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CONJUGATE DIRECTION METHODS FOR MULTIPLE
SOLUTION OF SLAES

Y. L. Gurieva∗ and V. P. Il’in† UDC 519.6

Conjugate gradient and conjugate residual methods for multiple solution of systems of linear alge-
braic equations (SLAEs) with the same matrices but different successively determined right-hand
sides are considered. In order to speed up the iterative solution of the second and subsequent
SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in
the course of solving the first system as the basis ones. Results of numerical experiments for
model examples, illustrating the efficiency of the approaches under consideration, are provided.
Bibliography: 27 titles.

1. Introduction

The problem of solving large systems of linear algebraic equations (SLAEs) with the same
coefficient matrix but different right-hand sides,

Au(l)u(l) = f (l), f (l)u(l) ∈ RN , A ∈ RN,N , l = 1, . . . , L, (1)

in the case where the vectors f (l) are not available simultaneously but are determined consec-
utively, arises in many topical applications. For example, such situations occur in solving non-
stationary and/or nonlinear initial-boundary-value multidimensional problems with complex
geometry of computational domains approximated by implicit methods of finite differences,
finite elements, finite volumes, or discontinuous Galerkin algorithms of various orders of ac-
curacy [1], and a SLAE must be solved at every time step or at different nonlinear iterations.
Other cases arise when solving resource-intensive large-block algebraic systems using two-level
iterative processes, in which at every outer iteration one must compute an approximate solution
of an auxiliary SLAE.

In such problems, it is natural to expect that in the course of iterative solution of the first
SLAE, one can generate some useful information on properties of the matrix A, which can
be used to speed up solution of the subsequent systems. A similar approach, called deflation,
was proposed for the conjugate gradient method by Nicolaides [2] and Dostal [3], and later
investigated by many authors, see [4–18] and the references therein.

Naturally, in this case, iterative processes in Krylov subspaces are used. This makes it
possible to store the direction vectors or an approximate solution of the spectral problem for
the original matrix, obtained when solving the first SLAE. Then, for the subsequent systems,
initial approximations can be computed in a special way, and/or a preconditioner can be
constructed, or projection and other approaches can be applied.

In the approaches under consideration, from a practical point of view, it is not so much
an increase in the convergence rate of the resulting iterative procedures that matters but
the ultimate performance of the algorithms implemented on modern multiprocessor computer
systems with distributed and hierarchical shared memory. Here, two issues are of importance,
namely, the scalability of parallelization on a supercomputer of heterogeneous architecture and

∗Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia, e-
mail: yana@apasrv.sscc.ru.

†Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia;
Novosibirsk State University, Novosibirsk, Russia, e-mail: ilin@sscc.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 496, 2020, pp. 26–42. Original article
submitted October 23, 2020.

1072-3374/21/2553-0231 ©2021 Springer Science+Business Media, LLC 231

DOI 10.1007/s10958-021-05365-8



the efficiency of working with big data when using compressed sparse matrix formats, see [19]
and the references therein.

The paper is organized as follows. In Sec. 2, we consider some features of preconditioned
conjugate direction iterative methods in Krylov subspaces, including those with approximate
iterative inversion of the preconditioning matrix. For simplicity, we consider linear algebraic
systems with symmetric positive definite (spd) matrices. Section 3 discusses various algorithms
of deflation and projection types, as well as their application to multiple solution of SLAEs
with the same matrices. The final section presents results of numerical experiments for typical
model problems, which demonstrate the efficiency of the algorithms in question, and also
discusses some issues of further investigation of the problem under consideration.

