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Abstract. In this work, we review results of the last years related to the development of the structural
theory of n-c.e. Turing degrees for n > 1. We also discuss possible approaches to solution of the open
problems.
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1. Introduction

Theory of Turing degrees of unsolvability consists of two parts: the local theory, which studies
degrees below 0′ (the degree of the halting problem) by Turing reducibility, and the global theory,
which assumes investigation of the general structure of degrees of unsolvability.

The local degree theory presents more interest and have been developed more deeply. First, it
contains all computably enumerable (breifly, c.e.) degrees, which are the core of the computability
theory. Moreover, the sets with degrees below 0′ possess the characteristic property

A ≤T ∅′

if and only if there exists a computable function f(s, x) such that A(x) = lims f(s, x). Here A(x) is
the characteristic function of the set A:

A(x) =

{
1 for x ∈ A,

0 for x /∈ A.

Thus, the condition A ≤T ∅′ is equivalent to the fact that A can be computably approximated in the
following sense: there exists a computable set of uniformly computable sequences {f(s, x) | s ∈ ω} of
0 and 1 such that for each x the limit of the sequence f(0, x), f(1, x), . . . exists and equals A(x).

In 1965, H. Putnam (see [69]) defined n-c.e. sets as a generalization of c.e. (computably enumerable)
sets as follows.

Definition 1.1. For given n > 0, a set A ⊆ ω is called an n-c.e. set if there exists a computable
sequence of sets {As}s∈ω such that for all x ∈ ω,

A0(x) = 0, A(x) = limsAs(x),
∣∣∣{s ∈ ω | As(x) �= As+1(x)

}∣∣∣ ≤ n
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(thus, c.e. sets are 1-c.e. sets.)

Yu. L. Ershov (see [35–37]) was the first who investigated such sets in detail (also he generalized
them to α-c.e. sets for computable ordinals α). The induced hierarchy completely covers all Δ0

2-sets
and is called the Ershov hierarchy.

Turing degrees of sets from different levels of the Ershov hierarchy were intensively investigated
since 1970s. It was found out that they (considered as partial ordering induced by Turing reducibility)
have a rich inner structure and replicate many (but not all as was found out later) properties of its
most important representative, namely, the class of degrees containing c.e. sets.

In this work, we observe results obtained during the last 10 years by participants of the seminar
on the computability theory in the Institute of Mathematics and Mechanics of the Kazan Federal
University. In the first part, we review results related to the investigation of structural theory of degrees
of unsolvability. In the second part, we review results related to the model-theoretical properties of
the Turing degree structures. In the third part, we emphasize the definability questions of the most
important classes of degrees in a wider structures of degrees. Some of these questions are still open
despite much effort of research teams from different countries.

We assume that the reader is familiar with a standard university courses of the mathematical logic
and the computability theory, in particular, with the first four chapters of R. Soare’s book Recursively
Enumerable Sets and Degrees (its translation from the English original was made in 2000 by the Kazan
Mathematical Society). We also follow notation used in this book. In particular, the set of all natural
numbers is denoted by ω, the same symbol is used for the first infinite cardinal (these cases can be
distinguished by the context). For a set A ⊆ ω, its complement ω−A is denoted by Ā. The cardinality
of a set A is denoted by |A|. Standard numerations of all c.e. sets and partial computable functions
are denoted by {Wx}x∈ω and {Φx}x∈ω, respectively.

The binary function 〈x, y〉 defined as

〈x, y〉 := (x+ y)2 + 3x+ y

2
, x, y ∈ ω,

and performing a bijection from ω2 onto ω is called the Cantor numbering function. For n > 2, the
n-ary function 〈x1, . . . xn〉 is defined as follows:

〈x1, . . . xn〉 =
〈〈

. . . 〈x1, x2〉, x3
〉
, . . . , xn

〉
.

If a function f is defined on an element x, then we denote it by f(x) ↓, otherwise we write f(x) ↑. By
A[x] we denote the finite set A ∩ {0, 1, . . . , x− 1}.

2. Semilattice of n-c.e. Degrees: Structural Theory

2.1. Comparison of elementary theories. The first results about n-c.e. sets (n-c.e. degrees) were
obtained by Lachlan (the end of 1960s, unpublished) who proved that for any n-c.e. degree d > 0,
n > 1, there exists a c.e. degree a with d > a > 0, and also by Cooper (see [19]) who proved that
there exists a properly d-c.e. degree, i.e., a Turing degree which contains a d-c.e. set, but does not
contain a c.e. set (where “d-c.e.” is an alternative notation for “2-c.e.”).

It is clear that d-c.e. degrees and, in general, n-c.e. Turing degrees form an intermediate structure
between the structures of c.e. and Δ0

2-degrees. It is natural to compare n-c.e. degrees with degrees of
these structures, especially since n-c.e. degrees share some properties of degrees from both of these
structures.

The result of Lachlan mentioned above and the existence of a minimal Δ0
2-degree (see [72]) show that

the structures of n-c.e. degrees and Δ0
2-degrees are not elementarily equivalent. The first elementary

difference between c.e. and n-c.e. degree for n > 1 was obtained by Arslanov (see [5, 6]) who showed
that each nonzero n-c.e. degree d is cuppable to 0′ by some d-c.e. degree, namely, there exists a d-c.e.
degree e < 0′ such that d∪e = 0′, withal Yates and Cooper (1973, unpublished, see also D. Miller [67])
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showed that this does not hold within c.e. degrees. It implies that elementary theories of R and Dn are
different at Σ0

3-level. The next elementary differences between these structures were found by Downey
(see [29]), who showed that Lachlan’s theorem (see [50]) about nonembedding of the diamond into
c.e. degrees preserving the greatest and least element does not hold in d-c.e. degrees, and by Cooper,
Harrington, Lachlan, Lempp and Soare (see [23, 24]), who established the nondenseness of the ordering
of n-c.e. degrees for all n > 1 contrary to the Sacks theorem about the denseness of c.e. degrees. It
follows that elementary theories of semilattices of R and Dn are different already at the Σ0

2-level.
Since any partially ordered set is embeddable into R (thus, also into Dn for n ≥ 1) respecting ≤T ,

the elementary theories of Dn and Dm for n �= m, n,m < ω, coincide at the Σ0
1-level. It is known (see,

e.g., Soare [83]) that there exist ω-c.e. minimal degrees. Since an n-c.e. degree for n ≥ 1 cannot be
minimal, the elementary theories of Dn, n ≥ 1, and Dω are different at the Σ0

2-level.
Elementary differences between structures of n-c.e. degrees for different n > 1 for a long time was

unknown. Downey [29] even stated a conjecture that structures of m-c.e. and n-c.e. degrees for different
m,n > 1 must be elementarily equivalent.

This conjecture was disproved in the work of Arslanov, Kalimullin, and Lempp [11], where they con-
structed a Σ0

2-formula distinguishing the structures of 2-c.e. and 3-c.e. degrees. Also in this work they
provided the first example of an infinite class of c.e. degrees which is definable in the semilattice D2.

Theorem 2.1 (Arslanov, Kalimullin, and Lempp [11]). There exist a d-c.e. set D and a c.e. set A
such that ∅ <T A <T D ⊕ A and for any d-c.e. set U , the following assertion holds: if U ≤T D ⊕ A,
then either A ≤T U or U ≤T A. (In this case, we say that the degrees of sets A and D ⊕ A form a
double bubble.)

Corollary 2.2. There exists d-c.e. degrees d > a > 0 such that for any d-c.e. degree u, the following
assertion holds: if u ≤ d then either a ≤ u or u ≤ a.

If d-c.e. degrees a and d possess this property, then the degree a must be computably enumerable.
Indeed, let d-c.e. sets D and A be such that ∅ <T A <T D ⊕A and for any d-c.e. set U the following
assertion holds: if U ≤T D ⊕A, then either A ≤T U or U ≤T A.

Denote by X ≤T D a c.e. set such that the d-c.e. set D ⊕ A is c.e. relative to X (the existence
of such a set follows from the unpublished result of Lachlan mentioned above; we will consider it in
detail in Sec. 4.4). If X �≡T A, then one of the following possibilities holds.

Case 1. A <T X ≤T D ⊕ A. Let x = deg(X) and a = deg(A). By the Sacks splitting theorem
(see [73]), the degree x is splittable in c.e. degrees avoiding the upper cone of a: x = x0 ∪ x1,
a �≤ xi, i = 0, 1. It is clear that at least one of the c.e. degrees x0 and x1 is incomparable with a;
a contradiction.

Case 2. ∅ <T X <T A. This case is impossible due to the following theorem.

Theorem 2.3 (Arslanov, Kalimullin, and Lempp [11]). Let D and A be d-c.e. sets and let X be a
c.e. set such that A <T D, X ≤T D, A �≤T X, and A and D be c.e. relative to X. Then there exist a
d-c.e. set U such that U ≤T D and U |T A.

Since the cases 1 and 2 are impossible, it follows that X ≡T A and, consequently, A has a c.e.
degree such that deg(D ⊕A) is c.e. relative to this degree.

Remark 2.4. In the conditions of Theorem 2.1 for the degree deg(D⊕A), there exists a unique c.e.
degree deg(A) with this property. Namely, if for some c.e. set U such that ∅ <T U <T D⊕A we have
(∀ d-c.e. set V )[V ≤T D ⊕A→ U ≤T V ∨ V ≤T U ], then U ≡T A.

Proof. To the contrary, assume that this assertion is invalid. Then either A <T U or U <T A. In
both cases we have a contradiction with the Sacks splitting theorem (with avoiding the upper cone of
degrees). �
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Theorem 2.5 (Arslanov, Kalimullin, and Lempp [11]). There are no 2-c.e. degrees f > e > d > 0
such that for any 2-c.e. degree u the following assertions hold :

(i) if u ≤ f , then either u ≤ e or e ≤ d ∪ u, and
(ii) if u ≤ e then either d ≤ u or u ≤ d.

Proof. By the contrary, assume that such degrees f > e > d > 0 exists. Due to the observation after
Corollary 2.2, the degree d must be c.e. Let f ′ ≤ f and e′ ≤ e be c.e. degrees such that f and e are
c.e. relative to f ′ and e′, respectively. Consider the degree x = d∪ e′ ∪ f ′. It is clear that d ≤ x ≤ f .

Note that x is computably enumerable. By item (i), we have either x ≤ e or e ≤ d ∪ x = x. In
the first case, a splitting of x with avoiding the upper cone of d provides a c.e. degree incomparable
with d, which leads to a contradiction. Thus, e < x, but then e and x are enumerable relative to d,
and applying Theorem 2.3, we get a 2-c.e. degree, which is between d and f and incomparable with
e, which leads to a contradiction again. �

2.2. Generalization to higher levels. Now a natural question arises about the existence of 3-c.e.
sets F , E, and D such that ∅ <T D <T D⊕E <T D ⊕E ⊕ F , and for any 3-c.e. set U , the following
assertion holds: if U ≤T D ⊕ E ⊕ F , then either D ⊕ E ≤T U or U ≤T D ⊕ E, and if U ≤T D ⊕ E,
then either D ≤T U or U ≤T D. (In this case, we say that the degrees of the sets D, D ⊕ E, and
D ⊕ E ⊕ F form the 3-bubble.)

A positive answer to this question allows one to construct a Σ0
2-formula which differs from the

semilattices of 2-c.e. and 3-c.e. degrees since Theorem 2.5 mentioned above implies that this property
does not hold in the semilattice of 2-c.e. degrees.

Theorem 2.10 (and Proposition 2.9) imply that the answer to this question is positive. First, we
state a necessary definition.

Definition 2.6. Let 3-c.e. degrees f , e, and d be such that f > e > d > 0 and for any 3-c.e. degree
u the following conditions hold:

(i) if u ≤ f , then either u ≤ e or e ≤ d ∪ u, and
(ii) if u ≤ e, then either d ≤ u or u ≤ d.

In this case, we say that the degrees d, e, and f form a weak 3-bubble.

Also we use the following result obtained by M. M. Arslanov jointly with American mathematicians
G. LaForte and T. Slaman.

Theorem 2.7 (Arslanov, LaForte, and Slaman [12]). Let C be an ω-c.e. set and let a set A⊕WA be
c.e. relative to the c.e. set A. If C ≤T A⊕WA, then there exists a d-c.e. set D such that C ≤T D ≤T

A⊕WA.

Corollary 2.8 (Arslanov, LaForte, and Slaman [12]). Any ω-c.e. degree, which is 2-CEA degree, is
a d-c.e. degree.

Now we prove the following assertion.

Proposition 2.9. Any weak 3-bubble, which is formed by 3-c.e., 2-c.e., and c.e. degrees f > e > d,
is a 3-bubble.

Proof. Assume that a weak 3-bubble is formed by 3-c.e., 2-c.e., and c.e. degrees f > e > d. To the
contrary, assume that there exists a 3-c.e. degree f1 < f which is incomparable with e and d.

The degree f1 cannot be a 2-c.e. degree; otherwise, the degree f1 ∪ d also must be a 2-c.e. degree.
Since, clearly, f1 ∪ d > e, the degrees f1 ∪ d > e > d form a weak 3-bubble, which cannot be valid
due to Theorem 2.5.

