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PARALLEL VARIABLE-TRIANGULAR ITERATIVE
METHODS IN KRYLOV SUBSPACES

V. P. Il’in∗ UDC 519.6

The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving sys-
tems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting
from grid approximations of multidimensional problems. For preconditioning, generalized block
algorithms of symmetric successive over-relaxation or incomplete factorization type with matching
row sums are used. Preconditioners are based on variable-triangular matrix factors with multiple
alternations in triangular structure. For three-dimensional grid algebraic systems, methods are
based on nested factorizations, as well as on two-level iterative processes. Successive approxi-
mations in Krylov subspaces are computed by applying a family of conjugate direction algorithms
with various orthogonality and variational properties, including preconditioned conjugate gradient,
conjugate residual, and minimal error methods. Bibliography: 23 titles.

1. Introduction

The aim of this paper is to design and study parallel iterative methods in Krylov subspaces
for solving systems of linear algebraic equations (SLAEs)

Au = f, A ∈ RN,N , u, f ∈ RN , (1)

with real large sparse matrices of order N ≈ 1010 and more having large condition numbers
(� 1013), whose implementation on modern multiprocessor computer systems (MPS) is a
challenging practical problem. In particular, in solving direct and inverse interdisciplinary
problems of mathematical modeling with real data, including nonlinear and nonstationary
ones, this stage of computations can take about 80% of the time of the machine experiment
because here the amount of computer resources consumed increases nonlinearly as the number
of degrees of freedom grows.

We are mainly interested in SLAEs that arise from approximations of multi-dimensional
initial-boundary-value problems, characterized by variable coefficients and contrasting physi-
cal properties, using finite-difference, finite volume, finite element, or discontinuous Galerkin
methods [1]. It is assumed that in such cases, special high-performance methods of Fast Fourier
Transform type are not directly applicable.

The main approaches used are based on preconditioned iterative algorithms in Krylov sub-
spaces. A typical easily invertible preconditioner is an approximate triangular factorization of
the form

B = (G+ L)G−1(G+ U) = G+ L+ U + LG−1U, (2)

where L and U are the lower and upper block triangular parts of an original matrix A =
D + L+ U , and G,D are nonsingular block diagonal matrices. Note that if in (2) the matrix
G is determined from the matrix equation

G = D − LG−1U, (3)

then an exact block factorization of the matrix A is obtained.
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On the base of approximate counterparts of formula (3), various methods of symmetric
successive over-relaxation (SSOR) type, as well as explicit and implicit incomplete factor-
ization methods (in particular, ILU algorithms for incomplete triangular decomposition) are
constructed, see the surveys [2–7].

The methods considered are efficient methods for solving block tridiagonal SLAEs, arising in
many applications. For example, if, in a two-dimensional rectangular domain on a rectangular
(possibly nonuniform) grid with the node number N = NxNy (Nx and Ny are the numbers
of steps along the coordinates x and y, respectively), one uses the natural ordering and the
standard five- or nine-points approximation of diffusion type equations [1], then an algebraic
system of the form

Au =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 U1 0
L2 D2 U2

. . .
. . .

. . .

UNx−1

0 LNx DNx

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
·

uNx

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

f1
f2
·

fNx

⎤
⎥⎥⎥⎥⎦

(4)

is obtained. Here, the matrices D = {Di}, L = {Li}, and U = {Ui} are block diagonal
(Di, Li ∈ RNy ,Ny), and the matrix A is assumed to be symmetric positive definite (SPD).

Possible generalizations will separately be discussed below. Note that if the matrix A has
the block tridiagonal structure (4), then its exact block factorization is provided by rela-
tions (2), (3), which, in this case, reduce to block sweeping and involve the block diagonal
matrix G = block-diag{Gi}, whose blocks Gi are determined recursively. Since the imple-
mentation of such an algorithm requires time-consuming inversion of the matrices Gi, it is
preferable to construct cost-effective iterative methods that use banded approximate inverses
of banded matrices. In this case, the preconditioning quality can be improved based on the
following row-sum matching approach, see [2, 5, 8]:

G1 = D1, sGi = Di − Li
sG−1
i−1Ui−1 − θSi, i = 1, 2, ..., Nx. (5)

Here, sG−1
i−1 is the tridiagonal part of the matrix G−1

i−1 (its principal diagonal and two codiago-
nals); θ ∈ [0, 1] is a compensation parameter, and Si are the diagonal matrices determined from
the principle of generalized row-sum matching, or filtration, in accordance with the formulas

Sy(l) = [L(G−1 − ( sG−1)U ]y(l), l = 1,m,

where
S = block-diag{Si}, sG = diag{ sG−1

i = 3-diag{G−1
i }};

y(l) are some trial, or filter, vectors; m = 1 or m = 2.
A simpler way to construct a preconditioner consists in setting Gi = ω−1Di, instead of

solving (5), which leads to the block symmetric successive over-relaxation (BSSOR) method [2,
5]. The optimal value of the relaxation parameter ω is chosen in the semiopen interval [1, 2).

