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Distribution of random motion at renewal instants in
three-dimensional space

A. Pogorui, R. M. Rodŕıguez-Dagnino

(Presented by O. Dovgoshey)

Abstract. In physics, chemistry, and mathematics, the process of Brownian motion is often identified
with the Wiener process that has infinitesimal increments. Recently, many models of Brownian motion
with finite velocity have been intensively studied. We consider one of such models, namely, a generalization
of the Goldstein–Kac process to the three-dimensional case with the Erlang-2 and Maxwell–Boltzmann
distributions of velocities alternations. Despite the importance of having a three-dimensional isotropic
random model for the motion of Brownian particles, numerous research efforts did not lead to an expression
for the probability of the distribution of the particle position, the motion of which is described by the three-
dimensional telegraph process. The case where a particle carries out its movement along the directions
determined by the vertices of a regular n + 1-hedron in the n-dimensional space was studied in [13], and
closed-form results for the distribution of the particle position were obtained. Here, we obtain expressions
for the distribution function of the norm of the vector that defines particle’s position at renewal instants
in semi-Markov cases of the Erlang-2 and Maxwell–Boltzmann distributions and study its properties. By
knowing this distribution, we can determine the distribution of particle positions, since the motion of a
particle is isotropic, i.e., the direction of its movement is uniformly distributed on the unit sphere in R3.
Our results may be useful in studying the properties of an ideal gas.

Keywords. Transport process, telegraph equation, Erlang distribution; Maxwell–Boltzmann distribution,
3-D random motion.

1. Introduction

Let us consider the renewal process ν (t) = max {m ≥ 0 : τm ≤ t}, t ≥ 0, where τm =
∑m

k=1 θk,
τ0 = 0 and θk ≥ 0, k = 1, 2, . . . , are i.i.d. random variables with a distribution function G(t) and a
probability density function (pdf) g (t) = d

dt G (t) .
We assume that a particle starting from the coordinate origin (0, 0, 0) of the space R3, at the time t=

0, continues its motion with a velocity v > 0 along the direction of η1, where η1 = (x1, x2, x3) is a ran-
dom 3-dimensional vector uniformly distributed on the unit sphere Ω2

1=
{
(x1, x2, x3) : x

2
1 + x22 + x23=1

}
.

At the instant τ1, the particle changes its direction to η2, where η2 and η1 are independent and
identically distributed on Ω2

1, and continues its motion with a velocity v along the direction of η2.
Then, at the instant τ2, the particle changes its direction to η3, where η3 is also uniformly distributed
on Ω2

1 and independent of η1, η2, and continues its motion with a velocity v along the direction of η3,
and so on.

Denote, by x (t), t ≥ 0, the particle position at the time t. We have that

x (t) = v

ν(t)∑
j=1

ηj (τj − τj−1) + v ην(t)+1

(
t− τν(t)

)
. (1)

Here, we assume that
∑0

j=1 ηj−1 (τj − τj−1) = 0.
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Basically, this equation determines the transport or storage process with semi-Markov switches
ν (t). It is easily seen that ν (t) is the number of velocity alternations occurred in the interval (0, t).

The standard generalization of the Goldstein–Kac telegraph process to a 3D-space is obtained, by
assuming that θk is exponentially distributed. However, despite the efforts of many scholars in obtaining
the closed-form results for the distribution of x (t), it is not represented in terms of elementary functions
[2–6].

Let us denote xn = v
∑n

j=1 ηj (τj − τj−1). It is easily seen that xn is x (t) at the instant of n-th
velocity alternation. Denote, by xn = v

∑n
j=1 ηj−1 (τj − τj−1), the projection on a line, where ηj is the

projection of ηj on the line.
In this paper, we will find the distribution F∥xn∥ (x) and the corresponding probability density

function of ∥xn∥ = v
∥∥∥∑n

j=1 ηj (τj − τj−1)
∥∥∥, where ∥xn∥ is the norm of the vector xn, by using the

distribution F|xn| (x) of the length of xn, i.e., |xn| = v
∣∣∣∑n

j=1 ηj (τj − τj−1)
∣∣∣ = v

∣∣∣∑n
j=1 ηjθj

∣∣∣.
Lemma 1. The probabilistic properties of a random vector xn are completely determined by those

of its projection xn on a line.

Proof. Indeed, it is easily verified that xn is isotropic, and the characteristic function φn of variable
α = (α1, α2, α3) depends only on ∥α∥ =

√
α2
1 + α2

2 + α2
3, i.e.,

φn (∥α∥) = E [exp {i (α,xn)}] .

