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INITIAL-VALUE PROBLEM FOR A HIGHER-ORDER QUASILINEAR
PARTIAL DIFFERENTIAL EQUATION

T. K. Yuldashev and K. Kh. Shabadikov UDC 517.955.2

Abstract. We examine an initial-value problem for a certain higher-order quasilinear partial differential
equation. Expressing the partial differential operator as the superposition of first-order operators, we
apply methods of solution of first-order equations. We prove the unique solvability of the initial-value
problem considered.
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1. Statement of the problem. Higher-order partial differential equations are of great interest
in numerous physical applications (see [1, 4-8, 11-13]. First-order partial differential equations can
be locally solved by the methods of the theory of ordinary differential equations by the reduction to
characteristic systems. Application of the method of characteristics allows one to reduce the study of
the evolution of waves to the study of particle propagation (see [2]). In [3], a technique for integrating
first-order nonlinear partial differential equations was developed. In [9, 10], inverse problems for first-
order quasilinear partial differential equations were considered.
In the domain 2 = Qp x R, we consider the quasilinear equation

m

1
0? , 2\" [ 0 0
(82?2 -« 83:2> Py + /u(t,a) dU&E u(t,z) = f(t, z,u(t,z)) (1)
0
with the initial conditions
o' .
u(t,m)|t:0 = ¢1(x), 8tiu(t,m)|t:0 =@it1(z), zeR, i=12n+m-1, (2)

where u(t,z) is the unknown function, f(t,z,u) € C(Qr x R?), ¢;(z) € C(R), i = 1,2n +m, Qr =
[0;T],0<T < oo, R=(—00;00), 0 < o = const; n and m are arbitrary natural numbers.

2. Reduction of the initial-value problem to an integral equation.

Lemma 1. The initial-value problem (1), (2) is equivalent to the following integral equation:

u(t,z) = O(t, z;u,r) = > i(r(t,0,1)) (mm__;)'
=1 :
1« / t—s)m1t i
+, ;0/ ((m _)1)! [Spm+2j—1 (r(t, s, @) — as) + omi2j—1(r(t,s,z) + as)} (n— ) ds
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n n—k

+ /t t i 8 n+m 1 |:SO Qk(r(t s l‘) _ a(t o 28)) + Qk(r(t s x) + a(t — 28))] S ds
— ) (n+m— m+ » 55 m T (n—k)!
0

??‘

t

t o 8 2n+m 1

o (st ds )
0

where

t 1
r(t,s,x)zm—//u(@,a)dad@
0

s

and x plays the role of a parameter.

Proof. We rewrite the left-hand side of Eq. (1) in the form

m

o2 /
<6t2 - 8$2> ¢ " / utt !
0

1
0 o\" (0 oN" [ o 0 I —
_<8t_a8x> <8t+a8m> 8t+/u(t’a)d08x u = Dy D} Dg'[ul,
0

where

Dolu] = uy — aug,  Dilu] = up + auy, u(t,o) douy.
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Then Eq. (1) takes the form
Dy DYDY [u] = f(t,z,u(t, x)). (4)
From (4) we see that Eq. (1) has the characteristics

t 1
r+at=C1, z—at=Co, a:—//usadadS—C’g,
0 0

where C; are arbitrary constants, ¢ = 1,3. The characteristics possess the following property: the
differential expressions Di[u], Da[u], and Dsfu| are (up to a multiplicative constant) the derivatives
du/dly, du/dls, and du/dls of the function u in the directions Iy, l2, and l3 along the characteristics.
This allows one to represent Eq. (1) as an ordinary differential equation, which describes the variation
of u along the characteristics.

Consider the expression Dau] = u; — auy. Introduce the notation p(t,s,z) = = + a(t — s) and
perform the change of variables u(t,x) = ¥(t, z), z = p(t,0,z). After differentiation we obtain

ur(t, @) = 0¢(t, 2) + 0,(t, 2) 2
Since ¥, (t, z) = uy(t,z), 2z = a, we obtain
Ve(t, 2) = u(t, x) — aug(t, ).
Taking into account the last relation and the formula = = z — at, we rewrite Eq. (4) in the form
Pl

o DIDE9(t,2)] = f(t, 2 —at, 0,z — at)>. (5)
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Integrating Eq. (5) n times, we have