If the computational domain is a three-dimensional parallelepiped and the grid has N =
NxNyNz nodes (Nz is the number of steps along the axis z), then the corresponding SLAE
can also be represented in the form (4), but the matrices Di, Li, Ui will be of order NyNz.

Denote the characteristic step size of the grid by h and assume that the grid is regular, or
quasi-uniform, i.e., all step sizes of the grid are of the same order as h → 0. Then the condition
number of the matrix A is of order

cond(A) = max{λ(A)}/min{λ(A)} = O(h−2).

Moreover, cond(A) increases as the grid becomes more nonuniform and the coefficients of the
original equation to be solved become more contrasting. By using a preconditioning matrix B
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of the form (2), the condition number of the resulting preconditioned SLAE can be decreased
by an order of magnitude, i.e., cond(B−1A) = O(h−1). By applying iterative algorithms in

Krylov subspaces, such a preconditioned system can be solved in n = O(h−1/2) iterations.
This high efficiency is deteriorated by the fact that for the algorithms under consideration, it

is difficult to improve the performance on multiprocessor computer systems because inversion
of the preconditioning matrix B requires solution of poorly parallelizable triangular linear
systems.

In [9], a two-threaded block version of the variable-triangular factorization of the original
matrix was proposed, where each of the factors in the preconditioner B was not a lower
or an upper triangular matrix but consisted of block rows of different orientations: some
were lower triangular, and the remaining ones were upper triangular (this decomposition was
called “twisted decomposition” by the authors; in the Russian literature, this approach is
conventionally referred to as the algorithm of counter sweeps, see [10]).

We will consider a generalization of this technique based on using variable-triangular ma-
trices L and U consisting of P block rows that successively switch from the lower to upper
triangular part of the matrix and vice versa. In this case, solution of linear systems with the
matrices G+ L and G+ U can be parallelized on P processors.

The present paper is organized as follows. Section 2 describes the variable-triangular itera-
tive methods of block symmetric successive over-relaxation and incomplete factorization types
in Krylov subspaces for solving two-dimensional grid boundary-value problems described by
block tridiagonal SLAEs of the form of (4). Section 3 deals with a generalization of the ap-
proach proposed to parallelizing solution of three-dimensional grid algebraic systems by using
the nested factorization methods, originally proposed in [11,12] and developed later by many
authors, see [13–15], which are widely used in the software in oil and gas industry [16]. Section
4 describes the variable-triangular preconditioned methods in Krylov subspaces of three types
(conjugate gradient, conjugate residual, and minimal error algorithms) with various variational
and orthogonality properties. In the Conclusion, we discuss directions of further research that
are promising with respect to increasing both the rate of convergence of iterations and the
parallel performance of the algorithms considered.

2. Variable-triangular methods for solving two-dimensional grid problems

When using the matrix (2) as a preconditioner for an iterative solution method, at every
iteration it is necessary to solve an auxiliary system of the form (see (32) in Sec. 4)

Bp ≡ (G+ L)G−1(G+ U)p = r. (6)

Its solution can be found by solving the two linear systems

(G+ L)v = r, (G+ U)p = Gv = w. (7)

As is known, solution of systems (7) with triangular matrices L,U is poorly parallelizable on
multiprocessor computer systems. As an alternative, we will consider matrices and methods of
the variable-triangular type. The definition of variable-triangular matrices and of algorithms
for solving the corresponding SLAEs is first illustrated on the example of block tridiagonal
systems of the form (4) in the case where Nx = 7 and “triangularity” changes only once:
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(G+ L)v ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 0 0 0 0 0 0
L2 G2 0 0 0 0 0
0 L3 G3 0 0 0 0
0 0 L4 G4 U4 0 0
0 0 0 0 G5 U5 0
0 0 0 0 0 G6 U6

0 0 0 0 0 0 G7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6
v7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
r2
r3
r4
r5
r6
r7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= r, (8)

(G+ U)p ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 U1 0 0 0 0 0
0 G2 U2 0 0 0 0
0 0 G3 U3 0 0 0
0 0 0 G4 0 0 0
0 0 0 L5 G5 0 0
0 0 0 0 L6 G6 0
0 0 0 0 0 L7 G7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3
p4
p5
p6
p7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

w6

w7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gv. (9)

In relations (8), (9), the matrices L, U are not the same as in (2), but the sums L+ U are
the same in both cases.