Hence, we can show that

φn (∥α∥) = E [exp {i (α,xn)}] = E [exp {i ∥α∥ (e,xn)}] = E [exp {i ∥α∥xn}] ,

and E [exp {i ∥α∥xn}] is the characteristic function of xn.
Thus, if we have the characteristic function of xn, we have the characteristic function of xn.
It is well known that the projection η1 on a line is uniformly distributed on [−1, 1] [1].
Let us denote, by Gθ (x) , the distribution function of θ1 and, by Gηθ (x) , the distribution function

of η1θ1.

Lemma 2. The relationship between Gηθ and Gθ is as follows:

Gηθ (x) =
1

2
− 1

2

∫ 0

−1
Gθ (x/y) dy I{x<0} +

1

2

∫ 1

0
Gθ (x/y) dy I{x≥0}. (2)

Proof. Taking into account that d
dxP (η1 ≤ y) = 1

2 I{−1≤y≤1}, it is easily seen that

Gηθ (x) = P (η1θ1 ≤ x) =
1

2

∫ 0

−1
P (θ1 ≥ x/y) dy I{x<0} +

1

2

∫ 1

0
P (θ1 ≤ x/y) dy I{x≥0}.

This concludes the proof.

By differentiating Eq. (2), we obtain the following equation for the pdf gηθ of η1θ1:

gηθ (x) =
d

dx
Gηθ (x) =

1

2

∫ ∞

|x|
gθ (y)

dy

y
, (3)

where gθ (x) =
d
dxGθ

(x) is the pdf of θ1.
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By differentiating Eq. (3), we obtain

gθ (x) =
d

dx
Gθ (x) = −x

2

d

dx
gηθ (x) , x ∈ R. (4)

2. Erlang-2 case

Let us consider the case where θ1 has the Erlang-2 distribution, i.e., gθ (y) = λ2ye−λy I{y≥0}, with
scale parameter λ.

Lemma 3. The characteristic function φxn (z) of xn is of the following form:

φxn (z) =

(
λ2

λ2 + v2z2

)n

.

Proof. It follows from Eq. (3) that

gηθ (x) =
1

2

∫ ∞

|x|
λ2ye−λy dy

y
=

λ

2
e−λ|x|, x ∈ R.

Therefore, η1θ1 has the Laplace or double exponential distribution. It is well known that

η1θ1 = ξ1 − ς1,

where ξ1 and ς1 are independent exponentially distributed random variables with parameter λ.
Thus, there exist a set ξj , ςj , j = 1, 2, . . . , n, of independent exponentially distributed random

variables with scale parameter λ such that

xn = v

n∑
j=1

ηjθj = v

n∑
j=1

(ξj − ςj) = v

 n∑
j=1

ξj −
n∑

j=1

ςj

 .

It is also well known that
∑n

j=1 ξj and
∑n

j=1 ςj have the Erlang-n distribution with the pdf

f (x) =
λnxn−1

(n− 1)!
e−λx I{x≥0}.

The characteristic function of the Erlang-n pdf is

φn (z) =

(
λ

λ− iz

)n

.

Therefore, the characteristic function of xn is

φxn (z) =

(
λ

λ− ivz

)n( λ

λ+ ivz

)n

=

(
λ2

λ2 + v2z2

)n

.

Hence, the lemma is proved.

The function φxn (z) =
(

λ2

λ2+v2z2

)n
is the characteristic function of the bilateral double (BD)

gamma distribution [7], whose pdf is sometimes denoted as BDΓ (n, λ/v;n, λ/v) (x).
It is easily seen that BDΓ (n, λ/v;n, λ/v) (x) is the convolution

BDΓ (n, λ/v;n, λ/v) (x) = (Γ (n, λ/v) ∗ Γ (n,−λ/v)) (x) ,
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where Γ (n, λ/v) (x) is the pdf of a gamma distribution with parameters n, λ/v.
The explicit expression for BDΓ (n1, α1;n2, α2) (x) was obtained in [8]. In our case, the pdf

BDΓ (n, λ/v;n, λ/v) (x) has the form

BDΓ (n, λ/v;n, λ/v) (x) =
|x|n−1e−

λ
v
|x|

(v/λ)nΓ (n)

∫ ∞

0
e−ttn−1

(
1 +

vt

2λ |x|

)n−1

dt. (5)

Formula (5) was obtained from formulas (5) and (41) in [8]. In formula (41), we took λ1 = λ2 = v/λ,
α1 = α2 = n, since the authors of [8] used the parameter 1/λ instead of the common notation λ in the
gamma distribution.