2. Preconditioned methods in Krylov subspaces

First we consider iterative algorithms for solving a SLAE resulting from two-sided precon-
ditioning of an original system of the form (1),

Āū = f̄ , Ā = L−1
B AU−1

B , ū = UBu, f̄ = L−1
B f. (2)

Here, LB and UB are the factors in a decomposition of a nonsingular preconditioning matrix

B = LBUB , B−1 = U−1
B L−1

B . (3)

In order to solve the preconditioned SLAE Āū = f̄ with the symmetric positive definite
matrix Ā = Āt, we consider the following iterative processes:

r̄0 = f̄ − Āū0, p̄0 = r̄0, n = 0, 1, . . . :

ūn+1 = ūn + αnp̄
n = ū0 + α0p̄

n + · · ·+ αnp̄
n,

r̄n+1 = f̄ − Āūn+1 = r̄n − αnĀp̄n = r̄0 − α0Āp̄
0 − · · · − αnĀp̄

n.

(4)

Here, p̄n are some direction vectors; αn are iteration parameters; ū0 = UBu
0 and r̄0 are the

preconditioned vectors of the initial guess and residual, and u0 is an arbitrary vector.
In formulas (4), it is assumed that the vectors pn satisfy the orthogonality relations

(
Āγpn, pk

)
= (pn, pk)γ = ρ(γ)n δk,n, ρ(γ)n = (pn, pn)γ , (5)

where γ = 1, 2, and δk,n is the Kronecker symbol. Under these assumptions, we have the
following relation for the residual:

(
r̄n+1, r̄n+1

)
γ−2

=
(
r̄0, r̄0

)
γ−2

−
n∑

k=0

[
2αk

(
r̄0, pk

)
γ−1

− α2
k

(
pk, pk

)
γ

]
.

From this relation we obtain that if the coefficients αn are determined via

αn = σn/ρn, σn =
(
r̄0, pn

)
γ−1

, (6)

then the residual functional can be written as

Φγ

(
r̄n+1

)
= Φγ

(
r̄0
)−

n∑
k=0

σ2
k/ρk, (7)

where in the values αk, σk, and ρk the symbol “γ” is omitted for simplicity. In this case, the
functional attains its minimum in the Krylov subspaces

Kn+1

(
r̄0, Ā

)
= Span

{
r̄0, Ār̄0, . . . , Ānr̄0

}
. (8)
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For the orthogonality conditions (5) to be fulfilled, the direction vectors are determined
from the recurrence relation

p0 = r̄0, pn+1 = r̄n+1 + βnpn, βn = − (
r̄n+1, pn

)
γ
/ρn, (9)

where the conventional method for determining the initial vector p0 is generally accepted but
not mandatory (strictly speaking, it can be chosen arbitrarily). In this case, the vectors posses
the following additional orthogonality properties:

(
rk, rn

)
γ−1

= ‖rn‖γ−1δk,n,
(
rn, pk

)
γ−1

= 0 for k < n. (10)

Also they satisfy the relations (r̄0, ρn)γ−1 = (r̄n, r̄n)γ−1, and for the coefficients σn, βn we
obtain the new formulas

σn = (r̄n, r̄n)γ−1 , βn = σn+1/σn. (11)

The above conjugate direction (CD) algorithms for solving the SLAE (2) with γ = 1, 2
are called the conjugate gradient and conjugate residual methods, respectively (CG and CR,
see [12,20,21] and the references therein). From the above relations for γ = 1, 2 we obtain the
following formulas in terms of the matrices A and B:

for the conjugate gradient method,

r0 = f −Au0, p0 = B−1r0, αn = σn/ρn,

un+1 = un + αnp
n, rn+1 = rn − αnAp

n, pn+1 = B−1rn+1 + βnp
n,

σn = (rn, pn) =
(
B−1rn, rn

)
, ρn = (Apn, pn) , βn = σn+1/σn;

(12)

for the conjugate residual method,

r0 = f −Au0, r̂0 = p̂0 = B−1r0, αn = σn/ρn,

un+1 = un + αnp̂
n, r̂n+1 = r̂n − αnB

−1Ap̂n, p̂n+1 = r̂n+1 + βnp̂n,

σn =
(
B−1r̂n, Ap̂n

)
= (Ar̂n, r̂n) , ρn =

(
B−1Ap̂n, Ap̂n

)
βn = σn+1/σn.