For these structures of the matrices G+L and G+U , formula (3) for G, which ensures the
equality B = A, remains intact. However, in this case, the recurrence relation (5) for computing
the blocks Gi changes significantly. Now, they are computed by the counter sweeping from
top and bottom to center in accordance with the following formulas:

G1 = D1, Gi = Di − Li
sG−1
i−1Ui−1 − θSi,

Siy
(l) = Li(G

−1
i−1 − sG−1

i−1)Ui−1y
(l), i = 2, . . . ,m,

GNx = DNx , Gi = Di − Ui
sG−1
i+1Li+1 − θSi,

Siy
(l) = Ui(G

−1
i+1 − sG−1

i+1)Li+1y
(l), i = Nx − 1, . . . ,m+ 2,

Gm+1 = Dm+1 − Lm+1
sG−1
m Um − Um+1

sG−1
m+2Lm+2 − θSm+1,

Sm+1y
(l) = [Lm+1(G

−1
m − sG−1

m )Um + Um+1(G
−1
m+2 − sG−1

m+2)Lm+2]y
(l).

Naturally, all the 2m + 1 tridiagonal matrices Gi are computed once before iteration and
then stored. In this case, the forward (i = 1, ...,m) and backward sweeps (i = 2m+1, ...,m+2)
are easily parallelized on two threads, or processor cores.

Each of the equations in (8), (9) can be solved in parallel as follows. From (8) the block
unknowns are computed in the following order: first, v1 = G−1

1 r1, vi = G−1
i (ri − Uivi+1) for

i = 2, 3 and v7 = G−1
7 r7, vi = G−1

i (ri−Livi−1) for i = 6, 5 are computed synchronously; finally,

one computes v4 = G−1
4 (r4 − L4r3 − U4r5). Using similar formulas but in a different order,

one solves SLAE (9): first, one computes p4, and then p3, p2, p1 and p5, p6, p7 are computed in
parallel.

In order to pass from a particular case to the general description of the variable-triangular
method, it is necessary to formalize the large-block structure of the matrices G + L and
G+ U = (G+ L)� for sufficiently large values of the block order Nx.

Each of the matrices in SLAEs of the forms (8), (9) can be represented as two diagonal blocks
of the same (for simplicity) block order m separated by a block row and a block column. These
“large” blocks are lower and upper block triangular.

We define a periodic structure as a pair of matrix blocks, the upper left one being lower
triangular, and the other one being upper triangular. These blocks are separated by a “cross”

284



formed by a block tridiagonal block row and a block diagonal block column. Thus, the block
order of these matrices is 2m+ 1.

Now we turn to the more general case of multi-variable triangulation and assume that the
matrices A, G + L, and G + U have a periodic block tridiagonal structure with block order
Nx = (2m+ 1)P + P − 1. In this case, matrices with twice-variable triangulation of the form
(8), (9) will consist of diagonal blocks, each of which has order 2m+ 1 and is separated from
its neighbors by a “cross” consisting of one block row and one block column. Denoting these

“principal blocks” in G + L and G + U by pHs and qHs, respectively, s = 1, 2, . . . , P , we can
write the resulting SLAE as follows:

(G+ L)v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pH1
pU1 0 0 0

0 sG1 0 0

0 pL2
pH2

pU2

0 0 0 sG2
. . .

. . .
. . .

. . .
. . . sGP−1 0

0 0 pLP
pHP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pv1
sv1
pv2
sv2
...

svP−1

pvP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pr1
sr1
pr2
sr2
...

srP−1

prP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

(G+ U)p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qH1 0 0 0 0
qL1

sG1
qU1 0

0 0 qH2 0

0 0 qL2
sG2

qU2

. . .
. . .

