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METHOD OF DIRECT CUTTING-OUT IN THE PROBLEMS OF ELASTIC EQUILIBRIUM  
OF ANISOTROPIC BODIES WITH CRACKS UNDER LONGITUDINAL SHEAR 

К. V. Vasil’ev1,2  and  H. Т. Sulym1 UDC 539.3 

In the earlier developed method of direct cutting-out, we take into account the anisotropy of material.  
This method is based on the procedure of modeling of finite or bounded bodies with thin structural de-
fects of any type and boundary conditions on its contour by an infinite space with the same inhomogene-
ities as in the original problem and additional thin inhomogeneities (cracks or absolutely rigid inclu-
sions), which form the boundary of the investigated body.  Thus, loaded cracks are used to model 
boundary conditions of the first kind, whereas absolutely rigid inclusions embedded in the matrix with 
certain tension model boundary conditions of the second kind.  The developed approach is verified for 
several problems of longitudinal shear of an anisotropic half space, a layer, and a wedge in the presence 
of an internal crack under given boundary conditions of the first kind. 

Keywords: anisotropy, orthotropic material, crack, half space, layer, wedge, stress intensity factor, 
method of direct cutting-out, longitudinal shear. 

The observed rapid development of contemporary technologies and industry would be impossible without 
taking into account broad spectra of properties of both traditional and new materials.  In the mathematical mod-
eling of materials, it becomes customary not to use the hypothesis that the material is homogeneous and iso-
tropic.  Indeed, there exists an urgent need to take into account the variations of the elastic properties of materi-
als in different directions, i.e., the property of anisotropy.  This is important not only for the analysis of natural 
anisotropy (observed in wood, crystals, and rocks) but also in the case of structural or artificial anisotropy in  
inhomogeneous materials and products; in particular, in plates and shells reinforced by thin strip-like inhomoge-
neities, fibers, and fillers, in smart materials, etc.  

The processes of production and operation of structural elements or other material objects are inevitably ac-
companied by the formation of various inhomogeneities, both predicted in the design of structures and unpre-
dicted (i.e., cracks and elastic or thin rigid inclusions of different shapes).  Therefore, it is necessary to know  
the distribution of stresses in bodies containing inhomogeneities of this kind and determine the applicability of 
these structures for subsequent operation. 

At present, there are numerous well-developed and powerful methods and approaches aimed at the numeri-
cal-analytic or pure numerical analyses of the elastic equilibrium of bounded bodies with thin strip-like inhomo-
geneities.  Note that the methods of integral transformations, methods of the theory of functions of complex  
variable, direct numerical methods, and their combinations prove to be among the most widespread approaches 
of this kind.  

The antiplane problem of the theory of elasticity was solved by the methods of Fourier integral trans-
forms and jump functions in [10] for a collection of anisotropic bands containing strip-like inhomogeneities with 
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arbitrary elastic properties.  In the limit cases, these inhomogeneities may correspond either to a crack or to 
an absolutely rigid thin interlayer.  In the cited work, the numerical results were presented for the case of uni-
form loading of a piecewise-homogeneous space in the presence of an elastic band in one of the half spaces.  
The case of longitudinal shear of an anisotropic half space containing a thin anisotropic elastic inclusion  
and subjected to the action of uniform loading was investigated in [11].  The influence of screw dislocations and 
concentrated forces on layered structures was studied in [23]. 

An orthotropic elastic layer containing a crack perpendicular to the boundary was investigated in [18] with 
the help of Fourier series and integral transforms.  The case of crack parallel to the boundary of the layer was 
studied in [14] by the methods of the theory of functions of complex variable.  The solutions of these problems 
were obtained in closed form.  In [13], the attention of the researchers was focused on the interaction of internal 
and edge cracks and cavities in the orthotropic layer in the presence of dislocations. 

