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We formulate and study the model variational problem describing phase transitions in

two-phase media. Based on this study, we obtain an information about properties of

solutions to the problem on equilibrium of a two-phase medium in the traditional state-

ment. Bibliography: 11 titles.

1 Introduction

We assume that Ω ⊂ Rm, m � 1, is a bounded domain, Rm×m
s is the linear space of symmetric

(m×m)-matrices equipped with the inner product 〈α, β〉 = trαβ, α, β ∈ Rm×m
s . In the Hilbert

space L2(Ω, R
m×m
s ) equipped with the inner product

(ẽ′, ẽ′′)L2(Ω) =

∫

Ω

〈ẽ′(x), ẽ′′(x)〉 dx, (1.1)

we consider the closed linear subspace

L(Ω) =
{

ẽ(·) ∈ L2(Ω, R
m×m
s ) :

∫

Ω

ẽ(x) dx = 0
}

. (1.2)

The orthogonal complement is the set of all elements of L2(Ω, R
m×m
s ) independent of x ∈ Ω. It

is obvious that

L0(Ω) = {ẽ(·) ∈ L(Ω) : ẽ(x) = e(∇u(x)), u ∈ X(Ω)}, (1.3)

is a closed linear subspace of L(Ω). Here,

X(Ω) =
◦
W 1

2(Ω, R
m), eij(∇u) =

1

2
(uixj

+ ujxi
), i, j = 1, . . . ,m.

We introduce the functional

˜I[ẽ, χ, t,Ω] =

∫

Ω

{χ(x)( ˜F+(ẽ(x)) + t) + (1− χ(x)) ˜F−(ẽ(x))} dx, (1.4)
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where ẽ(·) ∈ L2(Ω, R
m×m
s ), χ(·) ∈ Z(Ω), ˜F±(ẽ) = 〈A±(ẽ − ζ±), ẽ − ζ±〉, ζ± ∈ Rm×m, t ∈ R1,

Z(Ω) is the set of all measurable characteristic functions, A± are linear symmetric positive

definite mappings from Rm×m
s to Rm×m

s . If we restrict ourselves to elements ẽ ∈ L0(Ω), then

the functional (1.4) becomes the traditional energy functional of a two-phase medium

I[u, χ, t,Ω] =

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx, (1.5)

where u ∈ X(Ω), χ ∈ Z(Ω), F±(∇u) = 〈A±(e(∇u)− ζ±), e(∇u)− ζ±〉, u(x) is the displacement

field, χ(x) determines the phase distribution, ζ± are the residual strain tensors, A± are the

tensors of moduli of elasticity, and t denotes the temperature. If the functional (1.4) is considered

only for ẽ ∈ L(Ω), then we obtain the functional, referred to as the model energy functional of

a two-phase medium, that can be regarded as an extension of the functional (1.5).

We are interested in two variational problems: the model problem on equilibrium of a com-

posite medium
˜I[ẽχ, χ, t,Ω] = inf

ẽ∈L(Ω)

˜I[ẽ, χ, t,Ω], ẽχ ∈ L(Ω), (1.6)

and the model problem on equilibrium of a two-phase medium

˜I[êt, χ̂t, t,Ω] = inf
ẽ∈L(Ω),χ∈Z(Ω)

˜I[ẽ, χ, t,Ω], êt ∈ L(Ω), χ̂t ∈ Z(Ω). (1.7)

It turns out that the problems (1.6) and (1.7) are considerably simpler than those generated by

the functional (1.5), but their solutions inherit many properties of the solutions to the problem

with the functional (1.5).

It is convenient to use the following representation of the functional (1.4) for ẽ ∈ L(Ω):

˜I[ẽ, χ, t,Ω] = Ξ[ẽ, χ,Ω] + |Ω|(t− t∗) + |Ω|〈A−ζ−, ζ−〉, (1.8)

where

Ξ[ẽ, χ,Ω] =

∫

Ω

{〈(χ(x)A+ + (1− χ(x))A−)ẽ(x), ẽ(x)〉 − 2(χ(x)−Q)〈ẽ(x), ξ〉} dx,

ξ = [Aζ], Q =
1

|Ω|
∫

Ω

χ(x) dx, t∗ = −[〈Aζ, ζ〉].

Hereinafter, we use the notation [γ] = γ+ − γ−.
The paper is organized as follows. We obtain an explicit solution to the problem (1.6) in

Section 2 and to the problem (1.7) in Section 3. The solutions to the problem (1.7) are compared

with the equilibrium states of a two-phase medium (the minimizers of the functional (1.5)) in

Section 4. In Section 5, we consider situations where the functional (1.5) has no minimizers.

2 Model Problem in Composite Media

We begin with the following auxiliary assertion about the solvability of the variational prob-

lem for the functional Ξ[ẽ, χ,Ω] in (1.8).