Thus, the degree f1 is a properly 3-c.e. degree. However, then the degrees of Lachlan’s sets (which
will be introduced in Sec. 4.4) for this degree must be less than e (otherwise, we get a 2-c.e. degree
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incomparable with e and d, a contradition). Denote by e1 the degree of some Lachlan’s set for a 3-c.e.
set from f1. It cannot be ≥ d (otherwise, f1 ≥ d too), then e1 < d.

Consider v = f1 ∪ d. The degree v is computable enumerable relative to d and, consequently, is a
2-c.e. degree (see Corollary 2.8 of Theorem 2.7), which cannot be valid (since f1 ∪ d > e > d form a
weak 3-bubble). Thus, there is no a 3-c.e. degree, which is incomparable simultaneously with e and d.
�

Theorem 2.10 (Arslanov, Kalimullin, and Lempp [11]). There exists a 3-c.e. degree f , a d-c.e. de-
gree e, and a c.e. degree d which form a weak 3-bubble.

Corollary 2.11. D2 �≡ D3 at Σ0
2-level.

Proof. The following Σ0
2-formula ϕ is valid in D3 and is invalid in D2:

ϕ
.
= (∃d > 0)(∃e > d)(∃f > e)

{
(∀u ≤ f)[u ≤ e ∨ e ≤ u] & (∀u ≤ e)[u ≤ d ∨ d ≤ u]}. �

This result disproves the Downey conjecture (see [29]) about the elementarily difference of these
structures.

2.3. Splitting into incomparable degrees. In what follows, we will use various methods of
splitting of n-c.e. degrees into two incomparable degrees; we start from consideration of these questions.

Definition 2.12. A splitting of a degree d is pair of degrees d0 and d1 such that d0,d1 < d and
d = d0 ∪ d1. We say that it is a splitting above a degree a < d if a ≤ d0,d1. Eventually, a splitting of
d into d0 and d1 is a splitting avoiding the upper cone of degrees of b if b �≤ di, i ≤ 1.

In the semilattice of c.e. degrees, the first results about splitting belong to Sacks and Robinson.
In [73], Sacks established that each c.e. degree a > 0 is splittable into two c.e. degrees avoiding the
upper cone of degrees of b for any Δ0

2-degree b > 0. In [70], Robinson proved that each c.e. degree
a > 0 is splittable into two low c.e. degrees above any low c.e. degree. Later, Lachlan [55] obtained
the following results which is known as “Lachlan’s Monster Theorem” due to highly intricacy of its
proof (in this work, Lachlan first used 0′′′-priority method): there exist c.e. degrees a < b such that b
is not splittable in c.e. degrees above a. Harrington showed (see [43]) that the degree b can be taken
as 0′ here.

Below in Theorem 2.13 we will see that a splitting of any d-c.e. degree b in d-c.e. degrees is possible
above any c.e. degree a < b.

Let a > 0 be an n-c.e. degree for some n > 1 and b be a c.e. degree such that b < a. Since a is c.e.
relative to some (n − 1)-c.e. degree a0 < a, by the Sacks splitting theorem relativized to a0 ∪ b < a,
the degree a is splittable into two Δ0

2-degrees above b. Items (b) and (c) of Theorem 2.13 state that
such splitting is possible above low d-c.e. degrees within d-c.e. degrees.

Theorem 2.13.

(a) Each d-c.e. degree a is splittable in d-c.e. degrees above any c.e. degrees b < a (Cooper [22] for
the case b = 0 and Cooper and Li [25] for the general case);

(b) any c.e. degree a is splittable in d-c.e. degrees above any low d-c.e. degrees b < a (Arslanov,
Cooper, and Li [9, 10]); moreover,

(c) any d-c.e. degree d > 0 is splittable in d-c.e. degrees above some low d-c.e. degree b < d (Li [63]);
however,

(d) there exists a d-c.e. degree d such that 0′ is not splittable even in ω-c.e. degrees above d (Cooper,
Harrington, Lachlan, Lempp, and Soare [23, 24]).

Earlier, Cooper [21] proved that density and splitting properties can be combined in low2 n-c.e.
degrees. It is known (Shore and Slaman [78]) that low2 c.e. degrees also can be split in R above any
c.e. degree, which is below the given one. This and other structural properties, which are similar for
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the partial orders of low2 c.e. and low2 n-c.e. degrees for n > 1, allowed Downey and Stob [32] to
conjecture that the ordering of low2 d-c.e. degrees should be equivalent to the ordering of low2 c.e.
degrees. Later, this conjecture was disproved by Yamaleev [88].

For the case of low3 n-c.e. degrees, Cooper and Li [26] established the following result.

Theorem 2.14. For any n > 1, there exist a low3 n-c.e. degree a and a c.e. degree b, 0 < b < a,
such that for any splitting of a into n-c.e. degrees a0 and a1, at least of the degrees a0 or a1 is above
b. (Thus, a cannot be split avoiding the upper cone of degrees of b.)

Since in R such splitting of low3 c.e. degrees always can be done by avoiding a given cone of degrees,
it follows that these two orderings are not elementarily equivalent.

Theorem 2.15 (Shore and Slaman [79]). Let d, a, and b be such that d is an n-c.e. degree for some
n ≥ 1 and a and b be Δ0

2-degrees such that a < d and a �≥ b. Then d is splittable in Δ0
2-degrees above

a avoiding the upper cone of b.

It is clear that the last result cannot be strengthened considering the splittings in d-c.e. degrees (it
was proved in [26] that it cannot be done even for a = 0). Yamaleev [87] proved that such a splitting
is possible for a = 0 if the degree d is a properly d-c.e. degree and the degree b is noncomputable
Δ0

2-degree such that there are no c.e. degrees between d and b.
Theorem 2.13 implies that Theorem 2.15 cannot be strengthened considering the splittings of d in

d-c.e. degrees; this it cannot be done even for b = 0′. Below we put Theorem 4.1 of Yamaleev [87],
where it is obtained that such splitting of d is possible if a = 0, the degree d is properly d-c.e. degree,
and b < d is a noncomputable Δ0

2-degree such that there are no c.e. degrees between d and b.

3. Model-Theoretic Properties

3.1. Bounded theories. We saw that there is a bunch of results about the investigation of the
structural theory of (Turing) degrees of undecidability which contain sets from different levels of
the Ershov hierarchy. The next natural step should be a systematic investigation of model-theoretic
properties of these structures; however, not much work was done in this area. Except for the above-
mentioned results of Arslanov, Downey, and other specialists about elementary differences of the
semilattices of c.e. degrees and of degrees from the levels n, n > 1, of the Ershov hierarchy, there are
the following several great achievements obtained in this direction during these years:

(i) the set of n-c.e. degrees in signature {≤} does not form a Σ1-substructure of m-c.e. degrees for
all n and m, where 1 ≤ n < m (Cai, Shore and Slaman [16]);

(ii) for any m ≥ 1, partial orderings of lown c.e. and lowm d-c.e. degrees are not elementarily
equivalent (Yamaleev [88]. For m = 1, this result was obtained independently also by Faizrah-
manov [41]).

Despite a lot of effort, there are several natural questions which are still not answered. These include,
for example, the following questions:

(i) (un)decidability of bounded theories of n-c.e. (n ≥ 1) degrees;
(ii) the problem of definability (either with parameters or not) of c.e. degrees in the structures of

n-c.e. degrees for n > 1 (in the general case, it is the problem of definability of m-c.e. degrees in
structures of n-c.e. degrees for 1 ≤ m < n).

The problem of definability (either with parameters or not) of n-c.e. degrees for some (all) n > 1
in Δ0

2-degrees is also uninvestigated. It is interesting to find natural classes of n-c.e. degrees that are
definable with parameters in Δ0

2-degrees. Also, there are unknown answers for the following questions:
Does a single n-c.e. degree exist, n ≥ 1, which is definable in Dn and which is different from 0 and 0′?
Assume that Dn, n ≥ 1, is fixed. Does a class of m-c.e. degrees (1 ≤ m ≤ n) C and n-c.e. degrees a, b
exist such that |C ∩ [a, b]| = 1?
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• The problem of elementarily equivalence of semilattices Dn and Dm, for m �= n and n,m ≥ 3,
is still open.

We assume that theories of these semilattices are pairwise different; moreover, evidence of the
differences can be obtained from a natural generalization of the above-mentioned sentence (which was
used in the proof of the difference of semilattices D2 and D3)

(∃d > 0)(∃e > d)(∃f > e)
{
(∀u ≤ f)

[
u ≤ e ∨ e ≤ u ∪ d

]
& (∀u ≤ e)

[
u ≤ d ∨ d ≤ u

]}
to the corresponding levels of the hierarchy. However, the proof of this claim can be quite intricate if
one follows the way of simple generalization of the proof of Arslanov, Kalimullin, and Lempp [11].

We can try to enhance this conjecture if we require that the existential quantifier from the previous
formula ϕ chooses same elements from the structures Dn and Dn+1: if Dn |= ∀x̄ψ(ā, x̄) for some ā
from Dn then also Dn+1 |= ∀x̄ψ(ā, x̄).

Now we will see that the enhanced version of the conjecture does not hold.

Definition 3.1. A substructure L1 of a structure L2 is its Σk-substructure for some k ≥ 1 if for any
Σk-formula ϕ(x1, . . . , xr) and for any a1, . . . , ar ∈ L1,

L1 |= ϕ(a1, . . . , ar) ⇐⇒ L2 |= ϕ(a1, . . . , ar).

We denote it by L1 �Σk
L2.

In 1983, Slaman established that c.e. degrees do not form a Σ1-substructure of Δ
0
2-degrees. Namely,

he proved that the sentence

ϕ(a, b, c) = ∃x(0 < x < a & c �≤ b ∪ x),

where a, b, and c are c.e. degrees, is valid in Δ0
2-degrees and invalid in c.e. degrees.

Since c.e. degrees are in particular n-c.e. degrees for any n > 1, it immediately follows that Dn ��Σ1

D(≤ 0′).
Later, Yang and Yu [89] proved the following theorem, which implies that the c.e. degrees do not

form a Σ1-substructure of 2-c.e. degrees.

Theorem 3.2. There exists c.e. degrees a, b, c, and e (parameters) such that

(i) there exists a 2-c.e. degree d < a such that d �≤ e and c �≤ d ∪ b;
(ii) for any c.e. degree w < a, we have either w ≤ e or c ≤ w ∪ b.

Finally, Dn is not a Σ1-substructure of Dn+1 for any n > 1. It was obtained recently by Cai, Shore,
and Slaman [16].

Theorem 3.3 (Cai, Shore and Slaman [16]). For any n ≥ 1, there exist c.e. degrees g, p, q, n-c.e.
degree a, and (n+ 1)-c.e. degree d such that

(1) d ≤ a, q �≤ d ∪ p and d �≤ g;
(2) for any n-c.e. degree w ≤ a, we have either q ≤ w ∪ p or w ≤ g.

It follows from this theorem that the sentence

ϕ(a,g,p, q) = ∃w
(
w ≤ a & q �≤ w ∪ p & w �≤ g

)
,

where g,p, q are c.e. degrees and a is an n-c.e. degree, is valid in the (n + 1)-c.e. degrees and invalid
in the n-c.e. degrees. Thus, Dn ��Σ1 Dn+1 for any n ≥ 1. Again, since n-c.e. degrees are m-c.e. degrees
for any m > n, we have that Dn ��Σ1 Dm for any n < m.

By Theorem 2.10, there exist a c.e. degree d > 0 and a d-c.e. degree e > d such that each 3-c.e.
degree u ≤ e is comparable with d. Is it possible to enhance this sentence in the following way: do a
c.e. degree d > 0 and a d-c.e. degree e > d exist such that any n-c.e. degree u ≤ e for any n < ω is
comparable with d?
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If the answer is positive, then we get a quite interesting property of degrees from finite levels of
the Ershov hierarchy. On the other hand, in the case of a negative answer we obtain the following
argument: let d > 0 and e > d be a c.e. degree and a d-c.e. degree, respectively, and let n ≥ 3 be the
greatest natural number such that each n-c.e. degree u ≤ e is comparable with d and there exists an
(n+ 1)-c.e. degree v ≤ e incomparable with d. Consider the following Σ1-sentence:

ϕ(x,y,z) ≡ ∃u
(
x < y < z & u ≤ z & u �≤ y & y �≤ u

)
.

If d and e are the above-mentioned degrees and n is a natural number which exists according to the
negative answer, then we have Dn+1 |= ϕ(0,d,e) and Dn |= ¬ϕ(0,d,e). Thus, in this case ϕ(0,d,e)
is another sentence which shows that Dn is not a Σ1-substructure of Dn+1; moreover, it has a smaller
number of parameters.

Thus, we see that either a positive or negative answer for the posed question leads to interesting
corollaries.

We assume that the following conjecture holds.

Conjecture 3.4. For any n ≥ 1, there exists an n-c.e. degree d and an (n+1)-c.e. degree e such that
0 < d < e and for each (n+1)-c.e. degree c ≤ e, either c ≤ d or d ≤ c, but there exists an (n+2)-c.e.
degree u ≤ e such that u is incomparable with d.