The pdf fxn (x) of xn is the inverse Fourier transform of φxn (z). Hence,

fxn (x) = F−1 (φxn (z)) = BDΓ (n, λ/v;n, λ/v) (x) .

Theorem 1. The pdf f∥xn∥ of ∥xn∥ in the case where θ1 has the Erlang-2 distribution of the form

f∥xn∥ (x) = (4n− 2)
λn−1

vn−1

∂2

∂x2

(
xne−

λ
v
x

n!

∫ ∞

0
e−ttn

(
1 +

vt

2λx

)n

dt

)

+2
λn+1

vn+1

xne−
λ
v
x

n!

∫ ∞

0
e−ttn

(
1 +

vt

2λx

)n

dt, x ≥ 0. (6)

Proof. Considering the symmetry of xn with respect to 0, it is easily verified that

f|xn| (x) = 2fxn (x) , x ≥ 0. (7)

We note that |η1| is uniformly distributed on [0, 1]. Similarly to Eq. (4), we can show that the pdf
f∥xn∥ (x) can be expressed in terms of the pdf f|xn| (x) as follows:

f∥xn∥ (x) = −x
d

dx
f|xn| (x) , x ≥ 0.

Let us assume d (x) = −x d
dx fxn (x) , x ∈ R. It is easily seen that d (x) is the probability distri-

bution, and f∥xn∥ (x) = 2d (x) , x ≥ 0.

The characteristic function φd (z) of d (x) can be written as

φd (z) = z
∂

∂z
φxn (z) + φxn (z) =

(
λ2

λ2 + v2z2

)n(
1− 2nv2z2

λ2 + v2z2

)
. (8)

Therefore, making the inverse Fourier transformation of Eq. (8), we obtain

f∥xn∥ (x) = 2F−1 (φd (z)) = (4n− 2)
v2

λ2

∂2

∂x2
F−1

(
φxn+1 (z)

)
(x) + 2F−1

(
φxn+1 (z)

)
(x) (9)

= (4n− 2)
v2

λ2

∂2

∂x2
BDΓ (n+ 1, λ/v;n+ 1, λ/v) (x) + 2BDΓ (n+ 1, λ/v;n+ 1, λ/v) (x) , x ≥ 0.

Taking Eq. (5) into account, we complete the proof of the theorem.
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λ

Figure 1: Probability density function f||xn||(x) for λ = 1 and v = 1.

In Fig. 1, several probability density functions are shown for the values of n = 2, 4, 10, and 20.
These pdfs were calculated, by using the MatLab package and Eqs. (8) and (9).

Remark. Applying the binomial theorem, we obtain∫ ∞

0
e−ttn

(
1 +

vt

2λx

)n

dt =

∫ ∞

0
e−ttn

n∑
k=0

(
vt

2λx

)k

dt

=

n∑
k=0

( v

2λx

)k ∫ ∞

0
e−ttn+k dt =

n∑
k=0

( v

2λx

)k
Γ(n+ k + 1).

Substituting this expression in Eq. (6), we have the following formula for the pdf of ∥xn∥:

f∥xn∥ (x) = e−
λ
v
x

(
λ

v

)n−1 n∑
k=0

( v

2λ

)k (n+ k)!

n!
xn−k−2

×

[
(4n− 2) (n− k)

(
n− k − 1− 2λ

v
x

)
+ 4n

(
λ

v

)2

x2

]
.

3. Maxwell–Boltzmann distribution

Let θ1 have the Maxwell–Boltzmann probability density

gθ (x) =

√
2

π

x2e−
x2

2a2

a3
, x ≥ 0.

This density is used for describing the particle speeds in ideal gases, where the particles move freely.
Thus, it is a reasonable model for the distribution of the free path of a particle.

Theorem 2. The pdf f∥xn∥ of ∥xn∥ in the case where θ1 has the Maxwell–Boltzmann probability
density is of the following form:
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Figure 2: Probability density function f||xn||(x) for a = 1.5 and v = 1.

f∥xn∥ (x) = −x
d

dx
f|xn| (x) =

2x2

(av)3
√
2πn3

e
− x2

2n(av)2 , x ≥ 0. (10)

Proof. By using Eq. (3), we have

gηθ (x) =
1

2

∫ ∞

|x|
gθ (y)

dy

y
=

1√
2πa

e−
x2

2a2 , x ∈ R.