In [8], the relationship between the invariant J-integral and the stress function was established by analyzing 
the longitudinal shear of elastic anisotropic bodies with thin-walled inclusions.  It was proposed to use this rela-
tionship in estimating the limit state and generalized stress intensity factors (SIF) for the corresponding prob-
lems. The relationship between the generalized SIF and the J-integral was found by the methods of the theory of 
functions of complex variable.  

The antiplane deformation of anisotropic bodies with thin-walled structures was studied in [9, 12] with the 
help of a direct numerical approach, namely, by using the boundary-element method.  In particular, an approach 
to the regularization of singular and quasisingular integrals was proposed in [9]. 

The problem of longitudinal shear of a finite one- or two-component anisotropic wedge containing an inter-
face crack was investigated with the help of an analog of the finite Mellin transform in [15, 22].  The problem  
of elastic equilibrium of an orthotropic rectangular bimaterial with interface crack was solved in [17].  With  
the help of expansions of the solution in the Fourier series, this problem was reduced to a singular integral equa-
tion (SIE), which was solved numerically.  

The analytic expressions for the SIF in a series of problems of longitudinal shear of bodies with edge cracks 
were obtained by the method of conformal mappings in [16, 21, 25].  In particular, the authors of the cited works 
studied the cases of a round shaft, a wedge, a piecewise homogeneous half space, and a two-layer structure con-
taining edge cracks and subjected to the action of concentrated factors. 

Unlike direct numerical methods, for the investigation of the stressed states of bodies of various geometries 
it is customary to use absolutely different numerical-analytic methods and approaches.  In the general form,  
for the first time, it was proposed [4] to model the solutions of the problems for deformable bodies of complex 
geometric shapes with thin inhomogeneities by the method of direct cutting-out.  This method is based on the 
formation of the investigated body with thin inhomogeneities with the help of an infinite homogeneous or 
piecewise-homogeneous space containing a system of thin defects some of which form the boundary of the body 
and the conditions imposed on this boundary.  The boundary of the body with applied forces is formed by loaded 
cracks.  At the same time, the displacements on the corresponding boundary are modeled by absolutely rigid 
inclusions inserted into the matrix with certain tension.  In this method, the number of SIE somewhat increases 
but the procedure of their construction and solution is significantly simplified and unified.  The indicated ap-
proach made it possible to successfully solve a series of problems of elastic equilibrium of various isotropic 
plane-layered structures (half spaces, spheres, layers, and two-layer structures) [3, 4], wedge structures [2, 3], 
and beams [1, 6] with cracks and inclusions under the action of uniform loads and concentrated factors. 

In the present paper, we continue the investigations carried out in [2, 4] and take into account the anisotropy 
of the material.  We analyze the stability of computational schemes applied for the solution of the systems 
of SIE.  In view of the restricted volume of the present paper, we restrict ourselves to the investigation of the 
problems of longitudinal shear for the cases of an anisotropic half space, a layer, or a wedge containing internal 
cracks with boundary conditions of the first type (forces) imposed on the boundaries of the body.  
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Fig. 1 

The method of direct cutting-out makes it possible to reduce these problems to the analysis of the interac-
tion of different systems of cracks in the anisotropic space.  

As an alternative to the method of cutting-out, it is possible to consider the boundary-element method of 
jump functions, which is more complicated in realization but, at the same time, more universal.  For the first 
time, it was successfully applied to the solution of antiplane and plane problems of anisotropic thermoelectro-
magnetoelasticity for bodies with thin strip-like inclusions [24].  Later, this method was used for thin shell-like 
inclusions in similar 3D-structures [19, 20].  