Moreover, probably this conjecture holds in a stronger version (see the previous discussion of this
part of the conjecture):

For any n ≥ 2, there exist a c.e. degree d > 0 and a d-c.e. degree e > d such that each n-c.e. degree
u ≤ e is comparable with d. (For n = 2, this is Theorem 2.1.)

All known so far sentences (which use the language of partial ordering), which are valid in n-c.e.
degrees and invalid in (n + 1)-c.e. degrees, for some n ≥ 1, belong to the level ∀∃ or to higher levels.
These and other observations allow one to state the following interesting conjecture.

Conjecture 3.5. For any n ≥ 1 and for all ∃∀-sentences ϕ, we have

Dn |= ϕ ⇒ Dn+1 |= ϕ

(i.e., ∃∀-theory of n-c.e. degrees is a subtheory of ∃∀-theory of (n+ 1)-c.e. degrees).

When one passes from the structure R(≤,∪) to the structure D2(≤), Σ1-formulas become Σ2-
formulas, which evidences the naturalness of this conjecture.

The following conjecture is an enhancement of the previous one.

Conjecture 3.6. For any n ≥ 1, Dn is an Σ1-substructure of Dn+1.

Indeed, assume that Dn is a Σ1-substructure of Dn+1, but also there exist a Σ2-formula

ϕ = ∃x∀yψ(x, y),

which is valid in Dn and invalid in Dn+1. Then

¬ϕ = ∀x∃yψ(x, y)

is valid in Dn+1. Then as x we take a cortege of n-c.e. degrees a, which provides the validity of ϕ
in Dn, and consider the Σ1-formula

θ = ∃yψ(a, y).
We obtain that θ is valid in Dn+1 on n-c.e. parameters and also Dn is a Σ1-substructure of Dn+1.
Then θ is valid in Dn. However, this means that on the degrees a the formula ∃yψ(a, y) is also valid
in Dn+1; a contradiction.
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3.2. The problem of decidability of bounded fragments of theories. The undecidability
(and also the nonaxiomatizability) of the elementary theory of D was established by Lachlan [53].
For the theory of D(≤ 0′), this was done independently by Epstein [34] and Lerman [59]. Harrington
and Shelah [44] proved that the theory of R is also undecidable. Finally, recently Cai, Shore, and
Slaman [16] obtained undecidability of elementary theories of Dn for any n > 1.

A simple finite injury priority argument allows one to embed any finite partial ordering in the c.e.
degrees preserving the order. It follows the decidability of ∀-theories of all these structures in the
signature ≤.

The undecidability of the ∀∃∀-theories for D, D(≤ 0′), and R in the signature ≤ was established
by Shmerl (for the theories of D and D(≤ 0′)) and by Lempp, Nies, and Slamen [58] (for the theory
of R).

The ∀∃-theories of D and D(≤ 0′) found out to be decidable. These facts were proved by Shore [76]
and Lerman and Shore [61], respectively.

3.3. Properties of embeddability of finite lattices. For a given finite lattice L, it is easy to
construct a Σ0

2-sentence, which is valid in Dn if and only if L is embeddable into Dn. For instance,
the diamond embedding in the structure of d-c.e. degrees is equivalent to the validity of the following
Σ0
2-sentence:

∃a, b, c, d
{
(a < b, c < d) & ∀x(x ≤ b, c → x ≤ a) & (x ≥ b, c → x ≥ d)

}
.

However, the problem of description of finite lattices embeddable into Dn, n ≥ 1, is even more difficult.
There are a lot of publications devoted to this problem (see the bibliography, e.g., in the paper of
Lerman [60]), but it is doubtful that the final result will be obtained soon.

It is also known (Lerman [59]) that the validity of a Σ0
2-sentence in Dn, n ≥ 1, is equivalent to the

following recognition problem: for a given set of pairs of finite lattices {P,Qi}, 1 ≤ i ≤ m, where Qi is
an extension of P as a partial ordering, and for a given embedding of P into Dn, dicide whether there
exists an embedding of some Qi into Dn, which extends the embedding of P. For some special cases,
the problem has a positive solution (see, e.g., Slaman and Soare [80, 81] for the case m = 1, n = 1);
however, it is still far away from the general solution. Now we consider an example which shows the
difficulty of the problem for D2 even for m = 1.

Assume that P = {a, b, c | a < b < c}, Q = {a, b, c, d | a < b < c, a < d < c, b �≤ d, d �≤ b}. It
is clear that Q extends P; thus, assume that f : P �→ D2 is an embedding of P into D2 such that
f(a) = 0. However, we saw in Theorem 2.1 that there exist a c.e. degree b > 0 and a d-c.e. degree
c > b such that for any d-c.e. degree d the following condition holds: if d ≤ c, then either b ≤ d or
d ≤ b. As we can see, an embedding of Q (which extends P) into D2 may not exist.

Which finite lattices can be embedded into the structures of n-c.e. degrees, n ≥ 1? Downey [29]
assumed that all finite lattices are embeddable into the d-c.e. degrees preserving 0 and 1.

A positive solution of the problem of embedding of finite lattices can help one to obtain a proof of
decidability of the two-quantifier theory of n-c.e. degrees.

Problem of extending of embeddings. Given two finite partial-ordered sets P ↪→ Q, is it valid that any
embedding of P into the n-c.e. degrees can be extended to an embedding of Q?

• The problem has a positive solution for |P| = 2 and |Q| < 5.
• There exist examples of |P| = 2 and |Q| = 5 with a negative solution.
• There exists an example of |P| = 3 and |Q| = 4 with a negative solution.

Despite a lot of effort, there are is still open several natural questions about the structure of
semilattices of Dn for n > 1 and about their algorithmic complexity. The most important problems
are the following.
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A. Problem of description of embeddable finite p.o. into the degree structures R and Dn, n > 1 (with
preserving the corresponding relations). The most interesting is the finding of an “effective” description
of finite lattices embeddable into these structures preserving the lattice operations. It looks like a
solution of this problem is one of the main steps in the proof of decidability of ∀∃-theories of these
degree structures, which is another important open problem in the computability theory. The point
is that for a given finite lattice L, it is possible to construct a ∃∀-sentence ϕ, which is valid in Dn if
and only if L is embeddable into it. For instance, an embedding of the 4-element lattice {0, a, b, 1, a �≤
b, b �≤ a, a∨ b = 1, a∧ b = 0} into Dn with preserving of the least and greatest element is equivalent
to the validity of the following Σ0

2-sentence in Dn:

∃a, b, c, d ∀x
{
(a < b, c < d) & (x ≤ b, c → x ≤ a) & (x ≥ b, c → x ≥ d)

}
.

As was pointed out in [56], if it is possible to get such a description of lattices embeddable into R,
then with a technique developed in the works of Soare and Slaman [81] and Ambos-Spies, Jockusch,
Shore, and Soare [1], it would be possible to obtain a proof of decidability of ∀∃-theory of R.

B. Recognition problem of possibility of the embedding extensions: Does an algorithm exist which for a
given finite partially ordered sets P ↪→ Q0, . . .Qn, n ≥ 0, allows one to decide whether any embedding
f : P → Dn can be extended to an embedding g : Qi → Dn for some i ≤ n? (It is clear that here i
depends on the choice of an embedding of P into Dn.)

Lerman [59] noted that this problem has a positive solution for R (and for Dn, n ≥ 1) if and only
if the ∀∃-theory of R (of Dn, respectively) is decidable.

Moreover, almost all significant results about the structure of semilattices R and Dn, n > 1, can be
considered as theorems about embeddings or extensions of embeddings of some lattices. For instance,
the result of above mentioned Theorem 2.1 about the existence of double bubble can be posed as
follows: any embedding of the 3-element p.o. set L = {0 < a < b} into R can be extended to an
embedding of the p.o. set

L′ =
{
0, a, b, d | 0 < a < b, 0 < d < b, a �≤ d, d �≤ a

}
,

however, there exist an embedding of L into D2 such that it is impossible to extend it to an embedding
of L′.

Nowadays there are a lot of results on the solution of these problem for the semilattice R. The most
interesting works among them (except for the above mentioned paper) are the works of Ambos-Shies
and Lerman [2, 3], where conditions were found that are sufficient for the impossibility of embedding
(as a Π2-sentence), and conditions that are sufficient for the possibility of embedding (as a more
complicated Π3-sentence) of finite lattices into R, and also the work of Slaman and Soare [81], where
they provided a full solution of the problem of extendability of an embedding into R for the case where
the extending family of sets consists of one set.

The sufficient condition of Ambos-Spies and Lerman about the impossibility of embedding is as
follows: L satisfied this condition if it contains the critical Slaman triple a, b, c ∈ L and also two other
incomparable elements p, q ∈ L such that a ≤ p ∧ q ≤ a ∨ c ≤ q. (Elements a, b, c ∈ L form a critical
Slaman triple if they are pairwise incomparable and a ∨ c = b ∨ c and a ∧ b ≤ c.)

In particular, it follows that the 8-element lattice S8, which consists of 0 and 1 and also of pairwise
incomparable element a, b, c and p, q such that

a ∨ b < p, a ∨ b < q, p ∧ q = a ∨ b = a ∨ c = b ∨ c, p ∨ q = 1, a ∧ b = a ∧ c = b ∧ c = 0,

is not embeddable into R (this results was obtained earlier by Slaman and Soare [81]). Here a, b, and
c form a critical Slaman triple, and p and q are those two auxiliary elements, which appears in the
theorem of Ambos-Spies and Lerman.

Respectively, the theorem (more precisely, criterium) of Slaman and Soare [81] can be presented as
follows: Assume that P and Q are finite p.o. sets with 0 and 1 such that Q extends P, if P and Q
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satisfy at least one of the following conditions (1) or (2); then there exists an embedding of P into R
such that it cannot be to the embedding of Q into R:(

∃x, y ∈ Q
) [

x �≥ y & B(A(y)) ⊆ B
(
A(B(x))

)]
, (1)(

∃x ∈ Q− P
) [

T(x) �= ∅ & B
(
A(T(x) ∪B(x))

)
�⊆ B(x)

]
, (2)

where for S ⊆ Q,

A(S) =
{
a ∈ P | (∀x ∈ S)(a ≥ x)

}
,

B(S) =
{
b ∈ P | (∀x ∈ S)(x ≥ b)

}
,

T(S) =
{
z ∈ Q− P | x > z & B(x) �⊆ B(A(z))

}
.

Otherwise, any embedding of P into R can be extended to the embedding of Q into R.
For the semilattices Dn, n ≥ 1, these problems were almost untouched (if one does not take into

account the structural theorems, which as can be considered as results about embeddings and the
embedding extensions as we mentioned above). There is still the open Downey’s conjecture about
embedding of any finite lattice into the semilattice of degrees of D2 with preserving 0 and 1. This
theorem implies that it is valid at least for the lattice S8 (this was proved also by G. Wu, a private
communication).

Theorem 3.7. The lattice S8 is embeddable into D2 with preserving 0 and 1.

The main part of the proof of the sufficient conditions of Slaman and Soare [81] about the existence
of nonextendable embeddings is the following theorem.

Theorem 3.8. There exist incomparable c.e. degrees a and b such that for any c.e. degree z < a
either z < b or z ∪ b = 0′.

For transferring of the Slaman–Soare conditions about the existence of nonextendable embeddings
to the case of n-c.e. degrees, n > 1, the following fact is important: in the previous theorem the degrees
a and b should be c.e. degrees, and should go through the n-c.e. degrees.

In the semilattices Dn, n > 1, this theorem of Slaman and Soare holds in more general form. Namely,
Li and Yi in [64] constructed d-c.e. degrees which form so called “two-sided” strong minimal pair in
the n-c.e. degrees, n > 1, i.e., d-c.e. degrees a0 and a1 such that for each n-c.e. degrees z > 0, if
z < ai, then z ∪ a1−i = 0′. It easily follows that the degree a0 can be constructed as a c.e. degree;
however, it requires changing the condition “two-sided” of the strong minimal pair into “one-sided.”

Theorem 3.9 (Li and Yi [64]). There exist a c.e. degree a and a d-c.e. degree b such that a ∩ b = 0
and for each nonzero n-c.e. degree z > 0 either z ≤ b or z ∪ b = 0′.

We obtained that for such a and b, there also exist two-sided minimal pairs.

Theorem 3.10. There exist incomparable a c.e. degree a0 and a d-c.e. degree a1 such that a0∩a1 = 0
and for each n-c.e. degree x > 0, if x < ai, then x ∪ a1−i ≥ ai.

In [15], the authors left open the question about the existence of strong two-sided minimal pairs of
c.e. degrees in the semilattice R. We can add to it the following question.

Question 3.11. Do c.e. degrees exist that form a strong two-sided minimal pair in the n-c.e. degrees
for each (or at least for some) n > 1? In the other words, is it possible in the previous theorem to
make the d-c.e. degree a1 computably enumerable?

The study of one-element extensions of embeddings of finite p.o. sets presents fundamental impor-
tance. The proof of the following theorem can be obtained by applying the above-mentioned criterion
of Slaman and Soare to such extensions.
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Theorem 3.12 (Arslanov [8]). Assume that P is a finite lattice and Q = P ∪ {y} is its one-element
extension as a partial order. Then any embedding of P as a lattice into R can be extended to an
embedding of Q as a partial order if and only if for each x ∈ P the following condition holds:

y ≮ x→ ∃z ∈ P
(
z �≤ x & ∀v ∈ P

(
v > y → v ≥ z

))
,

x ≮ y → ∃z, u ∈ P
(
z ≤ x & z �≤ u & ∀v ∈ P

(
v < y → v ≤ u

))
.