. . .
qLP−1

sGP−1
qUP−1

0 0 0 qHP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qp1
sp1
qp2
sp2
...

spP−1

qpP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qw1

sw1

qw2

sw2
...

swP−1

qwP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Here, sGs = Gqs , where qs = (2m+ 1)s + 1, is an “ordinary” tridiagonal matrix (9) of order

Ny, and the matrices pLs, qLs, pUs, and qUs are the following block rows and columns:

pLs =

⎡
⎢⎢⎢⎣

Lqs+1

0
...
0

⎤
⎥⎥⎥⎦ , pUs =

⎡
⎢⎢⎢⎣

0
...
0

Uqs−1

⎤
⎥⎥⎥⎦ ∈ R2m+1,Ny ,

qLs = [0 . . . 0Lqs ] ∈ RNy ,2m+1,

qUs = [Uqs 0 . . . 0].
(12)

As is seen from (10), (11), the vectors pvs, prs, qps, qws have dimension (2m+1)Ny, and each of
the vectors svs, srs, sps, sws has dimension Ny.

The solution of algebraic systems (10) and (11) on an MPS can be carried out in parallel,
but different computational schemes must be used. In SLAE (10), first the variable separators
svs = sG−1

s srs, s = 1, 2, . . . , P − 1, are simultaneously computed, and then the large block
components are determined from P systems of the form

pHspvs = prs − pLssvs−1 − pUssvs+1. (13)

In this case, each of systems (13) is solved similarly to SLAE (8), i.e., using counter sweeping
from top and bottom to center.

Equations of the form (11) are solved in the reverse order. First, from the systems

qHsqps = qws, s = 1, 2, . . . , P, (14)
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the “large” subvectors qps are simultaneously determined. In this case, similarly to the imple-
mentation of (9), the counter sweepings from center to top and bottom are applied. At the
final stage, the components of the separator are computed by solving the SLAEs

sGssps = sws − sLsqps−1 − sUsqps+1, s = 1, 2, . . . , P − 1. (15)

3. Variable-triangular algorithms for three-dimensional problems

When solving three-dimensional boundary-value problems, we focus on the standard seven-
point approximation of diffusion type equations on parallelepipedal grids. The coefficient
matrix of the system of equations is of order N = NxNy Nz. Instead of using (4), one can
represent it in the form

A = D + L1 + U1 + L2 + U2 + L3 + U3. (16)

Here, D is the principal diagonal of the original matrix, whereas Ll and Ul, l = 1, 2, 3, are
the codiagonals of the matrix A related to its lower and upper triangular parts. The indices
l = 1, 2, 3 can be interpreted as those corresponding to the Cartesian variables x, y, z if three-
point approximations of the second-order derivatives of the differential equation solved are
used.

In this case, we will use nested factorization methods, which are obtained if a preconditioning
matrix B of the form (2) is constructed in the following recursive way (see [11–16]):

B = (P + L3)P
−1(P + U3) = P + L3 + U3 + L3P

−1U3,

P = (T + L2)T
−1(T + U2) = T + L2 + U2 + L2T

−1U2, (17)

T = (M + L1)M
−1(M + U1) = M + L1 + U1 + L1M

−1U1.

As a result, we have

B = M +A−D + L1M
−1U1 + L2T

−1U2 + L3P
−1U3. (18)

If the natural ordering of the grid nodes and the corresponding vector components is used,
then the matrices M , T , and P have diagonal, tridiagonal, and pentadiagonal forms, respec-
tively, and the preconditioner B is defined by the formulas

M = D − L−1
M U1 − θ1S1 − θ2S2, B = A+ L2T

−1U2 + L3P
−1U3 − θ1S1 − θ2S2. (19)

Here, θ1 and θ2 are iterative (relaxation, or compensating) parameters, whereas S1 and S2 are
the diagonal matrices arising from the principle of matching row sums (Ae = Be), i.e.,

S1e = L2T
−1U2e, S2e = L3P

−1U3e, (20)

where e = {1} is the all 1’s vector.
Note that in (19), the matrix equation for M is uniquely solvable in the class of diagonal

matrices, i.e., M has the same structure as D.
In formulas (17)–(20) of the nested factorization method, the matrices Ll, l = 1, 2, 3, are

lower triangular, whereas Ul, l = 1, 2, 3, are upper triangular. If the matrices L2, L3, U2, and
U3 are determined as in the previous section, then we obtain a variable-triangular version
of the nested factorization algorithm. Note that the matrices L1 and U1 must satisfy the
following condition: they must be defined as single-variable-triangular ones, and the left block
in L1 must be lower triangular. Only in this case, the matrix equation for M from (19) is
solvable in the class of diagonal matrices. Actually, the implementation of factorization along
the first direction reduces to the scalar version of counter sweeping, which can be implemented
on P1 = 2 computational threads. The variable-triangular matrices along the second and third
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directions can be defined as multivariable-triangular (P2 ≤ Ny, P3 ≤ Nz). Thus, this version
of nested factorization allows parallelization on P = 2P2P3 threads.