¢
8n—l o
o1 DEDRI0(. ) = 01(2) + [ (5,2~ as.0(s,2 — as)) ds, (©)
0
¢
8n—2
o 2 DEDRI0(2)] = 02() + ()t 4 [(= ) (52— as,0(s2 = a9)) ds. (1)
0
& s
o - ' tn—t t— g)"— B B
DYDg'[9(t, z)] = Z;Cbz(z) (n— i) —I—/ (n—1)! f(s,z as, (s, z as)) ds, (8)
= 0
where ®;(z), i = 1,2,...,n, are arbitrary constants along the first characteristic z + at = C; to be

determined, C; = const. The initial conditions (2) for (6)—(8) have the form

8n—1 R 8n—2 R

8tn_1D1 Dy [19(07 Z)] = pon+m(2), otn—2 Dy Dy [19(07 Z)] = Yon+m—2(2), .-+,
a n m n m
atDl Dg'[9(0,2)] = pma(2), DI D [9(0,2)] = pm+2(2).

Due to these conditions, we conclude from (6)—(8) that

t

(t—s)"

DDy _ _ ) ‘

0 Z@22+m (n—1) —I-/ (n—1)! 2 —as,0(s,z —as) | ds 9)
0

Taking into account the relations 9(¢, z) = u(t,z), z = x + at, and z — as = p(t, s, x), we rewrite the
integro-differential equation (9) in the form

t

R, & (t—s)"
DIDO [U(t,ll?)] :Z;w%-i-m(l‘_‘_at +/ n—l S p(t,s,x),u(s,p(t,s,x))) dS, (10)
= 0

where p(t, s, z) = x + ot — s).

Now we consider the differential expression Di[u] = u; + cu,. Introduce the notation ¢(t, s, z) =
x — ot — s) and perform the change of variables u(t,z) = w(t,n), n = q(t,0,z). After differentiation
we have

ut(t7 ‘T) = wt(ta T,) - awn(t, 7])
Since wy)(t,n) = ux(t,x), we obtain

we(t,n) = we(t, x) + auy(t, ). (11)
Taking into account (11) and the relation « + at = n + 2at, we rewrite Eq. (10) in the form

o

t

n

t—s

— E 9022-+m(17+2at +/ (n— 1)1 s p(t,s,n—I—at),w(s,p(t,s,n—l—at)))ds. (12)
i—1 )
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Integrating Eq. (12), we obtain

8n—l m n f sn—j
atn—lDO [w(t7 77)] n+1 + /802j+m(77 + 2048) (TL o ])' ds
Jj=1 0
t
(t—s)"
= [ (st wonttsa) ) s, (13
0
¢ .
8n—2 n gn—J
Htn—2 D' w(t,n)] = Pni2(n) + Pny1(n)t + / (t = 8)p2j+m(n + 2as) -y @8
t = (n—j)!
t
+/(t_s)n+lf<s (t,s,q),w(s,p(t,s )))ds (14)
(n + 1)! 7p ) 7q ) 7p 9 7q 9
0
2n $2n—i n ! (t _ S)TL—I sn—J
gt = Y 0 g+ [T et 209 T ds
i=n+1 Jj=17
¢
2n 1
+/ s p(t,syq),w(s,p(t,s,q)» ds, (15)
0
where ®;(n), i =n+1,n+2,...,2n, are arbitrary constants align the characteristic z — at = Cy to
be determined, Cy = const. The initial conditions (2) for (13)-(15) have the form
8n—l 671—2
gin—1 D0 0(0,0) = Ponim-1(n), 5 o Do'w(0,n) = 2n4m-3(n), ..., Dg'w(0,n) = @mir(n).

Due to these conditions, from (13)-(15) we obtain

sn—J

t — S
Z@2z+m l + Z/ ' 902]+m(77 + 2043)( ., ds

= - i)

! t _ S 2n 1
+/ (an 1y 18 p(t,s,Q),w(s,p(t,s,q))) ds. (16)
0

Taking into account the relations w(t,n) = u(t,x), n = q(t,0,z) = z — at, n + 2as = z — a(t — 2s),
and p(t, s,q) = x, we rewrite Eqgs. (18) in the form

n tn—i

Di'u(t, z)] = Z ©2itm—1(x — at) (n — )
i=1
- (t_s)n—l ! t_82n1
+]z::10/ (n—1)! S02j+m($—a(t—28)) ds+0/ on — 1)) f(s,z,u(s,x)) ds, (17)

where x plays the role of a parameter. Now Eq. (1), in contrast to Eq. (4), takes the form