Remark 3.13. This assertion is also valid if P is a p.o. set with 0 and 1 (not necessary lattice).

Since there exists a lattice P and its extension Q such that any embedding of P into R can be
extended to the embedding of Q (as partial order), but there exists an embedding of P into D2 such
that Q cannot extend it (the minimal example is P = {a, b | a < b}, Q = {a, b, c | a < c < b}), then
the conditions of the previous theorem are not sufficient for the existence of one-element extensions
in D2.

On the other hand, there is no evidence that these conditions are not necessary within D2. Moreover,
all known examples confirm the following conjecture.

Conjecture 3.14. Assume that P is a finite lattice and Q is its one-element extension. If any em-
bedding of P into D2 can be extended to the embedding of Q, then it holds also for the embedding of
P into R.

Remark 3.15. We saw above that there exists a c.e. degree a, 0 < a < 0′, such that a ∪ b < 0′ for
any c.e. degree b < 0′ (Cooper and Yates, unpublished), but a ∪ d = 0′ for some d-c.e. degree d < 0′
(Arslanov [5, 6]). It follows that the previous conjecture does not hold if Q is the semilattice extension
of P (with preserving operation ∨).

3.4. Isomorphic copies. Some model-theoretic properties of the semilattices Dn, n ≥ 1, as well as
of the lattices of the n-c.e. sets Cn, n ≥ 1 (C1 = C denotes the lattice of all c.e. sets), can be deduced
from the corresponding results for the semilattices R and C, which have been studied much better.
For instance, similarly to the computably enumerable case, the following result can be obtained by
combining the well-known Lachlans theorems [51] about hyperhypersimple sets (see, e.g., Rodgers [71,
Theorem 12-XIX]) and about boolean algebras.

Theorem 3.16. For each n ≥ 1, the lattice Cn of all n-c.e. sets does not have a computable presen-
tation, i.e., in particular, it is not isomorphic to any computable linear ordering.

Proof. For n = 1, the results follows immediately from the Lachlan theorem [51], which asserts that
any Σ0

3-boolean algebra is isomorphic to the boolean algebra of c.e. supersets of some hypersimple set,
and from the Feiner theorem [42] about the existence of a Σ0

3-boolean algebra which does not have a
computable presentation.

Now assume that n ≥ 2 and A is a hyperhypersimple set. If A ⊆ B, B is an n-c.e. set, and the
difference B − A is infinite, then it is co-c.e. (i.e., its complement is c.e.). Indeed, B − A must be a
2k-c.e. set for some even 2k (otherwise, ω −A is not immune) and

B −A = (A1 −A2) ∪ (A3 −A4) ∪ . . . (A2k−1 −A2k)

for some c.e. sets A1 ⊃ A2 ⊃ . . . ⊃ A2k. The Lachlan theorem about the hyperhyperimmune difference
of c.e. sets asserts that if c.e. sets X and Y are such that X ⊃ Y and X −Y hyperhyperimmune, then
there exists a computable set R such that X − Y ⊆ R ⊆ X. It follows that there exist computable
sets R1, R2, . . . Rk such that

A2i−1 −A2i ⊆ Ri ⊆ A2i−1, A ∪ {ω −B} = B −A = R1 ∪
{ k⋃

i=1

(
A2i ∩ {∪m>2iRm}

)}
.
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Now the above-mentioned Lachlan theorem about hyperhypersimple sets implies that the set B is also
computably enumerable. Thus, the boolean algebras C(A) and Cn(A) of c.e. and n-c.e., respectively,
sets (by modulo of finite differences) of the hyperhypersimple set A coincide. �

In the study of isomorphic copies of Dn (briefly, degrees of presentations of Dn), the following result
of Shore [77] is useful (the result was obtained by him for c.e. degrees and in more general form).

Theorem 3.17. Let A be a Π0
2-set. There exists a partial lattice (i.e., an upper semilattice where not

all pairs have the greatest lower bound) L such that

(1) L is isomorphically embeddable into any semilattice Dn, n ≥ 1;
(2) if L is isomorphically embeddable into some semilattice S, then the set A is computable relative

to the (Turing) jump of any presentation of S.

In particular, A is computable relative to the jump of any presentation of each semilattice Dn, n ≥ 1.
Thus, the following assertion holds.

Corollary 3.18. There is no semilattice Dn, n ≥ 1, that has a computable presentation. Moreover,
the degree of any presentation of each of them is greater than or equal to 0′.

The proof of the following theorem can be obtained with help of the proof of the similar result
obtained by Nies, Shore and Slaman [68] for the c.e. degrees.

Theorem 3.19. Assume that n > 1. Then for any n-c.e. degree a > 0, the semilattice Dn(≤ a) does
not have a computable presentation.

Sketch of the proof. The proof of the fact (see [68]) that semilattices of c.e. degrees below a given
c.e. degree c > 0 do not have computable presentation can be adapted to the case of n-c.e. degrees
below given n-c.e. degree for an arbitrary n > 1: the operations ∪ and ∩ applied to c.e. degrees give
c.e. degrees, even if they are defined for all degrees ≤0′ (in particular, it holds for the n-c.e. degrees
for any n > 1). Then, the technique from Shore’s paper [77], where the results about embeddings of
so-called TRR-lattices into the c.e. degrees were obtained (they allow one to show that there is no a
computable presentation of the c.e. degrees), applied to the proof of Nies, Shore, and Slaman allows
one to do the same for the structures of n-c.e. degrees below given n-c.e. degree >0. �

The degree spectra of presentation of semilattices Dn, n ≥ 1, as well as of their fragments Dn(≤ a),
was not investigated at all.

The following theorem for the case n = 1 can be found in the work of Lerman, Shore, and Soare [62]
for the case n = 1; however, this proof is also valid in the general case.

Theorem 3.20. For any n ≥ 1, Dn is not countably categorical.

Proof. Lerman, Shore, and Soare [62] defined a countable set of pairwise nonisomorphic, finite partial-
lattices (where the greatest lower bound does not exist for some pairs) that are defined by three
elements and each of these lattices is embeddable into R, thus, into Dn for each n > 1.

Each such partial lattice produces a special 3-type, which can be realized within Dn. Now the
desired proposition follows from the characterization of ω-categorical theories (also known as the
Ryl-Nardzevsky theorem; see Ershov and Palutin [38]). �

4. Definability of the Degree Classes

4.1. Definability of m-c.e. degrees in semilattices of n-c.e. degrees for 1 ≤ m < n. Consider
in detail the problems of definability in semilattices of n-c.e. degrees. One of the possible methods of
the proof of definability of m-c.e. degrees in the n-c.e. degree structures for m < n is as follows:

(a) find a set S of m-c.e. degrees, which is infinite definable in Dn, and
(b) prove that the degrees from S generate the degrees Dm by using the operations ∪ and ∩.
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Theorem 4.1 (Yamaleev [87]). Let Turing degrees d and b be such that d is a proper d-c.e. degree
and let b be a Δ0

2-degree such that it is not c.e., b < d, and let the interval (d, b) not contain c.e.
degrees. Then d is splittable within d-c.e. degrees avoiding the upper cone of degrees for b.

Corollary 4.2. If d-c.e. degrees d > b are such that b is not c.e., then there exists a d-c.e. degree a
such that b < a ≤ d and a is splittable within d-c.e. degrees avoiding the upper cone of degrees for b.

Proof. If there exists a c.e. degree a such that b < a ≤ d, then the desired splitting of a exists by the
Sacks splitting theorem. If such a degree a does not exist, then d is splittable by Theorem 4.1. �

Let

ϕ(x)
.
= (∃b > x)(∀d)

[
x < d ≤ b → (∀d0,d1)

[
d = d0 ∪ d1 → x ≤ d0 ∨ x ≤ d1

]]
.

From the above it follows that D2 |= ϕ(a) ⇒ a is c.e. Therefore, the formula ϕ describes a definable
in d-c.e. degrees class S2, which consists only of c.e. degrees. An analysis of the proof of theorem of
Arslanov, Kalimullin, and Lempp allows one to see that this class contains infinitely many c.e. degrees.
Note also that S2 does not coincide with the class of all c.e. degrees. It follows from the existence of
nonisolating c.e. degree, i.e., a degree a such that for any d-c.e. degree d > a, there exists a c.e. degree
b such that d > b > a (Arslanov, Lempp, and Shore [13]).

Indeed, if D2 |= ϕ(a) for some c.e. degree a, then let b > a be a d-c.e. degree such that it is not
splittable avoiding the upper cone of degrees of a. Then between a and b there are no c.e. degrees,
except for a, i.e., a isolates b.

Thus, the set

S =
{
x ≥ 0

∣∣∣ (∃y > x∀z)
(
x < z ≤ y → (∀z0,z1)

(
z0 ∪ z1 = z & z0 | z1 → x ≤ z0 ∨ x ≤ z1

))}
consists only of c.e. degrees and is infinite and definable in D2 by the formula ϕ(x).

Now we assume that d is a properly d-c.e. degree. Then for any splitting of d into two d-c.e. degrees
d0 and d1, at least one of the degrees di, i ≤ 1, must possess the following property: For any d-c.e.
degree u, di ≤ u ≤ d, u is splittable into d-c.e. degrees avoiding the upper cone of degrees above di.

Otherwise, this means (by Theorem 4.1) that for each degree di, i ≤ 1, there is a c.e. degree between
di and d and, therefore, the degree d itself is computably enumerable (as a least upper bound of such
degrees).

Answers for the following question are still unknown. The above reasonings imply that a positive
answer for any of these questions means the definability of c.e. degrees in D2.

1. Is it true that each c.e. degree a > 0 is the least upper bound of two incomparable degrees
from S?

This question has a connection with the following one: Is it true that degrees from S are dense in
the c.e. degrees, i.e., is it true that for any two c.e. a < b, there exists some degree from S? A positive
answer for this question immediately gives a positive answer for question 1: in order to get it, we split
the c.e. degree a > 0 into two incomparable c.e. degrees a0 and a1 (this can be done by the Sacks
splitting theorem), and find the desired degrees bi ∈ S between the degrees a and ai, i ≤ 1. Thus, we
have a = b0 ∪ b1.

2. Is it true that for each c.e. degree a, there exists a splitting (within d-c.e. degrees) a0 and a1

such that for some d-c.e. degrees b0 and b1 such that ai < bi < a, the degree bi is not splittable
avoiding the upper cone of degrees of ai for each i ∈ {0, 1}?

4.2. New approach to the definability of m-c.e. degrees in semilattices of n-c.e. degrees
for 1 ≤ m < n. An investigation of the problem of definability of c.e. degrees in semilattices Dn,
n > 2, can be done also according to the following outline.
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1. Let 1 < n and let properly (n + 1)-c.e. degrees d and b be such that d > b and the interval (b,d)
does not contain n-c.e. degrees. Is it true that d is splittable within (n + 1)-c.e. degrees avoiding
the cone of degrees above b?

2. Is it true that each n-c.e. degree a is splittable into two (n + 1)-c.e. degrees a0 and a1 such that
there exist (n+ 1)-c.e. degrees b0 and b1, ai < bi < a, such that bi is not splittable in (n + 1)-c.e.
degrees avoiding the upper cone of degrees above ai for each i ∈ {0, 1}?
We assume that for each n ≥ 1, the following definable in Dn+1 set of (n+1)-c.e. degrees is infinite

and consists of n-c.e. degrees:

Sn =
{
x ≥ 0

∣∣∣ (∃y > x)(∀z)
(
x < z ≤ y → (∀z0,z1)

(
z0 ∪ z1 = z & z0 | z1 → x ≤ z0 ∨ x ≤ z1

))}
.

We also assume that this set of n-c.e. degrees in Dn+1 generates the whole class of n-c.e. degrees, and
thus for any n > 1, the n-c.e. degrees are uniformly definable in Dn+1.

Conjecture 4.3. We assume that the finite families of c.e. degrees are not definable without param-
eters in D2.

In order to prove this sentence for a given finite family M of c.e. degrees, one can try to construct
an automorphism of D2, which would leave M stable.

4.3. Definability and isolation properties. Now we consider a property of isolation from side
and discuss how it can be used in the solution of the definability problem.

Explicitly, this property was first distinguished in [86]; however, it was actively used in other degree
structures but did not receive enough attention in the Turing degrees. Implicitly this property was
used in [16, 89], where the authors established that Dn are not Σ1-substructure Dm for each n < m.
Restricting ourselves by 2-c.e. degrees, we recall that in Theorem 3.2, the following assertion was
proved: there exist c.e. degrees a, b, c, and e (parameters) such that

(i) there exists a 2-c.e. degrees d < a such that d �≤ e and c �≤ d ∪ b,
(ii) for each c.e. degree w < a, either w ≤ e or c ≤ w ∪ b.

Here all c.e. degrees below d are also below e. This suggested (see [86]) the following definition of
isolation of a degree d from side by a degree e.