Lemma 2.1. For every χ ∈ Z(Ω) the problem

Ξ[ẽχ, χ,Ω] = inf
ẽ∈L(Ω)

Ξ[ẽ, χ,Ω], ẽχ ∈ L(Ω), (2.1)
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has a unique solution

ẽχ =
(

χ(1−Q)(A+)−1 − (1− χ)Q(A−)−1
)

ξ −Q(1−Q)(χ(A+)−1

+ (1− χ)(A−)−1)(Q(A+)−1 + (1−Q)(A−)−1)−1[A−1]ξ; (2.2)

moreover,

Ξ[ẽχ, χ,Ω] = |Ω|g̃(Q), (2.3)

where g(Q) = −Q(1−Q)〈ξ(Q), ξ〉 and
ξ(Q) = ((1−Q)(A+)−1 +Q(A−)−1)ξ

−Q(1−Q)[A−1](Q(A+)−1 + (1−Q)(A−)−1)−1[A−1]ξ.

Proof. The problem (2.1) is uniquely solvable because the quadratic functional Ξ[·, χ,Ω] is
strictly convex. The solution satisfies the identity

((χA+ + (1− χ)A−)ẽχ − (χ−Q)ξ, h)L2(Ω,Rm×m
s ) = 0 ∀ h ∈ L(Ω). (2.4)

Therefore, there exists a matrix μ ∈ Rm×m
s such that

(χA+ + (1− χ)A−)ẽχ = μ+ (χ−Q)ξ. (2.5)

Since for the characteristic functions χ we have

(χA+ + (1− χ)A−)−1 = χ(A+)−1 + (1− χ)(A−)−1,

from (2.5) it follows that

ẽχ = χ(A+)−1(μ+ (1−Q)ξ) + (1− χ)(A−)−1(μ−Qξ). (2.6)

Since ẽχ ∈ L(Ω), we can integrate the last equality over Ω:

μ = −Q(1−Q)(Q(A+)−1 + (1−Q)(A−)−1)−1[A−1]ξ. (2.7)

Combining (2.6) with (2.7), we obtain (2.2). From (2.4) with h = ẽχ we find

Ξ[ẽχ, χ,Ω] = −
∫

Ω

(χ−Q)〈ξ, ẽχ〉 dx.

By (2.6), we have

〈eχ, ξ〉 = 〈(χ(A+)−1 + (1− χ)(A−)−1)ξ, μ〉+ 〈((1−Q)χ(A+)−1 −Q(1− χ)(A−)−1)ξ, ξ〉.
Consequently,

(χ−Q)〈ẽχ, ξ〉 = χ(1−Q)〈(A+)−1ξ, μ〉 − (1− χ)Q〈(A−)−1ξ, μ〉
+ χ(1−Q)2〈(A+)−1ξ, ξ〉+ (1− χ)Q2〈(A−)−1ξ, ξ〉.

Thus,

|Ω|−1Ξ[ẽχ, χ,Ω] = −Q(1−Q){〈[A−1]ξ, μ〉+ 〈((1−Q)(A+)−1 +Q(A−)−1)ξ, ξ〉}.
The last equality and (2.7) imply (2.3).
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In the variational elasticity problems for composite media, the passage from the space L0(Ω)

to the space L(Ω) is often used to obtain estimates [1].

Lemma 2.2. For g(Q) the following assertions hold:

1) g̃(·) ∈ C∞[0, 1], g̃(0) = g̃(1) = 0,

2) g̃(Q) = 0, ξ = 0, Q ∈ [0, 1], g̃(Q) < 0, ξ �= 0, Q ∈ (0, 1),

3) g̃(·) is strictly convex for ξ �= 0.

(2.8)

Proof. The first assertion and a part of the second one are obvious consequences of formula

(2.3) for g̃(Q). For Q ∈ (0, 1) the function χ is not a constant identically. Therefore, there is

ϕ ∈ L2(Ω) with zero mean value such that

∫

Ω

χ(x)ϕ(x) dx > 0.

Then for all sufficiently small ε > 0 and ξ �= 0 we have the inequality Ξ[ẽε, χ,Ω] < 0, where

ẽε(·) = εϕ(·)ξ ∈ L(Ω), which implies that the function g̃(Q) is negative for Q ∈ (0, 1), ξ �= 0.

Let us prove that g̃(Q) is convex. Assume that K = (0, 1)m is the unlit cube in Rm,

Kλ = {x ∈ K : xm ∈ (0, λ)}, K1−λ = {x ∈ K : xm ∈ (1 − λ, 1)}, λ ∈ (0, 1). For fixed

Q0, Q1 ∈ [0, 1], Q0 < Q1, and any λ we construct a function χλ ∈ Z
′(Ω) such that

Q0 =
1

|Kλ|
∫

Kλ

χλ dx, Q1 =
1

|K1−λ|
∫

K1−λ

χλ dx.

Since |Kλ| = λ, |K1−λ| = 1− λ, |K| = 1, for Qλ = λQ0 + (1− λ)Q1 it is obvious that

Qλ =
1

|K|
∫

K

χλ(x) dx.