DY Dy Dy [u] = f(t, z,u(t, z)).
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Repeating all procedures (5)-(16), similarly to (17), we obtain

t
(t—s)n ! s)2n—1
+ 1/ —1)! 902]+m(x+04(t—28) (n—j)! d8+/ 2n—1 f(s,z,u(s,z)) ds. (18)
0

n

m 1 tn—z
Di'u(t,z) = 5 ZZ:; {9021'+m_1(m —at) + e2i4m—1(x + at)] (n— i)
1 j
(t—s)" gn—
+ 5 Z/ 1) g02j+m($ —a(t —29)) + p2j4m(x+ ot — 28)):| (n— ! ds
Jj=1 0

t

_ 2n 1

+/ t2n8—1 f(s,z,u(s,z)) ds, (19)
0

where x plays the role of a parameter.
Consider the differential expression

Introduce the notation

t 1
r(t,s,x) //u90d0d9
0

s

and perform the change of variables u(t,z) = h(t,£), £ = r(t,0,z). After differentiation we have

w(t, ) = hy(t,€) — /u(t, o) do he(t, €).
0

Since he(t, &) = ug(t, x), we obtain

1
he(t,€) = ug(t,x) + /u(t,a) do ug(t, ).
0

Taking into account this relation and the formula

t o1
=&+ u(,0)dodf =&+ r(t,0,0),
[

we rewrite Eq. (19) in the form
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om " n—i

h(t,€) = ; 3y [@Hm_l (€+7(t,0,0) — at) + poiym_1 (€ +7(£,0,0) + at)]

o i=1 (n—1)!
1 n ! (t _ S)n—l
+ 9 ;0/ (n—1)! [902j+m(€ +1(s,0,0) — ot — 2s))
+ 902j+m(§ +7(s,0,0) + aft — 23))} (ns”_—;)! ds

! t_82n 1
[T (560,01 s+ 7(5,0.0)) .
0

Integrating Eq. (20) along the third characteristic m times, we obtain

8m—1
opm—1 h(t, &) = ®oni1(§)
+ 2210/ poitm—1(§ +7(s,0,0) — as) + @oiym—1(€ +7(s,0,0) —I—as)] (;:i)! ds
t
e [ (t—
+2j§_:1/ o) 802]+m (€+7(s,0,0) — a(t — 2s))
=10
snI
+ p24m (£ +7(s,0,0) + a(t — 23))} (n— ) ds
¢
b o (s 76,000 b6 5 7(5,0,0)) s,
0
8m—2
-2 h(t,&) = ®Poni2(§) + Ponr1()t
n / n—
+ ;z;/ (t—s) Q02z+m 1(§+r(s 0,0) —as) + V2 tm— 1(§+r(s 0,0) —|—as)} (n— ). ds
=10
_ n+l
Z/ tn _i 1)1 902j+m(§ +7(s,0,0) — at — 23))
s
+ p24m (£ +7(s,0,0) + a(t — 23))} (n— ) ds

t

2n+1
[ (56 0,05+ (0,0,0)) s,

o
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i=1 :
t
1 n _ o\ym—1 nej
+, j_1/ (t(m 5_) ! [¢2j+m—1(€ +7(5,0,0) — as) + @2jm—1(& +7(5,0,0) + as)] (:_ i) ds
=Lo
t
n t _ S n+m 1
+ k 10/ (n+m— |:§02k+m(§+7'(8 0, 0)—a(t—23))
n—=k
+ 902k+m(5 +7(s,0,0) + a(t — 23))} (s_ )l ds

t

_ 2n+m 1
+/ ;n_im f( 6+ 1(s,0,0), (s,§+r(s,o,0))>ds, (23)

where ®;, i = 2n + 1,2n + m, are arbitrary constants along the third characteristic to be determined.
The initial conditions (2) for (21)—(23) have the form