Definition 4.4. The degree d is isolated in the class of degrees C from side by a degree e if d �≤ e
and for any degree c ∈ C, we have c < d→ c < e.

In what follows, we assume that the class C consists of c.e. degrees. Also, the isolated degree d
usually will a 2-c.e. degree, and the isolating degree e will be either c.e. or 2-c.e. degree. The above
definition is a generalization of the well-studied conception of isolation where the c.e. degree e must
be strictly below d.

Now we show how this notion of isolation from side can be used for the solution of the definability
problem. For the case of usual isolation, it is known that there exist isolated 2-c.e. degrees and not
isolated ones. So far, it is unknown whether it is true for the isolation from side.

Question 4.5. Is it true that any properly 2-c.e. degree d is isolated from side by some c.e. degree e?

Assume that the answer is positive. Let be d be a properly 2-c.e. degree. Then there exists a c.e.
degree e such that d �≤ e and all c.e. degrees below d are also below e. It is clear that this is valid for
all definable subclasses of c.e. degrees.

This property does not hold for c.e. degrees by the Sacks splitting theorem. However, in order to
obtain a formula that would distinguish all c.e. degrees among the 2-c.e. degrees, it is necessary that
all degrees that are involved in this use of the Sacks splitting theorem also be definable. As we saw
in the previous sections, potential candidates as such degrees could be, for instance, the centers of
double bubbles. For this reason, it is necessary that the centers of double bubbles be downward dense
and could avoid the lower cones of given 2-c.e. degrees. Thus, we pose it as the following conjecture.
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Conjecture 4.6. Let a formula ψ(x) be valid in D2(≤ 0′) if and only if x is the center of a double
bubble.

1. If d is a properly 2-c.e. degree, then

∃e
[
d �≤ e ∧ ∀w

(
ψ(w) ∧w < d −→ w < e

)]
.

2. If a is a c.e. degree, then (the quantifiers go though the 2-c.e. degrees)

∀e
[
a �≤ e −→ ∃w

(
ψ(w) ∧w < a ∧w �≤ e

)]
Thus, here we also deal with double bubbles and their distribution in the structure of 2-c.e. degrees.

Although the density problem was substituted by an easier density problem and by the isolation from
side, the first part of the question (about isolation from side of properly 2-c.e. degrees) can become
crucial.

4.4. Definability and relative enumberability. The properties of relative enumerability were
already used in Secs. 2.1 and 2.2. In this section, we consider them in detail, and also we consider
their possible applications for the definability problem. First, we recall the corresponding definition of
CEA-hierarchy.

Definition 4.7. A set A is a B-CEA set if B ≤T A and A is c.e. relative to B. Moreover, a set A
is an n-CEA set for n > 1 if A is a B-CEA set for some (n − 1)-CEA set B, and also A is a 0-CEA
set if it is computable. A degree a is an n-CEA degree if it contains an n-CEA set A. A degree a is a
b-CEA degree if some set A ∈ a is a B-CEA set for some B ∈ b.

Thus, we can see that the 1-CEA degrees are exactly the c.e. degrees. For the higher levels of the
hierarchy, the situation is more complicated and currently we know the following relations between
n-c.e. Turing degrees and n-CEA Turing degrees.

Theorem 4.8 (Lachlan, unpublished). For a given 2-c.e. degree d, there exist a c.e. degree e such
that d is an e-CEA degree.

In order to prove this theorem, we associate with each 2-c.e. set D = B1−B2 the c.e. set As(D) =
{〈s, x〉 : x ∈ Ds−D}. Obviously, As(D) ≤T D and D is c.e. in As(D); therefore, D is an As(D)-CEA
set. It is clear that the definition of As(D) depends on enumerations of the c.e. sets B1 and B2, and
we can uniformly find the c.e. index for As(D) from those of B1 and B2. However, the Turing degree
of As(D) is defined uniquely by the set D and does not depend on an enumeration of D. It follows
from the following proposition.

Proposition 4.9 (Ishmukhametov [46]). Let D = B1 − B2 be a 2-c.e. set and As(D) be the corre-
sponding associated set. If D is c.e. in a set B, then As(D) ≤T B.

Proof. Let D = dom(Φe(B)) for some e. For each 〈s, x〉, if x �∈ Ds, then 〈s, x〉 �∈ As(D). If x ∈ Ds,
then let t > s be a stage in an enumeration of D such that

— either x �∈ Dt (in this case, 〈s, x〉 ∈ As(D));
— or Φe(B,x) ↓ [t] (then 〈s, x〉 �∈ As(D)).

Note that for an n-c.e. set D, we can similarly define an (n − 1)-c.e. set As(D) ≤T D such that D is
c.e. in As(D). Sometimes, the alternative definition for As(D)

L(D) = {s | ∃x ∈ Ds −D}
is more convenient; here we assume that an enumeration of D satisfies the condition |Ds+1−Ds| ≤ 1.
It is easy to see that L(D) has the same Turing degree as As(D). The sets As(D) and L(D) are called
associated Lachlan sets for the set D.

Thus, 2-c.e. degrees form a subset of 2-CEA degrees, and n-c.e. degrees, for n > 2, form a subset of
n-CEA degrees. The reverse inclusion does not hold. �
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Theorem 4.10 (Jockusch, Shore [49]). There exists a 2-CEA degree that is not an n-c.e. degree for
all n < ω.

Therefore, levels of CEA-hierarchy provides wider classes of degrees comparing with the same levels
of the Ershov hierarchy.

On the other hand, by the following result, there is no a properly n-c.e. degree which is a 2-CEA
degree.

Theorem 4.11 (Arslanov, LaForte, and Slaman [12]). If an ω-c.e. degree d is also an A-CEA degree
for some c.e. set A, then there exists a 2-c.e. set D ∈ d, which is A-CEA.

For completeness, we also mention the following results.

Theorem 4.12 (Jockusch and Shore [49]). There exists a 3-c.e. degree, which is not a 2-CEA degree.

Theorem 4.13 (Arslanov, LaForte, and Slaman [12]). There exists a 2-c.e. set D such that for each
n ≥ 3, there exists a set An, which is D-CEA and has a properly n-c.e. degree.

Theorem 4.14 (Arslanov, Lempp, and Shore [14]). There exists a c.e. degree a such that if some
degree d ≤ 0′ is a-CEA, then d is c.e.

We can consider a similar definition if we proceed from sets to degrees; however, the situation
becomes more complicated since in the general case the degree of L(D) depends on the choice of the
set 2-c.e. set D from a 2-c.e. degree d. This leads us to c.e. predecessors of degree d in which d is c.e.;
namely, Ishmukhametov [46] considered the class

R[d] =
{
a | d is a”=CEA

}
.

However, it was found that this class is the same as

L[d] =
{
deg(L(D)) | ∃ 2-c.e. D ∈ d

}
,

which was considered in [40]. It is easy to see that L[d] ⊂ R[d], thus we cite the proof for the reverse
inclusion.

Proposition 4.15 (Fang, Wu, and Yamaleev [40]). Let d be a 2-c.e. degree and a < d be a c.e. degree
such that a ∈ R[d]. Then a ∈ L[d].

Proof. Let A be a c.e. set from a. By Theorem 4.11, we find a 2-c.e. set U ∈ d such that U c.e. relative
to A. From Proposition 4.9 it follows that deg(L(U)) ≤ a. Now consider D = U ⊕ (ω −A); it is clear
that D is 2-c.e., D ≡T U and L(D) ∈ a. �

Therefore, the class L[d] is upward closed relative to c.e. degrees below d, similarly to the class
R[d]. In [46], Ishmukhametov started the detailed investigation of R[d] for various d, and obtained
the following series of results (further we consider L[d] for the sake of convenience).

Theorem 4.16 (Ishmukhametov [46]). There is a 2-c.e. degree d such that L[d] = [a, b], where a �= b
are noncomputable c.e. degrees.

By Proposition 4.15 and by properties of c.e. degrees, we obtain the following result.

Corollary 4.17. There exists a 2-c.e. degree d such that L[d] contains incomparable elements.

Note that in Theorem 4.16, the degree a is the least element of L[d], and b is the greatest elements of
L[d]. Note that properly 2-c.e. degrees d with greatest elements in L[d] coincide with well-studied class
of isolated 2-c.e. degrees introduced by Cooper and Yi [28]. Then the isolated degrees were investigated
by Wu; in particular, one of the applications is the use of isolated degrees for the diamond embedding
into the 2-c.e. degrees, which simplified the proof of Downey’s result [29], and, moreover, allowed
making one-half of the diamond as c.e. In contrast to the isolated 2-c.e. degrees, the properly 2-c.e.
degrees d whose L[d] has the least element, were not investigated systematically. Complementing
Theorem 4.15, Ishmukhametov also proved that the degrees a and b from Theorem 4.16 can coincide.

17



Theorem 4.18 (Ishmukhametov [46]). There is a 2-c.e. degree d such that |L[d]| = 1.

He called such degrees exact 2-c.e. degrees. It was shown in Sec. 2.1 that the top of a double
bubble must be an exact 2-c.e. degree. Thus, the investigation of distribution of exact 2-c.e. degrees
is a subproblem of distribution of double bubbles, whose importance was shown in Secs. 2.1 and 4.1.
However, there is no such results about combining of this property with other properties; probably
this is an effect of 2-c.e. degrees d with the least element in L[d], which have problems when combining
them with other properties. In [65], it was proved that exact 2-c.e. degrees are downward dense.

Theorem 4.19 (Liu, Wu, and Yamaleev [65]). Given a noncomputable c.e. degree a, there exists an
exact 2-c.e. degree d ≤ a.

The next theorem establishes that this property does not hold for the tops of double bubbles. Thus,
the tops of double bubbles and the exact 2-c.e. degrees form different classes.

Theorem 4.20 (Andrews, Kuyper, Lempp, Soskova, and Yamaleev [4]). There exists a noncomputable
c.e. degree a such that there are no double bubbles below it (and, in particular, there are no the tops
of double bubbles).

The next question in investigation of Lachlan degrees is the following question of Ishmukhametov
posed him in [46]: Does a 2-c.e. degree d have a minimum element in L[d]? Unfortunately, the answer
has been negative contrary to the set case. Ishmukhametov [47] and later Fang, Wu, and Yamaleev [40]
obtained the following results.

Theorem 4.21 (Ishmukhametov [47]). There exists a 2-c.e. degree d such that L[d] does not have
the least element.

Theorem 4.22 (Fang, Wu, and Yamaleev [40]). There exists a 2-c.e. degree d such that L[d] does
not have a minimal element.

Fang, Liu, Wu, and Yamaleev [65] showed that the notions “minimal” and “least” are equivalent
for L[d]. Thus, Theorems 4.21 and 4.22 are equivalent from this point of view.

Theorem 4.23 (Fang, Liu, Wu, and Yamaleev [39]). Given a 2-c.e. degree d, if a, b ∈ L[d], then
there exists c ∈ L[d] such that c ≤ a, b.

Since for any properly 2-c.e. degree d we have 0 �∈ L[d], as a corollary we obtain the following
assertion.

Corollary 4.24 (Fang, Liu, Wu, and Yamaleev [39]). If d is a properly 2-c.e. degree, then L[d] does
not contain a minimal pair.

It is easy to see that if a degree e is c.e., then L[e] = [0,e]; in particular, the least and greatest
degrees always exist. If d is a properly 2-c.e. degree, then (see Ishmukhametov [46]) there exist exact
degrees, namely, degrees that, in some sense, are “far” from c.e. degrees and are “more proper” 2-c.e.
degrees. The following question about the existence of properly 2-c.e. degrees, which are “closer” to
c.e. degrees, is open.

Question 4.25. Does a 2-c.e. degree d exist such that L[d] = (0,d) (an interval without endpoints)?

A particular motivation for an investigation of Lachlan degrees is a finding of structural properties
which would link d and L[d] in cases where d is a proper 2-c.e. degree. Yamaleev tried the following
approach for a solution of the question of the definability of c.e. degrees in the 2-c.e. degrees. Consider
the following question.

Question 4.26. Is it true that for any properly 2-c.e. degree d, there exists a c.e. degree a such that
a ≤ x for any x ∈ L[d]?
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A positive answer to this question could be used in the following way. If a degree d is properly
2-c.e. degree, then let a < d be the corresponding c.e. degree. Since a is a lower bound for the spectra
of Lachlan degrees, then both parts of any splitting of d, which avoid the upper cone of a, must be
properly 2-c.e. degrees. On the contrary, assume that d = b ∪ c and assume that c is c.e. Then let
C ∈ c and B ∈ b; consequently, deg(C ⊕B) = d, but L(C)⊕ L(B) ≡T ∅ ⊕ L(B) ≡T L(B), and thus
a �≤ deg(L(C) ⊕ L(B)), a contradiction. (Also we note that such splittings could not exist. However,
then the degree d is immediately recognized as properly 2-c.e.) We assume that this does not hold for
the c.e. degrees; namely, any c.e. degree is splittable avoiding any upper cone in such a way that one
part of the splitting is definable (the part with definability can use the centers of double bubbles).
This statement is one of anticipated properties of c.e. degrees which we pose as a conjecture.

Conjecture 4.27. For any noncomputable c.e. degree c, for any noncomputable 2-c.e. degree f , there
exists c.e. degrees u and v such that u is the center of a double bubble, c = u ∪ v, and f �≤ u, v.