If a preconditioner B of the form (17), (18) is applied to an iterative process in Krylov
subspaces, we obtain a three-level factorization in the classical one-level iterative method.
However, when solving three-dimensional grid boundary-value problems under consideration,
one also can use a two-level factorization and a two-level iterative process.

To this end, the original matrix A from (16) is represented in the form

A = D3 + L3 + U3, D3 = D2 + L2 + U2, D2 = D + L1 + U1. (21)

In this case, D3 is a block diagonal matrix with pentadiagonal blocks D3,i of order NyNz,
each of which corresponds to a two-dimensional problem in the section x = const and has the
structure of the matrix A in (6). Then the matrix P in (17) is defined by the formula

P = {Gi = D3,i − θSi}, Sie = L3,iG
−1
i−1Ui−1e, (22)

implying that L3P
−1U3 = 0 in (17). Note that L3 and U3 can be defined as variable-triangular,

and then the implementation of the algorithm can be parallelized using block counter sweeping.
If we set θ = 0 in (22), then we arrive at the block symmetric successive over-relaxation

method (BSSOR, [4]). In this case, in (17), the matrix P must be replaced by ω−1P , where
the relaxation parameter ω has an optimum value on the interval [1, 2].

Note that each of the auxiliary two-dimensional SLAEs is strictly diagonally dominant and
has a finite condition number, and its eigenvalues can be bounded using the Gerschgorin disks.

4. Variable-triangular methods in Krylov subspaces

We consider iterative algorithms in application to the SLAE obtained from the original
system of the form (1) as a result of its two-sided preconditioning,

sAsu = sf, sA = L−1
B AU−1

B , su = UBu, sf = L−1
B f. (23)

Here, LB and UB are the factors of the triangular decomposition of a nonsingular precondi-
tioning matrix B,

B = LBUB , B−1 = U−1
B L−1

B . (24)

In order to solve the preconditioned SLAE sAsu = sf with an SPD matrix sA = sA�, we apply
an iterative process of the form

sun+1 = sun + αnp
n = su0 + α0p

n + · · ·+ αnp
n, (25)

srn+1 = sf− sAsun+1 = srn − αn
sApn = sr0 − α0

sAp0 − · · · − αn
sApn,

where pn are some direction vectors; αn are iteration parameters; su0 = UBu
0 and sr0 = sf− sAsu0

are the preconditioned initial guess and residual, and u0 is an arbitrary vector.
We assume that the vectors pn in (25) satisfy the orthogonality conditions(

sAγpn, pk
)
= (pn, pk)γ = ρ(γ)n δk,n, ρ(γ)n = (pn, pn)γ , (26)

where γ = 0, 1, 2 and δk,n is the Kronecker symbol. Under these assumptions, for the residual
we have the expression

(
srn+1, srn+1

)
γ−2

=
(
sr0, sr0

)
γ−2

−
n∑

k=0

[
2αk

(
pk, pk

)
γ−1

− α2
k

(
pk, pk

)
γ

]
.

It follows that if the coefficients αn are defined by

αn = σn/ρn, σk =
(
sr0, p

k
)
γ−1

, (27)
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then the residual functional satisfies the relations

Φγ
(
srn+1

)
= Φγ

(
sr0
)−

n∑
k=0

σ2
k/ρk, (28)

where the superscript γ in αk, σk, and ρk is omitted for simplicity. In this case, the functional
attains its minimum in the Krylov subspaces

Kn+1

(
sr0, sA

)
= Span

{
sr0, sAsr0, . . . , sAn

sr0
}
. (29)

For the orthogonality conditions (26) to be fulfilled, the direction vectors are determined
from the recurrence relation

p0 = sr0, pn+1 = srn+1 + βnpn, βn = − (
srn+1, pn

)
γ
/ρn, (30)

where the rule for finding the initial vector p0 is commonly accepted but not mandatory
(strictly speaking, it can be chosen arbitrarily). In this case, the additional orthogonality
conditions (

rk, rn
)
γ−1

= ||rn||γ−1δk,n,
(
rn, pk

)
γ−1

= 0, k < n,

are fulfilled, and we have the equalities (sr0, pn)γ−1 = (srn, srn)γ−1, from which the following
new formulas for the coefficients σn and βn are obtained:

