May [12] that this
result cannot be carried over to mixed modules of other finite ranks, even if one assumes the divisibility
of their torsion-free factor modules. However, this is possible if the domain R is complete (see [24]).

Other results on this topic can be found in [4–6, 25–27]. Note that very unexpected examples have
been constructed in these and other articles. In particular, they show that there are various serious
obstacles to finding isomorphism theorems for endomorphism rings of mixed modules over discrete
valuation domains, including if they are complete.

As for Theorem 7.1, the papers [13] of Hausen and Johnson and [34] Schulz completely clarify
when for two p-groups G and H, every ring isomorphism J(EndG) → J(EndH) is induced by some
isomorphism G → H.

In the papers of Flagg [7–10], the determinability of the module over a discrete valuation domain
by the radical of its endomorphism ring is studied. In [9], the author succeeded in replacing the
endomorphism ring by the radical of the endomorphism ring in well-known theorems on the definability
of mixed modules with totally projective torsion submodules and Warfield modules.

Using some results on isomorphisms of endomorphism rings of modules, one can get acquainted
with the survey [33].
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