(13)

Note that at every iteration of each of these methods, one multiplication by each of the
matrices A and B−1 is performed, and, in (13), r̂n is the preconditioned residual vector rather
than the “true” one, i.e., in the case of exact computations, we have r̂n = B−1rn = B−1(f −
Aun), and at every iteration the value (B−1rn, rn) is minimized. Substituting the vectors
r̂n = B−1rn and p̂n = B−1pn, we can write relations (13) in terms of the ordinary residuals
rn as follows:

p0 = r0 = f −Au0, n = 0, 1, . . . :

un+1 = un + αnB
−1pn, αn = σn/ρn,

rn+1 = rn − αnAB
−1pn, ρn =

(
B−1AB−1pn, AB−1pn

)
,

pn+1 = rn+1 + βnpn, βn = σn+1/σn, σn =
(
B−1AB−1rn, rn

)
.

However, in this case, an additional multiplication by the matrix B−1 must be performed at
every iteration. The preconditioned algorithms (12) and (13) are known under the standard
abbreviations PCG and PCR, respectively.

In implementing methods (12), (13), an important issue arises if the inversion of the pre-
conditioning matrix B actually reduces to iterative solution of the corresponding auxiliary
SLAE, allowing for a finite residual and an error. In this case, the iterative process turns
into a two-level one. Although the problem of choosing the stopping criteria for iterations is
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rather subtle (see [22, 23]), for simplicity we assume that in the preconditioned CG and CR
algorithms the outer iterations are continued until

‖rn‖ ≤ εe‖f‖, εe � 1. (14)

Note that in the case of exact computations in (12), (13) (including the case of a positive
semidefinite matrix A), the number of iterations nε sufficient for condition (14) to be fulfilled
with ε = εe is bounded as follows:

n(ε) ≤ 1

2

∣∣ ln ε

2

∣∣(condr(B−1A)1/2 + 1).

Here, condr(B
−1A) = λmax/λmnz is the so-called reduced, or effective condition number, and

λmnz is the minimal nonzero eigenvalue of the matrix B−1A.
At inner iterations, we proceed in a similar way, choosing a possibly different accuracy

parameter εi � 1. For example, the approximate initial direction vector p0 is determined as
the solution of the system Bp0 = r0 as follows:

δ0 = r0 −Bp0, p0 = B−1(r0 − δ0), ‖δ0‖ ≤ εi‖r0‖. (15)

Relations (15) can be interpreted in such a way that the inversion of the preconditioner B is
performed in an approximate iterative manner, δ0 being the corresponding residual.

For the CG method, we will analyze the perturbations of the computed vectors un, rn, pn,
assuming that at the nth step they are computed with some errors, which result, among other
things, from approximate inversion of the matrix B,

un = un + zn, rn = rn + ϕn, pn = pn + ψn. (16)

At the same time, we assume that the coefficients αn, βn are computed exactly and the
arithmetic operations are performed in exact arithmetic. From (12), (16) for the approximate
solutions and residuals we obtain

un+1 = un + αnp
n = un+1 + zn+1, zn+1 = zn + αnψ

n,

rn+1 = rn + αnAp
n = rn+1 + ϕn+1, ϕn+1 = ϕn + αnAψ

n.
(17)

Then, by analogy with (14), we have

Bqn+1 = rn+1, δn+1 = rn+1 −Bq̃n+1,

q̃n+1 = B−1(rn+1 − δn+1) = qn+1 +B−1(ϕn+1 − δn+1)

= qn+1 +B−1(ϕn+1 − δn+1), ‖δn+1‖ ≤ εi‖rn+1‖.
(18)

Here, we assume that perturbations are small and rn+1 ≈ rn+1; qn+1 and q̃n+1 are the solutions
of the SLAE corresponding to the exact and iterative inversion of the matrix B, respectively.
Now the direction vectors are determined by the formulas

pn+1 = q̃n+1 + βnp
n = pn+1 + ψn+1, ψn+1 = B−1(ϕn+1 − δn+1) + βnψ

n. (19)