In this case, the pdf fxn (x) of xn = v
∑n

j=1 ηjθj is as follows:

fxn (x) =
1√

2π(va)2n
e
− x2

2n(av)2 .

Hence,

f|xn| (x) =
2√

2π(va)2n
e
− x2

2n(av)2 , x ≥ 0.

Therefore,

f∥xn∥ (x) = −x
d

dx
f|xn| (x) =

2x2

(av)3
√
2πn3

e
− x2

2n(av)2 , x ≥ 0.

In Fig. 2, several probability density functions are shown for the values of n = 2, 4, 10, and 20.
These pdfs were calculated with the use of the MatLab package and Eq. (10).

Hence, the mean distance ∥xn∥ from the starting point to the position of the particle at the n-th
change of a movement direction (i.e., the mean of ∥xn∥) is

E [∥xn∥] =
2

(av)3
√
2πn3

∫ ∞

0
x3e

− x2

2n(av)2 dx =
4av

√
n√

2π
.

It is not difficult to prove that the following integral has the closed-form solution:

421



E
[
∥xn∥m−2

]
=

2

(av)3
√
2πn3

∫ ∞

0
xme

− x2

2n(av)2 dx

=
(av)m−2(2n)

m+1
2

√
2πn3

Γ

(
m+ 1

2

)
.

For m = 3, it reduces to the mean value E[∥xn∥] = 4av
√
n√

2π
. The second moment is given, when

m = 4, and can be expressed as E
[
∥xn∥2

]
= 3(av)2n. As a consequence, the variance is given by

Var (∥xn∥) = (av)2n

(
3− 8

π

)
≈ 0.453521 (av)2n.

It is easily seen that f∥xn∥ is a unimodal pdf [9], and its modemf can be obtained from d
dxf∥xn∥ (x) =

0, which gives

mf =
√
2av

√
n.

With regard for the Gauss inequality for unimodal distributions [10], we have

P

(
|∥xn∥ −mf | > 2

√
(E[∥xn∥]−mf )

2 +Var (∥xn∥)
)

≤ 1

9
,

if 2
√

(E[∥xn∥]−mf )
2 +Var (∥xn∥) ≥ 2√

3

√
Var (∥xn∥).

The last inequality can be easily verified:(√
2av

√
n− 4av

√
n√

2π

)2

+ (av)2n

(
3− 8

π

)
− 1

3
(av)2 n

(
3− 8

π

)
= (av)2 n2

(
4 +

8

3π
− 8√

π

)
> 0.

Therefore, with a probability of 8
9 , the distance from the starting point to a particle position at the

instant of the n-th change of a movement direction satisfies the inequality

∥xn∥ ≤ mf + 2

√
(E [∥xn∥]−mf )

2 +Var (∥xn∥)

=
√
2av

√
n+ av

√
n

√(√
2− 4√

2π

)2

+

(
3− 8

π

)

=

(
√
2 +

√
5− 8√

π

)
av

√
n = 2.111697 av

√
n.

We can find a double-sided tighter bound, by using the well-known Vysochanskij–Petunin inequality
for the unimodal pdf of a random variable X [11, 12]

P
(
|X −E[X]| > λ

√
Var (∥X∥)

)
≤ 4

9λ2
, λ >

√
8/3.
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By using the Vysochanskij–Petunin inequality for λ = 2, we obtain with a probability of greater
than 8

9 that the distance from the starting point to a particle position at the instant of the n-th change
of a movement direction satisfies the inequalities

E [∥xn∥]− 2
√
Var (∥X∥) < ∥xn∥ < E [∥xn∥] + 2

√
Var (∥X∥).

or, equivalently,

P

((
4√
2π

− 2

√
3− 8

π

)
av

√
n ≤ ∥xn∥

≤

(
4√
2π

+ 2

√
3− 8

π

)
av

√
n

)
≥ 8

9
.

Thus, almost all particles of such an ideal gas after n collisions will be located in the ring between
two circles with the radii

r1 =

(
4√
2π

− 2

√
3− 8

π

)
av

√
n = 0.248889 av

√
n

and

r2 =

(
4√
2π

+ 2

√
3− 8

π

)
av

√
n = 2.942648 av

√
n

centered at 0.
As a final remark, we mention that these models can approximate the random motion of some

birds, animals in the ocean, flying objects (airplanes), and mobile users in a shopping mall.
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