Since for every λ the space

L
λ(K) =

{

ẽ(·) ∈ L2(K,Rm×m
s ) :

∫

Kλ

ẽ(x) dx =

∫

K1−λ

ẽ(x) dx = 0

}

is narrower than the space L(K), we have

g̃(λQ0 + (1− λ)Q1) = g̃(Qλ) = inf
ẽ∈L(K)

Ξ[ẽ, χλ,K] � inf
ẽ∈Lλ(K)

Ξ[ẽ, χλ,K]

= inf
ẽ∈L(Kλ)

Ξ[ẽ, χλ,K
λ] + inf

ẽ∈L(K1−λ)
Ξ[ẽ, χλ,K

1−λ] = λg̃(Q0) + (1− λ)g̃(Q1), (2.9)

which implies the convexity of g̃(Q).

We prove the strict convexity of g̃(Q) for ξ �= 0. Assume the contrary. Then there is an

interval [Q0, Q1] ⊂ [0, 1], Q0 < Q1, and a number λ0 ∈ (0, 1) such that

g̃(λ0Q0 + (1− λ0)Q1) = λ0g̃(Q0) + (1− λ0)g̃(Q1).
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From (2.9) and the above identity it follows that for χλ

inf
ẽ∈L(K)

Ξ[ẽ, χλ0 ,Ω] = inf
ẽ∈Lλ0 (K)

Ξ[ẽ, χλ0 ,Ω]. (2.10)

By (2.2), a unique minimizer of the left-hand side of (2.10) has the form

ẽχλ0 = (χλ0(1−Qλ0)(A
+)−1 − (1− χλ0)Qλ0(A

−)−1)ξ −Qλ0(1−Qλ0)(χλ0(A
+)−1

+ (1− χλ0)(A
−)−1)(Qλ0(A

+)−1 + (1−Qλ0)(A
−)−1)−1[A−1]ξ,

Qλ0 = λ0Q0 + (1− λ0)Q1.

(2.11)

To construct a minimizer of the right-hand side of (2.10), we consider two problems

Ξ[ẽ
χλ0
λ0

, χλ0 ,K
λ0 ] = inf

ẽ∈L(Kλ0 )
Ξ[ẽ, χλ0 ,K

λ0 ], ẽ
χλ0
λ0

∈ L(Kλ0),

Ξ[ẽ
χλ0
1−λ0

, χλ0 ,K
1−λ0 ] = inf

ẽ∈L(K1−λ0)
Ξ[ẽ, χλ0 ,K

1−λ0 ], ẽ
χλ0
1−λ0

∈ L(K1−λ0).

For ẽ
χλ0
λ0

and ẽ
χλ0
1−λ0

we have a formula similar to (2.11). By the next to last equality in (2.9),

the minimizer ẽχλ0 of the right-hand side of (2.10) has the form

ẽχλ0 (x) =

⎧

⎨

⎩

ẽ
χλ0
λ0

(x), x ∈ Kλ0 ,

ẽ
χλ0
1−λ0

(x), x ∈ K1−λ0 .

By (2.10), ẽχλ0 (x) is also a minimizer of the left-hand side of (2.10). By uniqueness, the integrals

over Kλ0 and K1−λ0 on the right-hand side of (2.11) vanish:

0 = (Q0(1−Qλ0)(A
+)−1 − (1−Q0)Qλ0(A

−)−1)ξ −Qλ0(1−Qλ0)(Q0(A
+)−1

+ (1−Q0)(A
−)−1)(Qλ0(A

+)−1 + (1−Qλ0)(A
−)−1)−1[A−1]ξ,

0 = (Q1(1−Qλ0)(A
+)−1 − (1−Q1)Qλ0(A

−)−1)ξ −Qλ0(1−Qλ0)(Q1(A
+)−1

+ (1−Q1)(A
−)−1)(Qλ0(A

+)−1 + (1−Qλ0)(A
−)−1)−1[A−1]ξ.

Subtracting the first identity from the second one and canceling by Q1 −Q0, we get ξ(Qλ0) = 0

which contradicts the second assertion in (2.8).

Example 2.1. In the one-dimensional case,

F±(ẽ) = a±(ẽ− c±), a±, c± ∈ R1, a± > 0, ẽ(·) ∈ L2(0, l),

l
∫

0

ẽ(x) dx = 0. (2.12)

From (2.3) it follows that

g̃(Q) = − [ac]2Q(1−Q)

a−Q+ a+(1−Q)
, Q ∈ [0, 1]. (2.13)
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We indicate necessary and sufficient conditions for the function g̃ defined by (2.3) to be equal

to the function

g̃0(Q) = − Q(1−Q)

αQ+ β(1−Q)
, α, β > 0. (2.14)

Since

g̃′0(0) = − 1

β
, g̃′0(1) =

1

α
, g̃′(0) = −〈(A+)−1ξ, ξ〉, g̃′(1) = 〈(A−)−1ξ, ξ〉, (2.15)

this is possible only if

g̃0(Q) = − 〈(A+)−1ξ, ξ〉〈(A−)−1ξ, ξ〉Q(1−Q)

〈(A+)−1ξ, ξ〉Q+ 〈(A−)−1ξ, ξ〉(1−Q)
. (2.16)

Since formula (2.16) is simpler than (2.3), we can calculate

g̃′′0(Q) =
2〈(A+)−1ξ, ξ〉2〈(A−)−1ξ, ξ〉2

(〈(A+)−1ξ, ξ〉Q+ 〈(A−)−1ξ, ξ〉(1−Q))3
. (2.17)

Since the second order derivative is positive for ξ �= 0, the function g̃0 is strictly convex.