8m—1 am—2
otm—1 h(07 g) = @m(ﬁ), otm—2 h(ov 5) = ¢m—1(£), SR h(07 g) = 901(5)
Due to these conditions, from (21)—-(23) we obtain
m tm—i
h(taé) = ;901(5) (m o Z)'
t
1 n _ ym—1 n—j
+ 5 j_l/ (t(m 3_) by [¢2j+m_1(§ +1(5,0,0) — as) 4+ @2j4m—1(& +7(5,0,0) + as)] (:_ i) ds
=10
t
n t _ S n+m 1
+ 1! n4+m— |:S02k+m(€+r(37070) —Oé(t—28))
n—k
+ 902k+m(£ + 7“(8,0, 0) + Oé(t - 28)):| (TL _ k‘)‘ ds

! 2n+m 1
—I—/ o _|_ m—1)! f(s,§+ T(S,0,0),h(s,£ + T(S,0,0))) ds. (24)
0

Taking into account the relations
1

t
h(t, &) =u(t,z), &=r(t0z) u(f,0)do db,
- f]

0

s 1
£+1r(s,0,0) =&+ u(@,0)dodf = x — uw(@,0)dodd =r(t,s, ),
I /]

from (24) we obtain the integral equation (3). Differentiating (2n +m) times along the corresponding
characteristics, we obtain from (3) the following differential equation:

d2n+m
™)t ut, ), (25)
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where = plays the role of a parameter.
For the left-hand side of (25), the following relation is valid along the characteristic:

m

1
d*rrmu(t,z) (0 a\" [0 aN"[ o 0
gpnem = <8t_a833> <8t+a8:1:> 8t—|—/u(0,a)dad0&v u(t, x)
0
0 ?\"[ o / 0 "
_ <8t2 W) e +/u(9,a) dodd | ult,)
0

Therefore, the nonlinear integral equation (3) is equivalent to the initial-value problem (1), (2) along
the characteristics. The lemma is proved. O
3. Analysis of the integral equation (3).

Lemma 2. Assume that the following conditions are fulfilled:

sn—J

t
m t—S
1. O<1;1é1[§<;|goi(m)|( ) (gaé(QZ“PmHJ 1 ‘/ (n — 7)! ds+
= 0

n+m-—1 Sn—k

t

(t—s)

ds < Ay < o0;

+(£aé<92|90m+2k ‘/ n+m—1)! (n k)!s_ 0=
0

0 < x; =const < oo, 1©=1,2n;

2. |pi(z1) — pilz2)| < xi|z1 —
3. I;lgﬁiv(t’w’u)‘ < M(t), 0< M(t) e C(Qr);

4. ‘f(t,xl,ul)—f(t,mg,w)‘ |x1—m2|+N |u1
0< Q) eC(Qr), 0<N(t ) € C(Qr);

(t—8)2"+m 1
9. 0 M(s)ds < Aj.
<f§3§/(2n+m—1)! (s)ds < A

Then the integral equation (3) has a unique solution in the domain 2, which can be found by the
method of successive approximations:

Uo(t,l‘) =0, ’LL7—+1(t,ZL‘) = ®(t7$;u7'7p7')7 T=0,1,..., (26)

where
1

po(s,t,x) =z, pr(s,t,x)=x— //UT(Q,U) do df.

s 0

Proof. Due to the conditions of the lemma, we conclude that the first difference approximation (26)
satisfies the following estimate:

t

(t—s)™ s
lus (£, ) — uo(t, )] Z!% +Z\90m+211 !ggg};/ (n— %
0
n ¢ t_sn—i-m 1 sM k t(t_8)2n+m 1
d M(s)ds < Ao+ Ay, (27
+Z‘¢m+2k HIEIS)T{/ n4+m—1!(n—k) 8+?el3¥/(2n+m—1)! (s)ds < Do+ A1 (27)
0 0
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Taking into account (27) and the conditions of the lemma, from (26) we conclude that the second
difference approximation (26) satisfies the following estimate:

t

|u2(t,$) —ul(t,w)‘ < Z (XZTm Z| /|u1 s,x) —up(s,z ‘ds
i=1 0

t

o \ym—1
+ Xm-42j—1 TAxX (t=s) ui(0,x) —ug(0,z)| df ds
Z i

st €Qr (m—=1! (n—j)!