1.  Formulation of the Problem 

Consider the problem of antiplane deformation of an anisotropic space with moduli of elasticity  akm  

(k, m = 4, 5)  containing  N   arbitrarily oriented plane tunnel cracks (mathematical cuts)  Lj   j = 1,…, N( )  

with local coordinate systems  s jO jn j  at their centers.  The coordinates of the crack centers  z0 j = x0 j + iy0 j ,  

the angles of their rotation about the abscissa axis  ϕ j ,  and the crack lengths  2aj   j = 1,…, N( )  are regarded as 
known.  It is assumed that the cracks do not intersect and do not touch.  The space can be loaded at infinity by 
uniform stresses   

 σyz
0 = τ1,      σxz

0 = τ2 .   

Moreover, symmetric stresses  τ j   may act on the top and bottom faces of the j th crack (Fig. 1).  The stress-
strain states in the planes perpendicular to the direction of shear are identical, and, therefore, we restrict our-
selves to the analysis of fields in the plane  xOy .  The Oz -axis is directed in the direction of shear.  

2.  Construction of the Solution 

According to the method of jump functions [7], we exclude thin inhomogeneities from consideration and 
replace their action upon the matrix by unknown functions of the jumps of stresses  f5

j   and the derivatives of 

the jumps of displacements  f6
j   in the median line  

 
′Lj ≡ [−a j , a j ]   (n

j = 0;  −a
j ≤ s j ≤ a j)  of inhomogeneity in 
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its local coordinate system  s jO jn j: 

  σnz
j− − σnz

j+ = f5
j (s j ),      ∂

∂s
w j− −w j+( ) = f6

j (s j ),      s j ∈ ′Lj      j = 1,…, N( ). (1) 

Here,  fr
j = 0   r = 5, 6( )  for  s j ∉ ′Lj .  The superscripts  (+)  and  (–)  correspond to the top and bottom faces of 

the inhomogeneity.  We represent the stressed state of the anisotropic space with thin inhomogeneity  Lj  in its 
local coordinate system via the unknown jump functions in the following form [7, 10, 23]: 

  σnz
j, in + iσsz

j, in = 1
4

gp
j t5(z

j )− gm
j t5(z

j )( ) + i
4a55

j α j gp
j t6(z

j )+ gm
j t6(z

j )( ).  (2) 

Here, the superscript “in” stands for inhomogeneity and 

  tr (z
j ) = 1

π
fr

j (t)dt
t − z j

′Lj

∫     (r = 5, 6),       

 gp
j = β j + i(1+α j ),      gm

j = β j + i(1−α j ), 

 α j =
a44

j a55
j − (a45

j )2

a55
j ,      β j =

a45
j

a55
j ,      z j = s j + β j + iα j( ) n j. 

The elastic constants  akm
j   in the coordinate systems  s jO jn j  are given by the formulas [5, 7]: 

  a44
j = a44 cos2 ϕ j − 2a45 sinϕ j cosϕ j + a55 sin

2 ϕ j , 

 a45
j = a44 − a55( ) sinϕ j cosϕ j + a45 cos2 ϕ j − sin2 ϕ j( ), 

 a55
j = a44 sin2 ϕ j + 2a45 sinϕ j cosϕ j + a55 cos2 ϕ j . 

By using the principle of superposition of solutions, expression (2), and the formulas of transformation for 
the stress tensor under changes of the coordinate system, we represent the stressed state of the anisotropic space 
containing a system of  N   arbitrarily oriented inhomogeneities in the form  

 σyz + iσxz = σyz
0 + iσxz

0 + σnz
j, in + iσsz

j, in( ) e−iϕ j

j=1

N

∑ , 

   (3) 
 s j + in j = x + iy − z0 j( ) e−iϕ j .  
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Here,   

 σyz
0 + iσxz

0 = τ1 + iτ2   

are the homogeneous stresses for the space without defects but with a given external load. 
We now pass to the coordinate system of the lth inhomogeneity 

  σnz
l + iσsz

l = σyz + iσxz( ) eiϕl ,       

 x + iy = sl + inl( ) eiϕl + z0l  

and determine the limit stresses  σnz
l±   on its faces by the Sochocki–Plemelj formula [7]: 

 

 

σnz
l± = ∓ 1

2
f5
l (sl )− 1

2παla55
l

f6
l (t)dt
t − sl′Lj

∫  

  + Re σyz
0 + iσxz

0 + σnz
j, in + iσsz

j, in( ) e−iϕ j

j=1, j≠l

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ eiϕl

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, (4) 

 s j + in j = sleiϕl + z0l − z0 j( ) e−iϕ j . 