Lemma 2.3. The function g̃(Q) defined by (2.3) coincides with the function g̃0(Q) defined

by (2.16) if and only if for some λ

(A+)−1ξ = λ(A−)−1ξ. (2.18)

Proof. By (2.3), the equality g̃(Q) = g̃0(Q), Q ∈ [0, 1], is equivalent to the equality

〈((1−Q)(A+)−1 +Q(A−)−1)ξ, ξ〉〈(Q(A+)−1 + (1−Q)(A−)−1)ξ, ξ〉 − 〈(A+)−1ξ, ξ〉〈(A−)−1ξ, ξ〉
= Q(1−Q)〈(Q(A+)−1 + (1−Q)(A−)−1)−1[A−1]ξ, [A−1]ξ〉〈(Q(A+)−1 + (1−Q)(A−)−1)ξ, ξ〉.

Collecting like terms, we obtain the equality

〈[A−1]ξ, ξ〉2 = 〈B−1[A−1]ξ, [A−1]ξ〉〈Bξ, ξ〉,

where B = B(Q) = Q(A+)−1 + (1−Q)(A−)−1, which is equivalent to the identity

〈B−1/2[A−1]ξ,B1/2ξ〉2 = |B−1/2[A−1]ξ|2 |B1/2ξ|2.

Since the Schwarz inequality becomes equality only on proportional vectors, the assertion of the

lemma is equivalent to the existence of γ(Q) such that B−1/2[A−1]ξ = γ(Q)B1/2ξ, Q ∈ (0, 1).

Thus, we have

[A−1]ξ = γ(Q)(Q(A+)−1 + (1−Q)(A−)−1)ξ.

Hence

γ(Q) =
〈[A−1]ξ, ξ〉

Q〈(A+)−1ξ, ξ〉+ (1−Q)〈(A−)−1ξ, ξ〉 .

Substituting γ(Q) into the above equality, we find

〈(A−)−1ξ, ξ〉(A+)−1ξ = 〈(A+)−1ξ, ξ〉(A−)−1ξ,

which means that (A+)−1ξ and (A−)−1ξ are proportional.
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From the above lemmas and formula (1.8) we obtain the following assertion.

Theorem 2.1. For each function χ ∈ Z(Ω) the problem (1.6) is uniquely solvable. The

solution ẽχ is given by formula (2.3), and the equilibrium energy is given by

˜I[ẽχ, χ, t,Ω] = |Ω| ˜G(Q, t), (2.19)

where ˜G(Q, t) = (t− t∗)Q+ g̃(Q) + 〈A−ζ−, ζ−〉, t ∈ R1, Q ∈ [0, 1].

We note that the equilibrium energy is independent of a given function χ of the phase

distribution, but depends on the volume fraction of the domain occupied by the phase labeled

by ” + ”.

3 Model Problem in Two-Phase Media

We begin by considering the minimization problem

˜G( ˜Q(t), t) = min
Q∈[0,1]

˜G(Q, t), ˜Q(t) ∈ [0, 1], t ∈ R1. (3.1)

Since the function ˜G(·, t) is strictly convex and

˜GQ(0, 1) = t− ˜t+, ˜GQ(1, t) = t− ˜t−, ˜t± = t∗ ± 〈(A±)−1ξ, ξ〉, (3.2)

for the problem (3.1) the following assertions hold [2, Lemma 2.2]:

1) in the case ξ �= 0,
˜t− < ˜t+, ˜Q(t) = 1 for t � ˜t−, ˜Q(t) = 0 for t � ˜t+, ˜Q(t) is a unique solution to

the equation ˜GQ(Q, t) = 0 for t ∈ (˜t−,˜t+),

2) in the case ξ = 0,
˜t− = ˜t+ = t∗, ˜Q(t) = 1 for t < t∗, ˜Q(1) = 0 for t > t∗, the values of ˜Q(t∗)
occupy the segment [0, 1].

(3.3)

We assume that ξ �= 0, t1, t2 ∈ [˜t−,˜t+], t2 > t1. From (3.2) and (3.3) it follows that
˜GQ( ˜Q(t2), t2) = ˜GQ( ˜Q(t1), t1). Then

g̃′( ˜Q(t2))− g̃′( ˜Q(t1)) = −(t2 − t1). (3.4)

Since the function g̃′(Q) is strictly monotonically increasing on [0, 1], from (3.4) we find

˜Q(t2) < ˜Q(t1). (3.5)

Since the bounded function ˜Q(t), t ∈ [˜t−,˜t+], is monotone, ˜Q(t1) → Q as t1 → t2. By (3.4), we

have Q = ˜Q(t2) which implies the continuity of ˜Q(·) on [˜t−,˜t+] and, consequently, on R1.