As a result, from (16)–(18) we arrive at the inequalities

‖zn+1‖ ≤ ‖zn‖+ αn‖ψn‖, ‖ψn+1‖ ≤ ‖ψn‖+ αn‖A‖‖ψn‖,
‖ϕn+1‖ ≤ ‖B−1‖‖ϕn‖+ (αn‖B−1A‖+ βn)‖ψn‖+ εi‖B−1‖‖rn+1‖. (20)

Since, in (17), z0 = ϕ0 = 0 and ‖ψ0‖ ≤ εi‖r0‖, from the recurrence formulas (20) we obtain
that all errors are of order O(εi), provided that the values ‖B−1‖, ‖B−1A‖, αn, and βn are
bounded and the number of iterations n is small, which is assumed. Note that although above
the same values εi have been used for all outer iterations, even in the case of approximate
inversion of the matrix B with the same number of inner iterations of any of the conjugate
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direction methods, the resulting preconditioners must in general be regarded as variable ma-
trices Bn. In its turn, this leads us to the necessity of switching to the flexible conjugate
gradient method (FCG) [12] with long recursions, which makes the algorithm and its analysis
essentially more complicated. An alternative approach here is to apply, at the inner iterations,
Chebyshev acceleration with the same bounds for the eigenvalues of the matrix B and a fixed
degree of the polynomial at all outer iterations.

3. Deflated approaches in Krylov subspaces

Let V = (v1 . . . vm) ∈ RN,m, m < N , be a rectangular matrix of full rank m with linearly
independent column vectors vk. An approximate solution of the SLAE Au = f can be sought
for as a linear combination of the vectors vk, i.e.,

ũ = u−1 + c1v1 + · · ·+ cmvm = u−1 + V c, c ∈ Rm,

r̃ = f −Aũ = r−1 −AV c = r−1 −Wc, W = AV,
(21)

where u−1 is an arbitrary vector. The coefficients ck will be found from the condition of
orthogonality of the residual r̃ either to the vectors vk, i.e.,

V T r̃ = 0, Âĉ ≡ V TAV ĉ = V T r−1, ĉ = Â−1V T r−1, (22)

or to the vectors wk = Avk, i.e.,

W T r̃ = 0, Ǎč ≡ W TWč = W T r−1, č = Ǎ−1W T r−1. (23)

In the latter case, č is the normal solution of the SLAE Wc = r0, i.e., it minimizes the residual
r̃ and has the smallest length ‖c‖ = (c, c)1/2. The approximate solution of the original equation
and its residual are given by

û0 = u−1 + V
(
V TAV

)−1
V T r−1 ≡ u−1 + Ĥr−1,

Ĥ = V Â−1V T , r̂0 = (I −AĤ)r−1
(24)

if formulas (21) are used and by

ǔ0 = u−1 + V
(
V TAAV

)−1
V TAr−1 ≡ u−1 + Ȟr−1,

Ȟ = WǍ−1W T , ř0 = (I −AȞ)r−1
(25)

in the other case, which actually is the method of moments, see the monographs [24,25], or the

least squares method, see [26,27]. The matrices Ĥ and Ȟ are low-rank approximations to the

inverse matrix A−1, and, in the limit, we have Ĥ = A−1 or Ȟ = A−1, i.e., û0 = u or ǔ0 = u. In
what follows, we will also bear in mind the geometric interpretation of relations (22) and (23),
which mean that r̃ ⊥ V or r̃ ⊥ W, respectively, where V = Span{vs} and W = Span{ws} are
m-dimensional subspaces.

Note that in (24) and (25), the vectors û and ǔ can formally be considered as the initial

guess u0 in the stationary iterative processes with the preconditioning matrices B−1
1 = Ĥ

and B−1
2 = Ȟ, which are singular in view of the orthogonality conditions (22) and (23).