Here, the upper and lower signs correspond to the top and bottom faces of the inhomogeneity, respectively.  
We now consider the stresses imposed on the crack faces.  In view of the opposite directions of normal to 

the matrix and crack surfaces, we obtain  

  σnz
l+ +σnz

l− = − 2τl,        σnz
l− − σnz

l+ = 0      l = 1,…, N( ). (5) 

Substituting (4) in (5), we arrive at a system of  2N   SIE for the unknown jump functions.  The additional 
conditions of balance and single-valuedness of displacements in traversing each defect, namely,  

  f5
l

−al

al

∫ (t) dt = 0 ,        f6
l

−al

al

∫ (t) dt = 0      l = 1,…, N( ) 

enable us to solve the resulting system of SIE, in particular, by the method of collocations with the use of expan-
sion of the jump functions into finite sums of the series with isolated root singularity [7]: 

  
 

fr
l (t) = Am

rlTm (t/al )

1− (t/al )
2

m=0

Ml

∑ . 
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Fig. 2 

Here,  Am
rl   are the required coefficients,  Tm   are the Chebyshev polynomials of the first kind, and  Ml   is the 

number of terms of the expansion in series that are taken into account.   Note  that,  it  follows  from  expression (1) 
and the second relation in (5) that the jumps functions of stresses  f5

j    j = 1,…, N( )  are equal to zero.  By using 
these functions, we can determine the stressed state of the anisotropic space with cracks according to rela-
tions (3) and (2). 

The SIF are important parameters of the stressed state, which can be used to estimate the crack-growth re-
sistance [7, 23].  For cracks in the anisotropic material, we compute the SIF at the tips  А  and  В  by the formu-
las [7, 23]  

 K3
lA,B = ± 1

a55
l αl p6

l± π 2 ,       

 
 
p6
l± = lim

t→± al
al ∓ t f6

l (±al )⎡⎣ ⎤⎦, 

where the upper and lower signs correspond to the tips  В  and   А,  respectively. 
Further, we apply the method of direct cutting-out to the solution of four characteristic problems of longitu-

dinal shear of an anisotropic half space, of a layer, or of a wedge containing an internal crack.  In this case,  
we restrict ourselves to the evaluation of the SIF   

  K3
0A,B = K3

lA,B/τl πal    

normalized by the load and the half length of the crack.  To obtain the SIF with an error not higher than 1%, it is 
sufficient to take into account  M = 80  first terms of the expansion of jump functions in series in the Chebyshev 
polynomials for  al <16   and  M = 320  for  al ≥16    l = 1,…, N( ).  We consider four types of materials in the 
basic coordinate system:  isotropic (I) with   a44/a55 = 1  and   a45/a55 = 0 ;  orthotropic (II) with   a44/a55 = 2/3  
and   a45/a55 = 0 ;  (III) orthotropic with   a44/a55 = 3/2   and   a45/a55 = 0 , and anisotropic (orthotropic in the 
rotated coordinate system) (IV) with   a44/a55 = 2/3  and     a45/a55 = 1/3.  