Using the positivity of g̃′′(Q), Q ∈ [0, 1], and applying the implicit function theorem to

the equation ˜GQ(Q, t) = 0, we prove that ˜Q(t), t ∈ [˜t−,˜t+], is infinitely differentiable and the

following equality holds:

˜Q′(t) = − 1

g̃′′( ˜Q(t))
, t ∈ [˜t−,˜t+], (3.6)
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which can be regarded as an ordinary first order differential equation for ˜Q(t) with separated.

variables.

Now, we study the solvability of the problem (1.7). In what follows,

imin(t) =

{

t+ 〈A+ζ+, ζ+〉, t � t∗,

〈A−ζ−, ζ−〉, t � t∗,
(3.7)

and the equilibrium energy is defined by

˜i(t) = inf
ẽ∈L(Ω),χ∈Z(Ω)

|Ω|−1
˜I[ẽ, χ, t,Ω] = inf

χ∈Z(Ω)
inf

ẽ∈L(Ω)
|Ω|−1

˜I[ẽ, χ, t,Ω]

= inf
χ∈Z(Ω)

|Ω|−1
˜I[ẽχ, χ, t,Ω] = min

Q∈[0,1]
˜G(Q, t) = ˜G( ˜Q(t), t). (3.8)

Theorem 3.1. For every t ∈ R1 the problem (1.7) is solvable, and the set of solutions is

exhausted by the pairs (êt, χ̂t), where êt = ẽχ̂t is defined by (2.2) and χ̂t is an arbitrary function

such that
1

|Ω|
∫

Ω

χ̂t(x) dx = ˜Q(t),

where ˜Q(t) is a solution to the problem (3.1). The equilibrium energy ˜i(t) possesses the following

properties:

1) in the case ξ �= 0, ˜i(·) ∈ C1(R1) is strictly concave on [˜t−,˜t+], ˜i′(t) = ˜Q(t),
˜i(t) = imin(t) for t �∈ (˜t−,˜t+),

2) in the case ξ = 0, ˜i(t) = imin(t).

(3.9)

Proof. By (3.8), the problem (1.7) is solvable and the set of solutions possesses the required

properties.

By (3.8) and (2.19), the equilibrium energy ˜i(·) is the infimum with respect to Q ∈ [0, 1] of

the family of linear functions ˜G(Q, ·). Therefore, it is concave. From (3.3) and (2.19) for ˜G(Q, t)

we obtain the identities in (3.9) for ˜i(t), t �∈ (˜t−,˜t+).
By properties of the equilibrium energy, the following assertions hold [3].

1) There exists a set L ⊂ R1 with at most countable complement, where the function ˜i(t)

has the monotonically decreasing continuous derivative ˜i′(t) ∈ [0, 1] on L .

2) At each point t ∈ R1 \ L , the function ˜i(t) has one-sided derivatives 1 � ˜i′(t − 0) >
˜i′(t+ 0) � 0; moreover, ˜i′(t− 0) = lim

τ∈L ,τ<t,τ→t
˜i′(τ) and ˜i′(t+ 0) = lim

τ∈L ,τ>t,τ→t
˜i′(τ).

Using these assertions, we can complete the proof of (3.9).

For any t and t′ it is obvious that

˜i(t′) � |Ω|−1
˜I[êt, χ̂t, t

′] = |Ω|−1
˜I[êt, χ̂t, t] + (t′ − t) ˜Q(t) = ˜i(t) + (t′ − t) ˜Q(t).

Therefore,

˜i(t′)−˜i(t)

t′ − t
� ˜Q(t), t′ > t,

˜i(t)−˜i(t′)
t− t′

� ˜Q(t), t > t′.
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For t ∈ L , passing to the limit in the above inequalities as t′ → t, we get

˜i′(t) = ˜Q(t) ∀ t ∈ L . (3.10)

By assertions 1), 2) and the continuity of ˜Q(t), we have L = R1 and formula (3.10) holds

for all t. This means that the equilibrium energy ˜i(·) is continuously differentiable and ˜i′(t) is

strictly monotonically decreasing for t ∈ [˜t−,˜t+], which implies the strict concavity of ˜i(t) on

this interval.

Example 3.1. We consider the particular case

A+ = A− = A, [ζ] �= 0. (3.11)

Taking into account the identity ξ = A[ζ], from (2.2), (2.3), (2.17), (3.6), (3.10) we find

ẽχ = (χ−Q)[ζ], g̃(Q) = −Q(1−Q)〈A[ζ], [ζ]〉, ˜Q(t) =
˜t+ − t

˜t+ − ˜t−
,

˜i(t) = −1

2

(˜t+ − t)2

˜t+ − ˜t−
+ 〈Aζ−, ζ−〉, t ∈ [˜t−,˜t+], ˜t± = −2〈A[ζ], ζ∓〉.