Thus, a potential candidate for recognition of c.e. degrees among all 2-c.e. degrees is the following
formula:

ϕ(x) = ∀a ∃u ∃v
[
a ≤ x→

(
ψ(u) .∧ .x = u ∪ v .∧ .a �≤ u .∧ .a �≤ v

)]
,

where the formula ψ(u) is valid if and only if u is the center of the double bubble D(≤ 0′). The above
conjecture states that the formula ϕ(x) is valid if and only if x is a c.e. degree.

4.5. Example of working with definable classes. The next part of this section is devoted to
main ideas of the proof of Theorem 4.20, which are examples of working with double bubbles and the
use of Lachlan sets. Our notation and terminology follows Soare [83] and Downey and Hirschfeldt [30];
we also use the technique for presenting priority constructions, which is standard for the last years.
Below we present main ideas of the existence of a noncomputable c.e. degree below which there are
no double bubbles.

Requirements. Recall that the top of a double bubble is always an exact degree. Now assume that
2-c.e. degrees d1 > d2 > 0 form a double bubble. If D ∈ d1 is a 2-c.e. degree, then by Sec. 4.4 we have
L(D) ∈ d2.

So in order to prove the theorem, we must construct a noncomputable c.e. set A such that for any
noncomputable 2-c.e. set D ≤T A, if 0 < deg(L(D)) < deg(D), then there is a 2-c.e. set E ≤T D that
is Turing incomparable with L(D). Fix a computable listing of all tuples 〈Φ,Ψ,Θ,Ω,D〉 of partial
computable functionals Φ, Ψ, Θ, and Ω and 2-c.e. sets D. It suffices to construct a c.e. set A satisfying
the following requirements:

PΘ : A �= Θ;

RΦ,D : D = ΦA ⇒ ∃E ∃ΛΦ,D (E = ΛD
Φ,D ∧ E |T L(D)) ∨D ≤T L(D) ∨ L(D) ≤T ∅,

where each R-requirement has its own infinite list of subrequirements:

TΨ : E = ΨL(D) ⇒ ∃ΓΨ (D = Γ
L(D)
Ψ );

SΩ : L(D) = ΩE ⇒ ∃ΔΩ (L(D) = ΔΩ) ∨ ∃ΓΩ (D = Γ
L(D)
Ω ).

We will usually suppress the subscripts on the functionals above when they are clear from the
context. We will construct A using a tree of strategies and the gap/co-gap method. The proof uses a
0′′′-priority argument and its full version can be found in [4]. In the proof sketch below, we describe
the work of each strategy in isolation and their interaction on the strategy tree.

Further, for the sake of convenience we assume that at each stage of an algorithm which enumerates
our set, the set changes at most at one element. The notation sD(x) means a stage when x enters D.
If there is no such stage, then we assume sD(x) ↑. Thus, if x leaves D, then sD(x) enters L(D). We
consider first main ideas of satisfaction of each strategy in isolation.
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Basic P-strategy. The basic P-strategy is a variant of the standard Friedberg–Muchnik strategy. We
choose a fresh witness a, wait for a stage s such that Θ(a)[s] ↓= 0, and enumerate a into A.

Basic R-strategy. An R-strategy ρ serves as the mother strategy for all of its substrategies. It mon-
itors the length of agreement between D and ΦA. At nonexpansionary stages, it takes the finitary
outcome fin. At expansionary stages, it makes progress towards constructing the functional Λ so that
ΛD = E and takes its infinite outcome ∞, allowing its S- and T -substrategies to act (we will also call
them child strategies of the strategy R).

Basic T -strategy. A T -strategy τ is a child strategy of some R-strategy. In isolation, it checks the

length of agreement between E and ΨL(D). At expansionary stages, τ constructs Γτ so that Γ
L(D)
τ = D.

The strategy has two possible outcomes, Γ and fin.

Basic S-strategy. An S-strategy σ, say, is a child strategy of some R-strategy. It checks the length of
agreement between L(D) and ΩE , and if the stage is expansionary, then σ first tries to construct Δσ

such that Δσ = L(D). However, when interacting with other strategies (we will describe it in the
following), this functional can be spoiled; thus it causes σ to construct a backup functional Γσ such

that Γ
L(D)
σ = D. Thus, the strategy has three possible outcomes Γ, Δ, and fin.

Interactions between strategies. Now we consider nontrivial interactions between strategies and de-
scribe how to overcome the corresponding problems. Since all problems begin when a P-strategy
enumerates an element into A, we will always assume that there is a P-strategy below the other
strategies we consider.

T -Strategy τ below its mother R-strategy ρ. Let us consider the behavior of a strategy τ in more
detail, and assume that there is P-strategy π below it Γ-outcome. For every x, we need to correctly
define ΓL(D)(x) = D(x). We pick a big y = yx first and wait until the length of agreement between

ΨL(D) and E is larger than y. At the first expansionary stage s at which this happens, we define
ΓL(D)(x)[s] = D(x)[s] with use-function γ(x)[s] = s > ψ(y)[s]. From now on (assuming τ is along the

true path), the equality between ΓL(D)(x) and D(x)[s] can be broken only if a witness a of P-strategy
π ⊇ τ�Γ is enumerated into A. It is worth noting that a must have been chosen before stage s, and so
this can happen at most finitely many times (since all new witnesses of P-strategies after initialization
will be chosen big enough and there are only finitely many old witnesses).

The change in A allows a change in D on any x with Φ-use ϕ(x)[s] ≥ a. We have the following
possible cases:

Case 1: x enters D but there is no change in L(D) � (γ(x) + 1): then we enumerate y = yx into E
(since a permission from D is obtained) and we initialize all strategies below τ . So we have

1 = E(y) �= ΨL(D)(y) = ΨL(D)(y)[s] = 0,

and τ wins. Initialized strategies must pick fresh witnesses; thus, from this moment on only strategies
of higher priority than τ can enumerate numbers into A that allow changes of ΨL(D)(y)[s]. Indeed, if

ΨL(D)(y)[s] changes at a stage s1 > s, then a number x1 leaves D where sD(x1) ≤ ψ(y) < s. It follows
that some a1 ≤ ϕ(x1)[s] < s entered A after stage s, so a1 must have been chosen before stage s.

Case 2: x enters or leaves D and there is a change in L(D) � (γ(x) + 1): then we update D(x) =

ΓL(D)(x) with new big use γ(x). Note that a new update of ΓL(D)(x) can only be caused by a number
a1 < a entering A. It is easy to see that when a is enumerated into A by a P-strategy, we initialize all
lower-priority strategies, and hence all strategies with witnesses greater than a. New witnesses will be
greater than the current use ϕ(x) and will not be able to change computations related to x. Thus, an
increase in ϕ(x) can only be caused by the enumeration of some a1 < a, and as we noted above, this
can happen at most finitely often.
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Note that if x leaves D, then a change in L(D) � (γ(x)+1) must occur because we defined ΓL(D)(x)
correctly at stage s, when we have that x is already in D, and so sD(x) < s = γ(x). It follows that
the two cases above exhaust all possibilities.

Intuitively, when we construct a functional Γ, we can think of it as opening a gap and allowing for
some number a to enter A. Thus, during this time intervals of opened gaps, the restraint of strategy
τ is dropped in the following sense: if there is an undesired change for τ because of some a enters A
during this time, then τ can be satisfied forever. Therefore, these changes are undesired only at the
first glance; in fact, they allow a successful closing of a gap (respectively, if there are no such changes,
then the gap is closed unsuccessfully). Hence, either a gap will be closed successfully, namely, at some
point we have case 1 and a diagonalization at τ , or all gaps will be closed unsuccessfully, namely, we
always have case 2, in which case we will correctly reduce D to L(D).

In the construction, this method also involves links which allow us to coordinate actions of a mother
strategy with its child strategies during intervals of opened gaps; in particular, they allow one to jump
from a mother strategy to its child strategy skipping all intermediate strategies. For instance, working
with the above-mentioned ρ and τ using the corresponding link, we jump directly from ρ to τ and
decide whether we want to enumerate y into E while keeping E = ΛD

ρ correct. So we will enumerate
a number into or extract a number from E only when we come to a substrategy of ρ using a link (if
there is no link at ρ, then we change E at ρ); otherwise, we will not need to change E at ρ, since at ρ
we will not be in a position in which we must change E back due to D returning to an old initial
segment (except for the situation when some P-strategy between ρ and τ enumerates a small number
into A, which allows a D-change which can force us to change E back at ρ but also causes τ to be
initialized).

T -Strategy τ below an S-strategy σ below their mother R-strategy ρ. The real conflict, which also
causes this priority argument to be a 0′′′-argument rather than just an infinite-injury argument, first
arises in the following scenario. Suppose we have an R-strategy ρ with an S- substrategy σ and a T -
substrategy τ below such that τ is below the finite outcome of σ. Furthermore, assume that we have
three P-strategies π2, π1, and π0 below the Γ-outcome of τ , the Δ-outcome of σ and the Γ-outcome
of σ, respectively. Suppose now the following sequence of events.

First, the P-strategy π2 enumerates a witness a2 into A, allowing a number x to enter D and
causing τ to enumerate a number y = yx into E in order to diagonalize τ . Next, the P-strategy π1
enumerates a witness a1 < a2 into A, allowing x to leave D, which would normally force y to be
extracted from E in order to keep Λ correct. However, for the stage sD(x) at which x entered D, sD(x)
will enter L(D) when x leaves D, while σ has possibly already defined Δ(sD(x)) = 0, which cannot

be corrected. We resolve this conflict by threatening to let σ construct a Turing functional ΓL(D) = D
to permanently satisfy ρ.

However, letting σ construct Γ (and taking an infinite Γ-outcome to the left of the infinite Δ-
outcome) creates a new problem: suppose our P-strategy π0 below the Γ-outcome of σ next enumerates

a number a0 into A, allowing D to change at a number on which ΓL(D) is already defined and now
possibly wrong. The strategy for σ can use the following procedure to force an L(D)-change and
correct ΓL(D): before letting π0 choose its witness a0, we have a number x from some P-strategy π1
ready that just left D and caused the function Δ of σ to be incorrect. Similarly to the coordination
work of ρ and τ , we use a link from ρ to σ, so that we can visit σ directly before ρ has a chance to
extract y from E, allowing ΛD to be temporarily incorrect. Therefore, if the functional Δ is now wrong
on sD(x), then we create a second link from ρ to σ and move to outcome Γ, only then allowing a0 to
be enumerated in A. Suppose that this causes a change in D(x′).

(1) If x′ enters D, then there need not be any L(D)-change and thus ΓL(D)(x′) may now be incorrect.

If ΓL(D)(x′) is defined, then this means that x′ is sufficiently small to allow us to preserve y in E while
still keeping ΛD correct. This causes a permanent disagreement between ΩE and L(D) at sD(x), since
the old definition of ΩE(sD(x)) = 0 is still valid while sD(x) ∈ L(D); this disagreement can only be
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undone by an action of a strategy of higher priority than σ, since σ can now switch to a permanent
finitary diagonalization outcome unless initialized later.

(2) If x′ leaves D (and had previously entered D at a stage sD(x′)), then it will follow from the way

we construct Γ that γ(x′) ≥ sD(x′). So x′ leaving D causes sD(x′) to enter L(D) and allow ΓL(D)(x′)
to be corrected.

Similarly to the previous case, we open a second gap when we allow the number a0 to enter A. Thus,
either one of these gaps will be closed successfully (i.e., at some point, we have case (1)) and we have
a permanent win at σ, or all gaps will be closed unsuccessfully (i.e., we always have case (2)), then we
correctly reduce D to L(D). Again, in the construction, we create a link from σ to ρ since we jump
from ρ to σ when we need to decide whether to enumerate y into E or not, and the link allows us to
keep E = ΛD

ρ correct.

Interaction of several R-strategies. In our intuitive analysis, we restrict ourselves to twoR-strategies ρ0
and ρ1. Assume that we have ρ0 ⊂ ρ1, and that they have substrategies σ0 and σ1, respectively (also
assume that σ0 and σ1 have an Γ-outcome). The conceivable relative priorities for these strategies are
as follows:

(1) ρ0 ⊂ σ0 ⊂ ρ1 ⊂ σ1;
(2) ρ0 ⊂ ρ1 ⊂ σ1 ⊂ σ0, and
(3) ρ0 ⊂ ρ1 ⊂ σ0 ⊂ σ1.

The third case could produce nonnested links; so we disallow it as follows: When σ0 changes the
global outcome of ρ0 along the true path, we introduce another version of ρ1, say, an R-strategy ρ′1,
first, and only allow substrategies of ρ′1 but not of ρ1 below ρ′1. This reduces the third case above to
the first, in the usual manner of 0′′′-arguments.

In the first case, there is no real conflict, since ρ1 already knows that σ0 will construct its Γ, which
permanently satisfies ρ0. In the second case, there may be links from ρ0 directly to σ0, over ρ1 and σ1;
but if σ0 truly has Γ-outcome, then we again introduce another version of ρ1, say, an R-strategy ρ′1,
below σ0 and only allow substrategies of ρ′1 but not of ρ1 below σ0.