= ntm—1  cn—k ¢
""kZ:le“‘?k?ElSX/(( +7)7l—1) ! (n — )!/|u1(9,x)—u0(97x)‘d9d8

s

¢ s 2n+m—1
+/ §t2n+)m—1)! Q(s) / [u1(0, 2) — uo(6,2)| dO + N (s)|ur (s, 2) — uo(s, 2)| | ds
0 S

t t
S/Hts‘ulsa:)—uosx|ds< A0+A /H ds, (28)
0 0

where
Y A t—s)m "I
H(t,s) = ; (m — )1 + ;Xm+2]—1 (m—1)! (n— j)!
(t —s)ntm gk (t — s5)2n+m=1

+me+2k e Dm0 (2m - 1)1 [QEO)E =5+ N(s)].

Taking into account (28), for the third difference approximation (26) we obtain the estimate

lus(t, z) — us(t, ) / (t, s)|ua(s, ) — ur(s, x)| ds
0

t s t 2
< (Ao +A) /H / s@)d@ds:AO;Al /H(t,s)ds
0 0
Continuing this process, we inductively obtain
t t T
fursa(t.) = un(t.0)] < [ ) urs,) —wea(sio)|ds < 0| [resas| o (29)
0 0

The estimate (29) implies that the sequence of functions {u,(t m)} , defined by (26) converges
absolutely and uniformly in the domain €.

Now we assume that the integral equation (3) has two solutions u(t,z) and ¥(¢, ) in the domain 2.
Then the absolute value of their difference satisfies the estimate

! (t,z) — / (t,s) !usm ﬁ(s,x)‘ds.
0
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Applying the Gronwall-Bellman inequality, we see that
‘u(t,a:) - ﬁ(t,x)‘ =0

in the domain . The lemma is proved. U

Lemma 3. Assume that the conditions of Lemma 2 are fulfilled. Then for the iterative process (26),
the following estimate of the convergence rate is valid:

T

lur(t,2) —u(t,z)| < (Ao + Al)f_! - exp w, (30)

where

w= max/H(t,s)ds < 0.
teQr

Proof. Indeed, due to the conditions of the lemma, taking into account (29), we have the estimate

lu-(t,2) — u(t,2)| < |ur1(t, ) — ur(t, 2)| + [urga(t, 2) — ult, z)|
< (AO + Al):}_; + /H(t, s)‘uT(s,m) — u(s,m)| ds.
0

Applying the Gronwall-Bellman inequality, we arrive at the estimate (30). U

Lemma 4. Assume that the conditions of Lemma 2 be fulfilled. Then for any x1,x9 € R, the following
estimate is valid:

lu(t, z1) — u(t, z2)| < U(t)|21 — 22, (31)
where
! 2n+m 1
= [ exp / 2n—|—m—1 (N (s)ds p < o0,
0

t — s n+m Sn—k t—s 2n+m—1
" ZX’””’“ +m) -k " E2n —|—)m _ @ 5)] ds.

Proof. Indeed, due to the conditions of the lemma, we have the estimate

t

lu(t, z1) — u(t, z2)| < Z [t ) /|x1 za| ds
0

= (m—
t

t_
+me+2] 1max/(( 8_1 (n— /‘xl—x2|d6ds
0

n t
t—g n+m—1 sn k
+ZXm+2kmaX/( ) /‘ml xg‘deds

— teQr ) (n+m—1)!

820



t t
t— S 2n+m 1 (t o S)Qn—l—m—l
+/ 2+ m - /‘xl - | s +/ @n +m — 1 N Ol @) = uols 2)] ds
0 0

! t — 5)2ntm=1

<y ‘xl_g;Q‘+/§2n+m_1)!N(s)‘u(s,x1)—u(s,:rg)‘ds,
0

where

m n

= max t [ (t—s)m™ s
N_tGQTO/[Z(m i)! +2Xm+2] l( — D! (n—j)!

i=1

t — g n-+m n—k: t—s 2n+m—1
- ZX’”“’“ n+ m)— D (n— k) T EZn +)m _ Q=) ds.

Applying the Gronwall-Bellman inequality to the last estimate, we obtain

t

|u(t,x1) - u(t,x2)| < M‘l‘l _ 332‘ . exp / E

0

t— S)2n+m—l

2n+m — 1)!N(S) ds

This implies the estimate (31). O

The lemmas proved above imply the following theorem.

Theorem 1. Assume that the conditions of Lemma 2 are fulfilled. Then the initial-value problem (1),
(2) has a unique solution in the domain . This solution can be found by the Picard iterative pro-
cess (26). The solution of the initial-value problem (1), (2) satisfies the estimates (30) and (31).

N —
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