(3.12)

4 Equilibrium States of Two-Phase Media for
the Model and Original Problems

By the original problem in a two-phase medium we mean the variational problem of mini-

mizing the functional (1.5)

I[ut, χt, t] = inf
u∈X(Ω),χ∈Z(Ω)

I[u, χ, t], ut ∈ X(Ω), χt ∈ Z(Ω). (4.1)

It is obvious that

inf
u∈X(Ω),χ∈Z(Ω)

I[u, χ, t,Ω] = inf
ẽ∈L0(Ω),χ∈Z(Ω)

˜I[ẽ, χ, t,Ω]. (4.2)

An analog of the representation (1.8) of the functional (1.5) has the form

I[u, χ, t,Ω] = Λ[u, χ,Ω] + |Ω|(t− t∗)Q+ |Ω|〈A−ζ−, ζ−〉, (4.3)

where

Q =
1

|Ω|
∫

Ω

χdx,

Λ[u, χ,Ω] =

∫

Ω

{〈(χA+ + (1− χ)A−)e(∇u), e(∇u)〉 − 2(χ−Q)〈e(∇u), ξ〉} dx.

For all Ω there exists a function g(Q), Q ∈ [0, 1], such that [4]

inf
u∈X(Ω),χ∈ZQ(Ω)

I[u, χ, t,Ω] = |Ω|g(Q),

ZQ(Ω) =

{

χ ∈ Z(Ω) :
1

|Ω|
∫

Ω

χdx = Q, Q ∈ [0, 1]

}

.
(4.4)
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The function g(Q) is convex, g(0) = g(1) = 0, g(Q) ≡ 0 for ξ = 0, g(Q) < 0 for ξ �= 0, Q ∈ (0, 1).

By the equilibrium energy of a two-phase medium in the case of the original problem we

mean

i(t) = |Ω|−1 inf
u∈X(Ω),χ∈Z(Ω)

I[u, χ, t,Ω]

= |Ω|−1 inf
Q∈[0,1]

inf
u∈X(Ω),χ∈ZQ(Ω)

{Λ[u, χ,Ω] + |Ω|(t− t∗)Q+ |Ω|〈A−ζ−, ζ−〉} = min
Q∈[0,1]

G(Q, t),

G(Q, t) = (t− t∗)Q+ g(Q) + 〈A−ζ−, ζ−〉.
(4.5)

The function i(t) has been studied less than its model counterpart (3.9) (cf. [5]) We know

that i(t) is concave and the following assertions hold:

1) in the case ξ �= 0, there exist t− < t∗ < t+ such that i(t) = imin(t) for

t �∈ (t−, t+) and i(t) < tmin(t) for t ∈ (t−, t+),

2) in the case ξ = 0, i(t) = imin(t).

(4.6)

In addition, assertions 1), 2) in Section 3 hold for i(t).

By (2.3), the function g̃(Q) is the same for all χ ∈ ZQ(Ω). Then

|Ω|g̃(Q) = inf
ẽ∈L(Ω)

Ξ[ẽ, χ,Ω] = inf
ẽ∈L(Ω),χ∈ZQ(Ω)

Ξ[ẽ, χ,Ω]

� inf
ẽ∈L0(Ω),χ∈ZQ(Ω)

Ξ[ẽ, χ,Ω] = inf
u∈X(Ω),χ∈ZQ(Ω)

Λ[u, χ,Ω] = |Ω|g(Q).

Therefore,

g̃(Q) � g(Q) ∀ Q ∈ [0, 1]. (4.7)

The equality in (4.7) is attained at Q = 0 and Q = 1.

Lemma 4.1. We assume that g̃(Q0) = g(Q0) for some A±, ζ±, Q0 ∈ [0, 1]. Then the set of

solutions (uQ, χQ) to the problem

Λ[uQ, χQ,Ω] = inf
u∈X(Ω),χ∈ZQ(Ω)

Λ[u, χ,Ω], uQ ∈ X(Ω), χQ ∈ ZQ(Ω) (4.8)

coincides with the set of solutions to the equation

e(∇uQ) = (χQ(1−Q)(A+)−1 − (1− χQ)Q(A−)−1)ξ −Q(1−Q)(χQ(A+)−1

+ (1− χQ)(A−)−1)(Q(A+)−1 + (1−Q)(A−)−1)−1[A−1]ξ,

uQ ∈ X(Ω), χQ ∈ ZQ(Ω),

(4.9)

with Q = Q0.

Proof. Since |Ω|g̃(Q0) = Ξ[ẽχ, χ,Ω] for all χ ∈ ZQ0(Ω) and

|Ω|g(Q0) = inf
u∈X(Ω),χ∈ZQ0

(Ω)
Λ[u, χ,Ω] = inf

ẽ∈L0(Ω),χ∈ZQ0
(Ω)

Ξ[ẽ, χ,Ω],

the equality g̃(Q0) = g(Q0) implies

Ξ[ẽχ, χ,Ω] = inf
ẽ∈L0(Ω),χ∈ZQ0

(Ω)
Ξ[ẽ, χ,Ω] ∀ χ ∈ ZQ0(Ω), (4.10)
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and the solvability of the problem (4.8) is equivalent to the solvability of the problem

Ξ[ẽ0, χ0,Ω] = inf
ẽ∈L0(Ω),χ∈ZQ0

(Ω)
Ξ[ẽ, χ,Ω], ẽ0 ∈ L0(Ω), χ0 ∈ ZQ0(Ω). (4.11)

If there exists a function χ0 ∈ ZQ0(Ω) such that ẽ0 = ẽχ0 , then the solvability of the problem

(4.10) implies the solvability of the problem (4.11), which implies

Ξ[ẽχ, χ,Ω] = Ξ[ẽ0, χ0,Ω] ∀ χ ∈ ZQ0(Ω).