Thus, in such a way the work of two R-strategies and their substrategies is coordinated. In case of
several R-strategies, they can be coordinated in the same manner; the details and the full construction
can be found in [4].

4.6. Definability with parameters. Now we proceed to the questions of definability with param-
eters.

Theorem 4.28. There exists an infinite family of c.e. degrees such that each of them is definable in
D2 with one parameter from D2 −R.

Proof. For a given a ∈ S let d be a degree such that for any degree z if a < z ≤ d and z0 ∪ z1 = z
for some d-c.e. degrees z0 and z1, and z0 | z1. Then either a ≤ z0 or a ≤ z1. It is clear that
d is not computable, computably enumerable, and uniquely define the c.e. degree a. In particular,
S ∩ [0,d] = {a}. �

Slaman and Woodin [82] proved that the class R of c.e. degrees is definable with parameters in
D(≤ 0′). Their proof sufficiently uses Theorem 4.30.

Definition 4.29. A family A of low degrees is called uniformly low family if there exist a sequence
of sets 〈X(n) | n ∈ ω〉 and a ∅′-computable function f such that {deg(X(n)) | n ∈ ω} = A and

Φ∅′
f(n) = (X(n))′.

Theorem 4.30. Let A be a uniformly low family of Δ0
2-degrees such that it is bounded by some low

degree a. Then A is definable with parameters in D(≤ 0′).
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It follows from this theorem that the definability with parameters of R in D(≤ 0′) can be obtained
with help of the following theorem.

Theorem 4.31 (Welch [84]). There exist two uniformly low families of c.e. degrees A0 and A1 such
that each of them if bounded by some low degree, and each c.e. degree a is the least upper bound of
some a0 ∈ A0 and a1 ∈ A1.

Proof. By the Sacks splitting theorem, the creative set K = {〈e, n〉 | n ∈ We} can be split into two low
T-incomparable sets sets A0 and A1. Thus we define the families Ai, i ≤ 1 as the following families of
degrees of sets

Bi =
{
e | 〈e, n〉 ∈ Ai

}
n∈ω.

Hence by the previous theorem the class of c.e. degrees R is definable with parameters in D(≤ 0′). �

Theorem 4.32. Let a be a low c.e. degree > 0. The family of n-c.e. degrees {b | b ≤ a} is definable
with parameters in D(≤ 0′) for each n ≥ 1.

Proof. We need to define a computable function g such that family of degrees {deg(Vn,g(e)) | e ∈ ω}
coincides with the family of all n-c.e. degrees ≤a. Here {Vn,e}e∈ω is an effective numbering of all n-c.e.
sets, n ≥ 2.

For n = 1, such a function g can be obtained by the Yates theorem about characterization of Σ0
3-

index sets of classes of c.e. sets. For the case n > 1, such a function g can be obtained with the help
of the following proposition: for any n > 1 and any total function f ≤T ∅′′, there exists a computable
function g such that for any e ∈ ω, Vn,f(e) ≡T Vn,g(e). It was proved in [6] for the case when instead of
numbering of n-c.e. sets {Vn}, the author considered the numbering of c.e. sets {Wn}. However, the
proof for general case is similar with obvious and necessary changes.

Let A be a c.e. set from the degree a. Since {e : Vn,e ≤T A} is a ΣA
3 -set (e.g., see Ishukhametov [46],

where it is also proved that this index set is ΣA
3 -complete) and since A′ ≤T ∅′, we conclude that

{e : Vn,e ≤T A} is a Σ0
3-set. If follows that there exists a function f ≤T ∅′′ such that{

Vn,e : Vn,e ≤T A, e ∈ ω
}
=

{
Vn,f(e) : e ∈ ω

}
.

Now, let g be a computable function such that for each e ∈ ω, Vn,f(e) ≡T Vn,g(e) we have{
b ∈ D2 | b ≤ a

}
=

{
deg(Vn,g(e)) | e ∈ ω

}
.

The following function c is computable relative to ∅′:

c(e, x) =

{
1, if x ∈ Vn,g(e),

0, if x /∈ Vn,g(e).

Therefore, there exists a computable relative to ∅′ function α such that for each e ∈ ω, Vn,g(e) = Φ∅′
α(e).

Now the theorem follows from Theorem 4.30. �
Theorem 2.1 states that there exist a c.e. degree b > 0 and a d-c.e. degree c > b such that for any

c.e. degree d, if d ≤ c, then either b ≤ d or d ≤ b. It easy to check that satisfaction of an additional
requirement

(∀e)(∃∞s)
(
ΦB
e (e)[s] ↓→ ΦB

e (e) ↓
)
,

which allows one to make in this theorem the degree of set B ∈ b as low, can easily be combined
with satisfaction of other requirements. Thus, there exist c.e. sets of low degree, which satisfies the
conditions of the above theorem. We do not know whether there exist sets of nonlow degrees with
these properties, i.e., whether there exist d-c.e. degrees d > 0 such that their splittings into d-c.e.
degrees cannot be low:

(d = a ∪ b)→ a′ > 0′ & b′ > 0′.
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If the above theorem could be enhanced in such a way, then it would mean that the above method
of Slaman and Woodin cannot be applied in principle for the proof of definability with parameters of
n-c.e. degrees in D(≤ 0′). Namely, in the general case an n-c.e. degree for n > 1 cannot be split into
two low n-c.e. degrees, contrary to the case of c.e. degrees.

4.7. Definability of m-c.e. degrees on the lattice language of n-c.e. sets.

Definition 4.33. The set of Turing degrees C is definable in En for some n ≥ 1, if there exist a class
of sets S ⊂ En definable in En such that C = {deg(B) | B ∈ S}.

Example 4.34. The degree 0 is definable in each En, 1 ≤ n < ω, since 0 = deg(∅).

For each n ≥ 0, let

Hn =
{
a c.e. | a(n) = 0(n+1)

}
, Ln =

{
a c.e. | a(n) = 0(n)

}
be the classes of highn and lown sets, respectively. By definition, a0 = a, thusH0 = {0′} and L0 = {0}.

Starting from 1960s, various authors investigated the questions of definability in the mentioned
above sense for the classes Hn and Ln, n ≥ 0 in the lattice E1 of the c.e. sets. The results about nonde-
finability of jumps for these classes follows from the following theorem of Cholak [17] and Harrington
and Soare [45].

Theorem 4.35 (Cholak [17]; Harrington and Soare [45]). Each noncomputable c.e. set A by some
automorphism of E can be mapped to some high c.e. set H (in this case, we say that A is auto-
morphic H).

Since automorphisms preserve all lattice-theoretic properties, it follows from this theorem that the
classesLn, n > 0, and Hn, n > 0, being downward dense relative to the Turing reduction, are not
definable. (Downward density of a class of degree A means that a ∈ A and b ≤ a → b ∈ A.)

Nondefinability for the class H0 of all not T-complete c.e. degrees was established by Harrington
and Soare [45].

The results about definability for the classes of jumps Hn and L̄n for n ≥ 2 were obtained by Cholak
and Harrington [18].

Theorem 4.36 (Cholak and Harrington [18]). For n ≥ 2, Hn and L̄n are definable.

Note that the definability of the class L2 follows from earlier works of Lachlan [52] and Shoen-
field [75].

Since the class of high degrees H1 coincides with the class of degrees which contain a maximal set
(Martin [66]), the high c.e. degrees are also definable in E .

For the last class L1, Epstein showed that it is nondefinable.

Theorem 4.37 (Epstein [33]). The family of non-low c.e. degrees are not definable in E.

The definability of c.e. sets (and, therefore, of c.e. degrees) in E2 was established by Lempp and
Nies [57]. They proved that an element from E2 is c.e. if and only if it is the supremum of two elements
with unique complements. Their proof is based on the following observation.

Lemma 4.38 (Lempp and Nies [57]). A c.e. set A has a d-c.e. complement C −D in E∗
2 if and only

if for some c.e. set B, C −D =∗ B, and also either A =∗ B or A is a major subset of B (denoted as
A ⊂m B).

(Recall that a c.e. set A is a major subset of a c.e. set B if A ⊂∞ B and for each c.e. set W ,
B ⊆∗ W → A ⊆∗ W .)

It follows that each c.e. set A is a union of two disjoint c.e. sets with unique complements: A is a
union of two disjoint c.e. sets A0 and A1 of low degrees by the well-known Sacks theorem [73] (also
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see Soare [83, Theorem VII.3.2]), and, therefore, A0, A1 cannot be major subsets of any sets, because
major subsets have high degrees (Jockusch [48], also see Soare [83, Ex. X1.1.19]).

Below we will generalize this result of Lempp and Nies about the definability to higher levels of the
Ershov hierarchy; our arguing is based on the same observations.

Lemma 4.39. Let n > 2 and A be a c.e. set. If X is an n-c.e. complement of A in E∗
n, then there

exists a c.e. set B such that X =∗ B and either A =∗ B or A ⊂m B.

Proof. Assume that X = (B1 − B2) ∪ . . . Bn for some c.e. sets B1 ⊇ B2 ⊇ . . . Bn. It is clear that
X ∩ A = ∅, and we have A ∪B1 =∗ ω since A,X ⊆ A ∪ B1. By the reduction principle there exists a
computable set R ⊂ B1 such that A ∪R = ω. It is clear that we can assume that X can be presented
as (R−B2) ∪ (R ∩B3 −B4) ∪ . . . ∪ (R ∩B2m−1 −B2m) (if n is odd, then B2m = ∅).

If A ∩ B2m �=∗ ∅ then for a 3-c.e. set M = (ω − B2m) ∪ A we have A,X ⊆ M and M ⊂∞ ω, a
contradiction. Therefore, A ∩B2m =∗ ∅. On the other hand,

B1 ⊇∗ A, A ∩ (B2i −B2i+1) =
∗ ∅

for each i, 1 ≤ i < m (otherwise, if for some i, 1 ≤ i < m,

A ∩ (B2i −B2i+1) = ∞,

then A,X ⊆ M , where M = (R−B2)∪ . . .∪ (R∩B2i−1−B2i)∪B2i+1∪A, a contradiction). Therefore,
X =∗ B1 −A ∩B1 = B1 −A, and the statement follows from Lemma 4.38. �

Definition 4.40. Let A ⊂∞ B be c.e. sets. A is called small in B (notation A ⊂s B) if for each pair
of c.e. sets X,Y , from X ∩ (B −A) ⊆ Y follows that Y ∪ (X −B) is a c.e. set.

Lemma 4.41. Assume that n ≥ 1, and A and B are c.e. sets, A ⊂s B. Then for each n-c.e. set
S ⊂ A if B − S is c.e. then the set ω − S is also c.e.

Proof. Assume that X = ω and Y = B−S. Then X ∩ (B−A) = B−A ⊂ Y . Therefore Y ∪ (X−B) =
Y ∪ (ω −B) = ω − S is c.e. �

The following proposition was proved in Lempp and Nies (see [57, proof of Theorem 2.4]).

Lemma 4.42. If a d-c.e. set A−B has a unique complement in E2, then it is c.e.

We generalize it as follows.

Lemma 4.43. Assume that 0 < n < ω. If an n-c.e. set X has a unique complement in En, then it is
d-c.e.

Proof. For simplicity we consider the case where n = 3: X = (A−B)∪C for some c.e. sets A ⊇ B ⊇ C.
In the general case the proposition is proved by induction using the similar arguments.

Let a 3-c.e. set Y = (P −Q) ∪L be a complement for (A−B)∪C. Consider two cases. (For a c.e.
set S1 and an n-c.e. set S2, S1 ⊂ S2, we say that S1 is a major subset of S2 (S1 ⊂m S2) if for each c.e.
set W , S2 ⊆∗ W → S1 ⊆∗ W .)

Case 1. P is computable. Exactly as in [57], we can prove that

A− (B − C) =∗ (A− P ) ∪ (A ∩ (Q− L)) =∗ A1 ∪ (A ∩Q)−A1 ∪ (A ∩ L),

(since (A−P )∩ (Q−L) =∗ ∅), where A1 = A−P is a c.e. set. Therefore, A− (B −C) is a d-c.e. set.

Case 2. P is not computable. As in [57], we prove that P̃ − (Q − L) is also a complement of

A− (B − C), where P̃ = U ∪ (Q− L) and U is a small major subset of P (U ⊂sm P ).

Assuming that (A −B) ∪ C is not a d-c.e. set, we prove that P̃ − (Q− L) ⊂∞ P − (Q− L); thus,
A− (B − C) has two different complements.
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For this we repeat the arguments from Lempp and Nies [57] (case 2 of the proof of the similar
theorem) with minor changes: let R be a computable set such that R ⊆ A and R ⊆ P . The inclusion
U ⊂sm P implies that R ⊆ U . Now assume that

P̃ − (Q− L) =∗ P − (Q− L).

Let S = R∩ (B− (C ∪L))∩P . S is a d-c.e. set, which splits P with other c.e. part R∪Q. Lemma 4.41
implies that S has a c.e. complement. Let Z be a c.e. set such that S = Z. It is clear that X,Y ⊆ Z
and, therefore, the set S in finite.