Also observe that the matrices H1 = Ĥ and H2 = Ȟ are symmetric, whereas the matrices
Pi = I −AHi, i = 1, 2, are projectors, i.e.,

P 2
i = P, (I − Pi)

2 = I − Pi, i = 1, 2.

Moreover, the matrices Pi are singular because of the equalities V TP1 = 0 and W TP2 = 0,
which mean that the vectors vs and ws are eigenvectors of the matrices P1 and P2, respectively,
corresponding to the zero eigenvalue.
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If the vectors vs or ws possess some orthogonality properties, then the computation of the

entries of the matrices Ĥ and Ȟ significantly simplifies. For example, let m of the first direction
vectors pn from the CG method (γ = 1, formula (12)), which are A-orthogonal, be taken as
vs. Then in (22) and (24) we have

Â = V TAV = R1 = diag{ρ(1)s = (vs, Avs)}. (26)

In the other case, where vs are the direction vectors from the CR method (13), in (23) and (25)
we have

Ǎ = W TW = R2 = diag{ρ(2)s = (Avs, Avs)}. (27)

This implies, in particular, that if in (21) one sets u−1 = u0, where u0 is the initial guess
from (12) or (13), then the components ĉs and čs of the vectors ĉ and č from (22) and (23)
coincide with the coefficients αs, s = 0, 1, . . . ,m, from (12) or (13), respectively.

Based on the extension of the Krylov subspaces (8) by the vectors vs or ws, we construct
preconditioned deflated conjugate direction algorithms (PDCD), in which the direction and
residual vectors possess additional orthogonality properties. Following [17], we describe the
PDCG conjugate gradient method corresponding to γ = 1 using the projection of the A-
orthogonal complement V⊥A onto V along V:

Q1 = I − V Â−1V TA, Â = V TAV. (28)

The formulas of this algorithm are as follows:

u0 = û0, r0 = f −Au0,

p0 = q0 = Q1B
−1r0; n = 0, 1, . . . :

un+1 = un + αnp
n, rn+1 = rn − αnApn,

αn = (pn, rn)/(Apn, pn) = (B−1rn, rn)/(Apn, pn),

qn+1 = Q1B
−1rn+1, pn+1 = qn+1 + βnp

n,

βn = −(qn+1, Apn)/(Apn, pn) = (B−1rn+1, rn+1)/(B−1rn, rn).

(29)

The vectors defined here satisfy the following orthogonality relations:

V T rk = 0, V TApk = 0, k = 0, 1, . . . , n;

(rn, pk) = 0, (rn, B−1rk) = 0, (pn, Apk) = 0, k < n.
(30)

The resulting error of the approximate solution zn = u − un is orthogonal to the subspace

U = Span
{
V, Q̂Kn(B

−1r0, B−1AQ̂)
}
, and its norm ‖u − un‖A = (A−1rn, rn) attains its

minimum in this subspace.
The preconditioned deflated conjugate residual method can be considered in a similar way.

In this case, the A2-orthogonal projection operator is constructed,

Q2 = I −QA−1
2 W TA, A2 = W TAW, (31)

and the iterative process itself is described by formulas (13), in which u0 is replaced by ǔ0,
and the matrix B−1 is replaced by the product Q2B

−1. In this case, the residual and direction
vectors satisfy, instead of conditions (30), the following orthogonality relations:

W T rk = 0, W TApk = 0, k = 0, 1, . . . , n;

(rn, Apk) = 0, (rn, AB−1rk) = 0, (Apn, Apk) = 0, k < n.
(32)

Note that the projectors considered satisfy the relations

AQi = QT
i A = QT

i AQi = Ai, i = 1, 2, (33)
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and the preconditioned deflated conjugate direction methods generated by them can be inter-
preted as a result of two-sided preconditioning with the matrices QT

i and Qi in accordance

with (33), whereas the matrices Ai are singular. In particular, if in (21) we take the eigenvec-
tors of the matrices Ai corresponding to their m minimal eigenvalues 0 < λ1 ≤ · · · ≤ λm as
v1, . . . , vm, then the effective condition numbers of the matrices Ai will be bounded as follows
(see [15]):

condr(Ai) ≤ λmax(Ai)/λm+1(Ai).