Setting χ = χ0 and taking into account the uniqueness of a solution to the problem (2.1), we

have ẽχ0 ∈ L0(Ω).

By the relation

|Ω|˜i(t) = inf
ẽ∈L(Ω),χ∈Z(Ω)

˜I[ẽ, χ, t,Ω] � inf
ẽ∈L0(Ω),χ∈Z(Ω)

˜I[ẽ, χ, t,Ω] = |Ω|i(t),

we conclude that
˜i(t) � i(t) ∀ t ∈ R1. (4.12)

From (4.12) we obtain the relations connecting the phase transition temperatures t± and ˜t± for

the original and model problems

˜t− � t− � t∗ � t+ � ˜t+. (4.13)

If ξ = 0, then all the inequalities in (4.13) becomes equalities and

˜i(t) = i(t) = imin(t), t ∈ R1. (4.14)

Lemma 4.2. Let ξ �= 0. Assume that for some t0

˜i(t0) = i(t0). (4.15)

Then the problem

G(Q(t), t) = inf
Q∈[0,1]

G(Q, t), Q(t) ∈ [0, 1], (4.16)

at t = t0 has a unique solution Q(t0) and

Q(t0) = ˜Q(t0), g(Q(t0)) = g̃( ˜Q(t0)). (4.17)

Proof. By (3.9), for ξ �= 0 the function ˜i(t) is continuously differentiable. We prove that,

under the assumption (4.15), the function i(t) has the derivative i′(t0) = ˜i′(t0). By (4.12) and

(4.15), i(t)− i(t0) � ˜i(t)−˜i(t0) for all t. Consequently,

i(t)− i(t0)

t− t0
�

˜i(t)−˜i(t0)

t− t0
, t > t0,

i(t)− i(t0)

t− t0
�

˜i(t)−˜i(t0)

t− t0
, t < t0.

At each point t = t0, the function i(t) has the one-sided derivative i′(t0 ± 0) satisfying the

inequality i′(t0 − 0) � i′(t0 + 0). Passing to the limit in the above relations as t → t0, we

conclude that i′(t0 +0) � ˜i′(t0) � i′(t0 − 0), the derivative i′(t0) exists and coincides with ˜i′(t0).
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Let {un ∈ X(Ω), χn ∈ Z(Ω)} be the set of all sequences minimizing the functional (1.5) with

t = t0. Denote by Q̌(t0) the union of sets of all concentration points for the number sequences

Qn =
1

|Ω|
∫

Ω

χn dx.

As known [6], if the derivative i′(t0) exists, this set consists of the single point i′(t0).
Let Q(t0) be a solution to the problem (4.16), and let {un ∈ X(Ω), χn ∈ ZQ(t0)

(Ω)} be a

minimizing sequence for the problem (4.4). By (4.5), this sequence also minimizes the functional

(1.5) with t = t0. Therefore, Q(t0) ∈ Q̌(t0) and, consequently, Q(t0) = i′(t0).
Thus, if the derivative i′(t0) exists, then the problem (4.16) has a unique solution ̂Q(t0) =

i′(t0). In this case, formula (3.10) implies the first identity in (4.17). Since

|Ω|i(t0) = g(Q(t0)) + (t0 − t∗)Q(t0) + 〈A−ζ−, ζ−〉,

|Ω|˜i(t0) = g̃( ˜Q(t0)) + (t0 − t∗) ˜Q(t0) + 〈A−ζ−, ζ−〉,

we obtain the second identity in (4.17).

Theorem 4.1. If the condition (4.15) holds, then the sets of solutions to the problem (4.1)

with t = t0 and Equation (4.9) with Q0 = ˜Q(t0) coincide.

It suffices to use (4.5) and Lemmas 4.2 and 4.1.

5 Equilibrium States of Original Problem

Based on the results obtained in the above sections, we show that the problem (4.1) has no

solutions under certain restrictions on the parameters of the problem. If the condition (3.11) in

[7] holds, then we can find an explicit formula for g(Q) (cf. [8, formula (3.2)]). Analyzing this

formula for g(Q), we conclude that the equality g(Q0) = g̃(Q0) is valid for some Q0 ∈ (0, 1) if

and only if

[ζ] = e(k ⊗ c) for some k, c ∈ Rm, m � 2, |k| = 1, c �= 0; (5.1)

here, (k⊗ c)ij = kicj , e(k⊗ c)ij =
1
2(kicj + kjci), i, j = 1, . . . ,m, and the validity of the equality

g(Q0) = g̃(Q0) at some point Q0 ∈ (0, 1) implies that this equality g(Q) = g̃(Q) holds at all

points Q ∈ (0, 1). Thus, the condition (5.1) can be regarded as a criterion for the functions g(Q)

and g̃(Q) to be equal.