Now let S1 = R ∩ (B − C) ∩ P . Since S =∗ ∅ we have S1 =
∗ B ∩ L ∩R. Therefore, S1 is c.e. Thus,

it follows that
Z = R ∪ S1 ∪ C ∪ (B − C)

is a co-d-c.e. set and, clearly, A− (B − C), P − (Q− L) ⊆ Z.

Now we prove that P̃ − (Q−L) =∗ P − (Q−L) implies that the set Z is infinite (it will contradict
the condition A− (B − C) ∨ P − (Q− L) =∗ 1). For contrary, assume that Z is finite, then

A− (B −C) =∗ R ∩ S1 ∪ (Q− L) ∩A.

However, (Q− L) ∩A = Q ∩ C; thus,

A− (B − C) =∗ (R ∩ S1) ∪ (Q ∩ C)

and, therefore, A− (B −C) is a d-c.e. set, a contradiction. �

Lemma 4.44.

(a) If a d-c.e. set A−B has a unique 3-c.e. complement X = (P −Q) ∪ L in E3, then A−B also is
a unique d-c.e. complement of (P −Q) ∪ L in E3.

(b) If a 3-c.e. set X has a unique d-c.e. complement A−B in E3, then X is a d-c.e. set.

Proof. Assume that A1 −B1 is another complement for X. If, for instance,

(A1 −B1)− (A−B) = ∞,

then

(i) if A∩ (A1−A2) =∞, then the 3-c.e. set (P ∪A1− (A∪B1 ∪Q))∪L is another complement for
A−B);

(ii) if B ∩ (A1 −B1) = ∞, then the 3-c.e. set

(P − (Q ∪ (B ∩ A1 −B1 ∩B))) ∪ L = (P −Q ∪B ∩A1) ∪B1 ∩B ∪ L

is another complement for A−B.

(b) The proof is similar to the proof of Lemma 4.43. We consider two cases: when the set A is
computable, and when it is not. In the first case, the proof is exactly the same as [57, proof of
Theorem 2.4] with necessary, but obvious, changes (in this case, we will obtain that A − B is a c.e.
set). The second case repeats the same case from Lemma 4.43. �

Remark 4.45. Lemma 4.44(b) is a stronger version of Lemma 4.43 for the case n = 3: in the condi-
tions of Lemma 4.44(b) it states that in order for a 3-c.e. set X be a d-c.e. set, it suffices that this set
does not have two different d-c.e. complements in E3 (therefore, X can have such 3-c.e. sets).

Theorem 4.46. An element of En is c.e. if and only if it is the supremum of two elements from En
with unique complements.

Proof for the case n = 3. The part (⇒) is the same as in [57]: if some 3-c.e. set A is c.e., then we split
A into two disjoint c.e. sets A0 and A1 of low degrees. Each Ai has a unique complement Ai; otherwise,
if Ai has another d-c.e. complement, then by Lemma 4.39 it would have to be a major subset of a c.e.
set, but the degrees of major subsets must be high.
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The part (⇐) of the theorem follows from Lemmas 4.43 and 4.44: if a 3-c.e. set A is the supremum of

two 3-c.e. sets A0 and A1 with unique 3-c.e. complements Ã0 and Ã1, respectively, then by Lemma 4.43,
A0 and A1 are d-c.e. sets. By Lemma 4.44(a), A0 and A1 are unique complements for Ã0 and Ã1,

respectively. Therefore, by Lemma 4.44(b), both Ã0 and Ã1 are d-c.e. sets. Thus, d-c.e. sets A0 and
A1 have a unique d-c.e. complement, and by Lemma 4.42 A0 and A1 are c.e. sets. Since A is a union
of A0 and A1, it is also a c.e. set. �

Corollary 4.47. The class of all c.e. degrees and the class of all noncomputable c.e. degrees are
definable without parameters in each En, n ≥ 2.

Corollary 4.48. Let 1 ≤ m < n < ω. Then Em is definable without parameters in En.

Theorem 4.49. The class of all high c.e. sets H1 is definable in each En, 1 ≤ n < ω.

Proof. Fix n ≥ 1 and let A be the following class of n-c.e. sets which is definable in En:

A =
{
X : X is n-c.e. and (∀e)

(
Vn,e ∩X is finite ∨ V n,e ∩X is finite

) }
.

It is well known that for each set U of high degree, there exists a maximal set M ≡T U (Martin [66];
also see Soare [83, Chap. 11, Sec. 1]). Thus, for each maximal set M , we have M ∈ A: if some n-c.e.
set

B =

[
n−1
2

]⋃
i=0

{
(R2i+1 −R2i) ∪ (R2i −R2i+1)}

divides M̄ into infinitely many parts, then, clearly, a c.e. set Ri for some 0 ≤ i ≤ n− 1 also divides
M̄ into infinitely many parts, which is impossible. Thus, A contains all high c.e. degrees: H ⊆ A.

Now we prove the reverse inclusion A ⊆ H. Let V be an n-c.e. set such that

(∀e) (Vn,e ∩ V is finite ∨ V̄n,e ∩ V is finite).

It is clear that n must be an even number,

V =

[
n+1
2

]⋃
i=1

{(A2i−1 −A2i)}

for some c.e. sets A1 ⊇ . . . ⊇ An, and V is a hyperhyperimmune set. The Lachlan theorem about
the hyperhyperimmune difference of c.e. sets (Lachlan [54]) states that if for some c.e. sets X and Y
such that X ⊃ Y the set X − Y is hyperhyperimmune, there exists a computable set R such that
X − Y ⊆ R ⊆ X. Therefore, there exist computable sets R1, R2, . . . Rk such that

A2i −A2i−1 ⊆ Ri ⊆ A2i−1, {ω − V } = R1 ∪

⎧⎨
⎩

n/2⋃
i=1

(
A2i ∩

{ ⋃
m>2i

Rm

})⎫⎬
⎭ .

This implies that V is c.e. and the degree of V is high. Thus, A ⊆ H. �
So far we did not have examples of definable subclasses of En, 1 < n < ω, which contain non-c.e.

sets and are different from Em, m < n. Assume that

Dn := En+1 ∩ En+1.

We have

En ⊂ Dn ⊂ En+1

for each n, 1 ≤ n < ω. For each n ≥ 0, the class of sets Dn is definable in En+1 by the formula

(∀X ∈ En+1)(X ∈ Dn ↔ ω −X ∈ En+1).
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Therefore, if for some n > 0 we have{
deg(A) | A ∈ En

}
⊂

{
deg(A) | A ∈ En+1 ∩ En+1

}
⊂

{
deg(A) | A ∈ En+1

}
,

then we obtain a definable in En+1 class of (n+ 1)-c.e. degrees different from En. However, as follows
from Theorem 4.50, it is invalid.

Theorem 4.50. For each n > 0, we have{
deg(A) | A ∈ En

}
=

{
deg(A) : A ∈ En+1 ∩ En+1

}
.

Proof. Let X and Y be (n + 1)-c.e. sets such that X ∪ Y = ω and X ∩ Y = ∅. Let X = A − B and
Y = C − D for some c.e. sets A,C and n-c.e. sets B and D, B ⊂ A and D ⊂ C. Let f and g be
1− 1-computable functions such that A = rng(f) and C = rng(g), and let U = f−1(B) ⊕ g−1(D).
Then U is an n-c.e. set, and since Y = ω −X we have U ≤T A−B. Now we prove that A−B ≤T U
too. For some x, we enumerate sets A and C until x enters A or C. If, for instance, x ∈ A, then let
for some y, f(y) = x. We have x ∈ A−B if and only if 2y �∈ U . �

Generalizing the definition of a c.e. major subset, we call an n-c.e. set A (n > 1) as major subset
of a c.e. B if A ⊂∞ B and for each c.e. W ,

B ⊆∗ W → A ⊆∗ W

In a similar way, as was done for the case of c.e. major subsets (see Soare [83, X1.1.19]) it can be
proved that n-c.e. major subsets of c.e. sets (if they exist) have high degrees.

Theorem 4.51 (Arslanov [7]). Let n > 0. If n is an even number then there are no n-c.e. major
subsets. If n is an odd number, then each noncomputable c.e. set B has a major n-c.e. major subset
A of a properly n-c.e. degree.

Proof. Assume that n = 2k, R1 ⊃ R2 ⊃ . . . ⊃ R2k are c.e. sets and

A =
k⋃

i=1

R2i −R2i−1

is an n-c.e. subset of a c.e. set B such that B−A is infinite. Clearly, we can assume that R2k is infinite,
and, since B is c.e., each Ri is a subset of B. Let C be infinite computable subset of R2k such that
R2k − C infinite. Then the computable set C witnesses that A is not a major subset of B.

Now let n = 2k + 1 and B be a noncomputable c.e. set. We construct an n-c.e. set A of a properly
n-c.e. degree such that A ⊂m B.

We construct the desired n-c.e. set A by combining two strategies: the Lachlan strategy for con-
struction of a major subset of a noncomputable c.e. set (see Soare [83, Theorem X.4.6]) and the Cooper
strategy for construction of an n-c.e. set of a properly n-c.e. degree.

We construct A so that for each e, A �≡T Ve, where Ve is the eth (n − 1)-c.e. set (for some fixed
computable numbering of all (n− 1)-c.e. sets {Ve}e∈ω). We do this with the help of the fact that the
maximum number of changes of A(x) is greater by 1 than the number of changes of Ve(x).

Again, for convenience we assume that n = 3. The desired 3-c.e. set A is constructed as (D1−D2)∪
D3, where D1 ⊇ D2 ⊇ D3 are c.e. sets and A ⊂ B. In order to satisfy the condition that “the degree
of A is not a d-c.e. degree” for each d-c.e. set V and for all partial-computable functionals Φ and Ψ,
we satisfy the following requirements:

RV,Φ,Ψ : A �= ΦV ∨ V �= ΨA,

where {(We,Φe,Ψe)}e∈ω is an effective numbering of all triples of c.e. sets W and partial-computable
functionals Φ and Ψ.

To satisfy the requirement RV,Φ,Ψ, we choose a fresh witness x ∈ B and wait for a stage s such that

As(x) = ΦV (x)[s] ∧ V �ϕ(x)[s] = ΨA
s �ϕ(x)[s]
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(if it never happens, then the requirement RV,Φ,Ψ is satisfied), set up the restraint for all other strategies
on the interval A�ψsϕs(x), enumerate x into D1. and wait for a stage s′ such that

As′(x) = ΦV �ϕ(x)(x)[s′] ∧ V �ϕ(x)[s′] = ΨA�ψϕ(x)�ϕ(x)[s′]
(again, if it never happens, then the requirement is satisfied). Enumerate x into D2 (i.e., remove x
from A) and restrain the interval A�ψs′ϕs′(x) for other requirements. Wait for a stage s′′ such that

As′′(x) = ΦV �ϕ(x)(x)[s′′] ∧ V �ϕ(x)[s′′] = ΨA�ψϕ(x)�ϕ(x)[s′′]
(again, if it never happens, then the requirement is satisfied). Now we put x into D3 and restrain
interval A�ψs′′ϕs′′(x) for other requirements.

Changes of ΦV (x) between the stages s′ and s′′ could happen only because of changes in V �ϕ(x);
they are irreversible since V is a 2-c.e. set.

In order to make the set A a major subset of B, we use Soare’s modification of the Lachlan
construction of major subset of c.e. set (see Soare [83, Theorem X.4.6]). Thus, we choose a sequence
of movable markers {Γn}n∈ω, having in the end B − A = {d0 < d1 < . . .}, where dsn is a position of
Γn at the end of stage s, and dn = lims dsn. We need to satisfy the following requirements:

(i) Ne: the marker Γe is moved at most finitely many times, and
(ii) Pe: B ⊆ We → A ⊆∗ We.

We modify the construction of Theorem X.4.6 from [83] as follows. At the stage s+ 1 satisfying
the requirement Pe, we work with elements y ∈ B and dse < y only if they are not restrained by
R-requirements of higher priority. (If such y or e does not exist, then we just proceed to the next
stage.)

Since each requirement RV,Φ,Ψ is satisfied after finite number of injuries, we can satisfy all require-
ments similar to [83] with obvious changes. �

Corollary 4.52. For each n > 1 and for each odd number m < n, there exists a definable in En
subclass of properly m-c.e. degrees.

The proof follows immediately from Theorems 4.51 and 4.46 (namely, from Corollary 4.48).
It is known (e.g., see Arslanov [6]) that for each n, 1 < n < ω, there exists a high properly n-

c.e. degree. The following question naturally arises: Is it true that the class of high n-c.e. degrees is
definable in En for each n, 1 < n < ω? The next theorem gives a partial answer to this question.

Theorem 4.53. For each odd number n, 1 ≤ n < ω, for each high n-c.e. degree d and for each
noncomputable c.e. set A, there exists an n-c.e. major subset M of the set A such that deg(M) = d.

The proof of this theorem can be obtained by a straightforward generalization (to the case of n-c.e.
sets) of Lerman’s proof (see Soare [83, XI.2.14]) of the following result: For each high c.e. degree d
and for each noncomputable c.e. set A, there exists its major subset M such that deg(M) = d.

Corollary 4.54. For each odd number n, 1 ≤ n < ω, the class of all high n-c.e. degrees is definable
in En.
Question 4.55. Is it true that the class of all high n-c.e. degrees is definable in En for even numbers n?
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