One of the main approaches to choosing the deflation vectors vs in (21) is to use approximate
eigenvectors of the coefficient matrix, which can be computed when performing iterations of
the conjugate direction methods.

In the CD methods, for system (1) with γ = 1 or γ = 2 from formulas (4), (9) (in which the
bar over A and rn is dropped) we obtain the following three-term recurrence relation for the
residual vectors (here and below, the subscript “γ ” of the vectors and coefficients is omitted
for simplicity):

Ar1 = α−1
1 r1 − α−1

2 r2, n = 2, 3, . . . :

Arn = −βn−1

αn−1
rn−1 +

( 1

αn
+

βn−1

αn−1

)
rn − 1

αn
rn+1.

(34)

Hence, as is readily seen, the normalized residual vectors

r̃n = rn/‖rn‖γ−1, ‖rn‖2γ−1 = (rn, rn)γ−1 = σn,

satisfy the relation
ARn = RnTn − νnr̃

n+1eTn+1, (35)

where en+1 = (0 . . . 01) is a coordinate row vector in Rn+1; Rn = [r̃0 . . . r̃n] ∈ RN,n+1, and
Tn ∈ Rn+1,n+1 is the symmetric tridiagonal matrix

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ0 −ν0 0 . . . 0

−ν0 μ1 −ν1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −νn−2 μn−1 −νn−1

0 . . . 0 −νn−1 μn

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

with its entries
μ0 = α−1

0 , μn = α−1
n + βn−1/αn−1, νn =

√
βn/αn. (37)

By virtue of the orthogonality conditions (10) for the residuals, upon multiplying Eq. (35) by
the matrix RT

nA
γ on the left, we obtain the matrix equality

Tn = RT
nA

γARn ∈ Rn+1,n+1.

Thus, the matrix Tn is a low-rank approximation of the matrix Aγ+1.
Let λk and zk, k = 1, . . . , n+ 1, be the eigenvalues and eigenvectors of the matrix Tn, i.e.,

Tnzk = λkzk, zk ∈ Rn+1.

Then the vectors vk = Rnzk ∈ RN and values νk = (Awk, wk)/(wk, wk) are called the Ritz
vectors and values of the matrix A.

The vectors vk corresponding to m ≤ n minimal Ritz values of the matrix A are frequently
used as the deflation vectors, see (21).

Note that in constructing a tridiagonal matrix Tn of the type (36), which is, in a certain
sense, an approximation of the matrix Aγ+1, one can use other sequences of orthogonal vectors,
for example, pn or Apn, which also satisfy three-term recurrence relations.
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We dwell on the application of this variant of the deflation algorithm to solving SLAEs (1)
with two different right-hand sides f1, f2. Let the first algebraic system be solved by the CG
or CR method in n1 iterations. For simplicity, we consider the unpreconditioned algorithms,
i.e., we set B = I in (12), (13). In this case, the approximate solution obtained is denoted by
un1 ; the value γ = 1 or γ = 2, corresponding to the CG or CR method, respectively, will be
determined below.

Let, in solving the second SLAE (by the CG or CR method), u−1 be an arbitrary initial
guess. Before starting iteration, we carry out certain corrections, or deflations of the initial
guess and initial residual. This is carried out in accordance with the following formulas of the
form (21):

u0 = u−1 + c0p
0 + · · ·+ cm−1p

m−1 = u−1 + Pc, c ∈ Rm,

r0 = r−1 − c0Ap
0 − · · · − cm−1Ap

m−1 = r−1 −APc, P ∈ RN,m.
(38)

Here, r−1 = f2 − Au−1, and p0, . . . pm−1, m ≤ n1, are the direction vectors computed in the
course of solving the first SLAE.