σn = (srn, srn)γ−1 , βn = σn+1/σn. (31)

For γ = 1, 2, the above-described conjugate direction algorithms are known under the names
of conjugate gradient (CG) and conjugate residual (CR) methods, respectively, see [4,14] and
the references therein. From the above relations for γ = 1, 2 we obtain the following formulas
in terms of the matrices A and B:

• for the conjugate gradient methods,

r0 = f −Au0, p0 = B−1r0, αn = σn/ρn,

un+1 = un + αnpn, rn+1 = rn − αnAp
n, pn+1 = B−1rn+1 + βnp

n, (32)

σn =
(
B−1rn, rn

)
, ρn = (Arn, rn) , βn = σn+1/σn;

• for the conjugate residual methods,

r0 = f −Au0, pr0 = p0 = B−1r0,

un+1 = un + αnpn, prn+1 = prn − αnB
−1Apn, pn+1 = prn+1 + βnpn, (33)

σn = (Aprn, prn) , ρn =
(
B−1Apn, Apn

)
.

Note that at every iteration of both methods one multiplication by each of the matrices A
and B−1 is required, and the vector prn in (33) is not the true but the preconditioned residual,
i.e., in exact arithmetic, we have prn = B−1rn = B−1(f − Aun), and the value of (B−1rn, rn)
is minimized at every iteration. The algorithms (32), (33) are conventionally denoted by PCG
and PCR, respectively.

For γ = 0, the algorithm should be implemented in a different way because, in this case,
in order to find σn, one needs to invert the matrix sA. The resulting algorithms are known
as the minimum error methods, or minimum iterations. These algorithms were first studied
in [17–20]; later, in connection with the algebraic problem of moments, they were investigated
in [6]. Using (25), we write the error and residual vectors as

vn = su− sun = αnp
n + · · ·+ αMpm,

srn = Avn = αnAp
m + · · · + αM

sApM .
M ≤ N, (34)
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Upon multiplying the first of these relations by pn, we obtain

αn = (vn, pn)/(pn, pn) = −αn−1( sAv
n, pn−1) = −αn−1(sr

n, pn−1)/||pn||.
Here, for n ≥ 1, we use the three-term recursion from (25), (30) (if n = 1, then β−1 = 0)

pn = (1 + βn−1)p
n−1 − αn−1

sApn−1 − βn−2p
n−2,

and also the orthogonality property of the direction vectors pn and the symmetry of the
matrix sA. For n = 0, we have

α0 = (v0, p0)/(p0, p0).

Hence, due to the arbitrariness in the choice of the initial direction vector, we may set
p0 = sAsr0, in which case we obtain

α0 = (sr0, sr0)/( sAsr0, sAsr0) = (B−1r0, r0)/(B−1AB−1r0, AB−1r0). (35)

The coefficients βn are computed by formula (30).
One of the important issues related to implementation of the methods (32), (33) arises in

the case where the preconditioning matrix B is inverted approximately. Actually, the inversion
of B reduces to iterative solution of the corresponding auxiliary SLAE. This implies that a
nonzero residual and an error are allowed. In this case, we obtain a two-level iterative method.
Although the problem of stopping criteria is quite subtle, we assume, for simplicity, that in
the preconditioned CG and CR algorithms, the outer iterations are continued until

||rn|| ≤ εe||f ||, εe � 1. (36)

Similarly, at inner iterations, we choose some other accuracy parameter εi ≤ 1. For example,
the approximate direction vector sp0 is determined from the system sBp0 = r0 in the following
way:

δ0 = r0 −Bsp0, sp0 = B−1(r0 − δ0), ||δ0|| ≤ εi||r0||. (37)

5. Conclusion

The approaches to constructing variable-triangular preconditioning matrices considered in
the paper provide new possibilities for parallelization of conventional and/or block iterative
methods of symmetric successive over-relaxation and incomplete factorization types in Krylov
subspaces (including the nested ones). So far, the theoretical problem of estimating the con-
vergence rate of the new iterative processes remains open. In this connection, it is necessary,
first of all, to conduct systematic experimental studies and testing of various modifications of
the algorithms suggested. The ultimate goal, in this case, is acceleration of computations and
improvement of parallel performance on multiprocessor computer systems with distributed
and hierarchical shared memory.

This work was supported by the Russian Foundation for Basic Research (grant No. 18-01-
00295).

Translated by V. P. Il’in.
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