Since g̃(Q) and g(Q) coincide in view of (3.8) and (4.5), the equilibrium energies ˜i(t) and i(t)

also coincide. By Lemma 4.2, this means that g̃(Q) and g(Q) coincide. Therefore, the condition

(5.1) is also a criterion for the coincidence of the equilibrium energies in the original and model

problems. We note that, in this case, ˜t± = t±.
If (3.11) and (5.1) hold, then Equation (4.9) takes the form

e(∇uQ) = (χQ −Q)e(k ⊗ c), uQ ∈ X(Ω), χQ ∈ ZQ(Ω), Q ∈ [0, 1]. (5.2)

Lemma 5.1. For Q ∈ (0, 1) the problem (5.2) has no solutions in any domain Ω ⊂ Rm,

m � 2.
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Proof. For the sake of brevity we omit the superscript Q in the notation of u and χ and

write Equation (5.2) in the coordinate form

uixj
+ ujxi

= (χ−Q)(kicj + kjci). (5.3)

Let k⊥ be a unit vector in Rm, orthogonal to k. Multiplying both sides of (5.3) by kikj , k
⊥
i k

⊥
j ,

k⊥i kj and summarizing with respect to i, j from 1 to m, we find

k · ∇(u · k) = (χ−Q)(c · k),
k⊥ · ∇(u · k⊥) = 0,

k · ∇(u · k⊥) + k⊥ · ∇(u · k) = (χ−Q)(c · k⊥).
(5.4)

From the second identity in (5.4) it follows that u · k⊥ is constant along any direction k⊥, which
implies u · k⊥ = 0 for any k⊥. Therefore, by the first and third identities in (5.4),

k · ∇(u · k) = (χ−Q)(c · k),
k⊥ · ∇(u · k) = (χ−Q)(c · k⊥)

(5.5)

for all k⊥. We multiply the first identity by c · k⊥ and the second one by c · k. Subtracting, we
find

τ · ∇(u · k) = 0, τ = (c · k⊥)k − (c · k)k⊥. (5.6)

Since |τ |2 = (c · k)2 + (c · k⊥)2, c �= 0, there exists a vector k⊥ such that τ �= 0. Then from

(5.5) it follows that the function u · k is constant along τ . By the boundary conditions, we have

u · k = 0. Thus, the function satisfying (5.3) vanishes. Then from (5.5) we find

(χ−Q)2((c · k)2 + (c · k⊥)2) = 0 ∀k⊥.

Integrating over Ω, we get Q(1−Q)((c · k)2 + (c · k⊥)2) = 0, which is impossible for Q ∈ (0, 1)

and c �= 0.

We assume that ξ = e(k ⊗ c), k, c ∈ R2, |k| = 1, c �= 0. A simple calculation leads to the

following assertions.

(1) If k and c are linearly independent, then the eigenvalues of the matrix ξ have different

signs: λ+ > 0 and λ− < 0 and these eigenvalues and the corresponding normed eigenvectors are

expressed by

λ+ =
1

2
(k · c+ |c|), z+ =

1√
2|c|

1

(1 + |c|−1c · k)1/2 (|c|k + c),

λ− =
1

2
(k · c− |c|), z− =

1√
2|c|

1

(1− |c|−1c · k)1/2 (|c|k − c).

(5.7)

(2) if k and c are linearly dependent and c = ±|c|k, then the eigenvalues of the matrix ξ and

the corresponding eigenvectors take the form

λ1 = ±|c|, z1 = k, λ2 = 0, z2 = k⊥. (5.8)
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Assume that λ1, λ2 are eigenvalues and z1, z2 are the corresponding orthonormal eigenvectors

of a matrix ξ ∈ R2×2
s . Then the following assertions hold.

(3) If λ1 �= 0 and λ2 = 0, then ξ = e(k ⊗ c) with k = z1 and c = λ1z1.

(4) if λ1 > 0 and λ2 < 0, then ξ = e(k ⊗ c) with

k =
1√

λ1 − λ2
(z1

√

λ1 + z2
√

|λ2|), c =
√

λ1 − λ2(z1
√

λ1 − z2
√

|λ2|).

By the above assertions (1)–(4), Lemma 5.1, and Theorem 4.1, we derive the following

assertion.

Theorem 5.1. Assume that A± = A, [ζ] �= 0 and Ω is a domain in Rm, m � 2. Then the

following assertions hold:

(1) if (5.1) holds, then the problem (4.1) has no solution for any t ∈ (t−, t+),

(2) if m = 2, then the problem (4.1) has no solution for any [ζ] such that det[ζ] � 0 and

t ∈ (t−, t+).

The solvability of the problem (4.1) was studied, for example, in [4] and [8]–[10]. The results

obtained in the cited works concern the case of isotropic moduli of elasticity. Theorem 5.1 is an

attempt to study the problems without the isotropy condition. We note that it is reasonable to

study the solvability of the problem (4.1) only for t ∈ (t−, t+) (cf. [11]).
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