In order to find the unknown coefficient vector c, two different orthogonality conditions for
the vector r0 can be used:

P T r0 = 0 : c = c(1) = A−1
1 P T r−1, A1 = P TAP,

u0 = u−1 + Pc(1), r0 = r−1 −Qc(1), Q = AP ;
(39)

QT r0 = 0 : c = c(2) = A−1
2 QT r−1, A2 = QTQ,

u0 = u−1 + Pc(2), r0 = r−1 −Qc(2) = (I −QA−1
2 QT )r−1.

(40)

Note that in (39) we have A1 = Â and c(1) = ĉ (see (22)) if the direction vectors ps = vs

are computed by the CG method, and in (40) we have A2 = Ǎ and c(2) = č (see (23)) if
the direction vectors ps = vs are determined by the CR method. Moreover, in both cases, in
accordance with (26) and (27), the above matrices are diagonal. The orthogonality conditions
for r0 in (39) and (40) are similar to the properties of the residual vectors rn they have in the
CG and CR methods, respectively. For the conjugate direction methods, there is a certain
arbitrariness in the choice of the initial direction vector p0. Here, we consider three possible
different orthogonality conditions, which can readily be ensured prior to iterating the second
SLAE:

P TAp0 = 0 : p0 = r0 − Pc(1), c(1) = A−1
1 P TAr0; (41)

P TAAp0 = 0 : p0 = r0 − PA−1
2 P TAAr0; (42)

QTAp0 = 0 : p0 = r0 −Qc(3), c(3) = A−1
3 QT r0, A3 = QTAQ. (43)

It can be shown that the matrix A3 = P TA3P defined in (43) is tridiagonal if the direction
vectors pk are determined from the solution of the first SLAE using formulas (13) of the CR

method. Moreover, A3 can be transformed into the symmetric matrix A3 = P
T
A3P = Q

T
AQ

if the vectors pk and qk = Apk are normalized as follows: qk = qk/‖qk‖, pk = pk/‖pk‖. Indeed,
if in (13) with B = I we set rn = r̂n and qn = Apn, then we come to the relations

Arn+1 = Arn − αnAq
n,

qn+1 = Arn+1 = βnq
n,

from which the following three-term recursion is obtained:

Aqn = −(βn−1q
n−1 + (1 + βn)q

n − qn+1)/αn. (44)
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On substituting the expressions αn = σn/ρn and βn = σn+1/σn from (13) into (44), introducing

the orthonormal vectors qn = qn/‖qn‖ = qn/ρ
1/2
n , and using the relation Q

T
Q = I, we obtain

Aqn = −(ρn−1ρn)
1/2

σn−1
qn−1 +

ρ
1/2
n

σn
(1 + βn)q

n − (ρnρn+1)
1/2

σn
qn+1, (45)

AQ = QT, T = 3-diag

{
−(ρn−1ρn)

1/2

σn−1

ρ
1/2
n

σn
(1 + βn)− (ρnρn+1)

1/2

σn

}
= T T = A3. (46)

Note that in (41) and (42), the orthogonality conditions are similar to those satisfied by the
direction vectors in formulas (12) and (13) for the CG and CR methods, respectively. Note
that in (42) and (43) the conditions for p0 coincide. However, in the first case, the correction
formula for p0 is simpler. An analysis of formulas (41), (42) demonstrates that the deflation
methods of conjugate directions that provide for the orthogonality of the direction vectors
P TApn for DCG (γ = 1) and P TAApn for DCR (γ = 2) at all iterations can uniformly be
written in the following form:

r0 = r−1 −APA−1
γ P TAγ−1r−1,

p0 = r0 − PA−1
γ P TAγr0, Aγ = P TAγP,

un+1 = un + αnp
n, rn+1 = rn − αnApn, αn = σn/ρn,

pn+1 = rn+1 + βnp
n − PA−1

γ P TAγrn+1, βn = σn+1/σn,

σn = (Aγ−1rn, rn), ρn = (Aγpn, pn).

(47)

4. Results of numerical experiments

We present and discuss results of numerical experiments on applying some of the defla-
tion approaches considered to the conjugate gradient and conjugate residual methods. The
computations were carried out on model grid SLAEs resulting from the standard five-point
approximations of the second order on square grids with N ×N cells for the two-dimensional
Poisson equation with the Dirichlet boundary conditions in the square domain Ω = [0, 1]2,
see [1]. In each of the experiments, computations were carried out for two algebraic systems
with the same coefficient matrices and different right-hand sides, corresponding to different
boundary conditions in the differential problems. The right-hand side of the first SLAE cor-
responds to the exact solution of the Poisson equation u(x, y) = 1, and the initial guess
u0 = {u0i,j = x2i + y2j} for the iterations at the grid nodes (xi = ih, yj = jh, h = 1/N) is
used. For the second SLAE, the right-hand side was determined from the exact solution of
the Dirichlet problem u(x, y) = x2 + y2, and the zero vector was used as the initial guess. (In
formulas (24), (25) these initial vectors are denoted by u−1.) All computations were carried
out in the standard double-precision arithmetic on consecutively refined grids with the node
numbers N2 = 82, 162, . . . , 2562, 5122. In both cases, the stopping criterion (14) with ε = 10−7

was used.
In order to compare the efficiency of different algorithms, we only present the numbers

of iterations n(ε). An analysis of the performance of different variants of deflation methods
should be carried out with account for the execution times of the algorithms with a scalable
parallelization on different configurations of multiprocessor computer systems, which is outside
the scope of this paper.

Table 1 presents the results of a series of computations for the CG method in solving the
second SLAE using as the deflation vectors vs from (21) the A-orthogonal direction vectors
pn of the CG method from (12) with B = I, obtained in the course of solving the first SLAE
(the number of iterations for the first SLAE is denoted by n1). For the second SLAE, the
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DCG approach was implemented either only for the initial guess and initial residual vectors,
corrected in accordance with formulas (24), or in accordance with formulas (29), with the
complete set of the direction vectors pn used as the columns of the matrix V from (28) and
obtained in the course of solving the first SLAE by the CG method (the corresponding numbers
of iterations in solving the second SLAE are denoted by n2 and n3). Additionally, the last two
rows of this table provide the values of the squared norms of the initial and corrected residuals
‖r−1‖, ‖r0‖ before solving the second SLAE.

N 8 16 32 64 128 256 512
n1 20 42 83 161 314 610 1185
n2 10 26 53 96 190 351 745
n3 1 17 36 73 144 271 538

‖r−1‖2 2.4 4.6 8.8 17.1 33.7 66.8 132.9
‖r0‖2 3.5·10−2 1.7 3.8 7.2 13.5 25.5 49.3

Table 1. Numbers of iterations for the CG method with ε = 10−7:
n1 corresponds to solution of the first SLAE without deflation;
n2 corresponds to solution of the second SLAE with deflation of the initial
guess and initial residual;
n3 corresponds to solution of the second SLAE with deflation of all the direction
vectors.

In conclusion, we can say that the approaches proposed in this work for the deflated con-
jugate gradient and conjugate residual methods, in which the direction vectors, which are or-
thogonal in the corresponding metrics, are used as the bases for extending the Krylov spaces,
are promising, because of their cost-effectiveness and natural parallelizability, when solving the
urgent problem of multiple solution of SLAEs with the same matrices and different consecu-
tively determined right-hand sides. In the literature, many different techniques are available,
and their qualitative comparative analysis requires additional investigations, both theoretical
and experimental, which are an immediate goal of the authors. Issues of parallelizing deflated
algorithms require a special consideration, because introduction of a large number of additional
vectors significantly increases the complexity of every iteration.

This work was supported by the Russian Foundation for Basic Research (grant No. 18-01-
00295).

Translated by the authors.
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