Example 1.  Consider an anisotropic half space with load-free boundary containing a crack  L1  symmetri-

cally loaded by shear tractions  τ1 .  Here,  (0, y01)  are the coordinates of the crack center,  2a1  is its length, and  

ϕ1  is the angle of orientation of the crack relative to the Ox-axis (left diagram in Fig. 2). 
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Table 1 

a 0.5 1 2 4 8 16 

(I) 1.0126 1.0440 1.0829 1.0906 1.0912 1.0912 

(II) 1.0178 1.0652 1.1158 1.1227 1.1230 1.1230 

(III) 1.0083 1.0284 1.0571 1.0654 1.0662 1.0662 

(IV) 1.0292 1.0867 1.1336 1.1395 1.1398 1.1398 

Applying the method of direct cutting-out, we reduce the original problem to the investigation of an aniso-
tropic space with two cracks  L1  and  L2,  where the load-free crack  L2    (x02 = 0,  y02 = 0,   ϕ

2 = 0)  simulates 
the load-free boundary of the body (right diagram in Fig. 2). 

In Table 1, we present the results of evaluation of the normalized SIF for the crack parallel to the bound-
ary of the modeled half space   (ϕ

1 = ϕ2 = 0)  for different relative lengths  a = a2 a1   and the indicated four 
types of materials.  The relative distance from crack center to the boundary of the domain is equal to 
one  (d = y01 a1 = 1).   Since the problem is symmetric, the SIF for the left and right crack tips are identi-

cal   (K3
0A = K3

0B).  
As the relative length  a   increases, the SIF gradually approaches final values.  Moreover, in the isotropic 

case, the result coincides with the known value from [4].  An error lower than  0.1%  was obtained even 
for  a = 8  in all analyzed cases [as the parameter  a   increases further, the first five significant digits of the solu-
tion (printed in bold face) do not change].  Note that, for the other limit case of the crack perpendicular to the 
boundary of the domain  (d = 2 , ϕ1 = π 2),  the convergence rate of the method of direct cutting-out is lower.  
Indeed, in order to get an error lower than 1%, the relative crack length  L2   must be not smaller than  a = 16   
and, for an error of about  0.1%,  the crack length should be increased to  a = 64 . 

In Figs. 3 and 4, we show the dependences of the normalized SIF on the orientation angle  ϕ1  for the 
left  (А)  and right  (В)  crack tips, respectively, and different types of materials;  here,  d = 2   and  a = 64 .   

For the orthotropic (ІІ), (ІІІ) and isotropic (І) materials, the plots of the normalized SIF are symmetric 
about the value  ϕ1 = π 2 .  In view of the symmetry of our problem, this observation additionally confirms the 

reliability of the results.  Note that, for the angle  ϕ1 = π 2,  the values of SIF for different measures of orthotro-
py relative to the surface of the half space (II) and (III) and for the isotropic material (І) coincide to within the 
error of calculations. 

In addition, the different measures of orthotropy of the material (ІІ), (ІІІ) affect not only the quantita-
tive but also the qualitative behavior of the plots of SIF.  In particular, for the orthotropy of type (ІІІ), the SIF 
for the crack tip  В  increases with the angle  ϕ1  from zero to  π 2.  At the same time, for the orthotropy of 

type (ІІ), it decreases.  For the crack tip  А,  as the angle  ϕ1  increases from zero to  π 2,  the values of SIF be-
come  higher for all types of orthotropy.   The  maximal  values  of  SIF  were  obtained  for  the  anisotropic  material  
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Fig. 3 

 

Fig. 4 

of type (IV).  For the isotropic material (I), the corresponding values coincide with the values obtained in [4, 7] 
as a result of the direct solution of the problem for a half space, which also confirms their reliability.  

Example 2.  Consider the case of longitudinal shear of a layer with load-free faces in the presence of an in-
ternal central crack  L1  symmetrically loaded by tractions  τ1   (left diagram in Fig. 5).  The width of the layer 

is  2H .   The center of the crack  L1  is located at the point  0,H( );  the crack length is equal to  2a1,  and  ϕ1  is 
the angle of orientation relative to the Ox-axis. 

Applying the method of direct cutting-out, we reduce the original problem to the investigation of the aniso-
tropic space with three cracks L1, L2 , and L3, where the cracks L2  and L3   (x02 = x03 = 0; y02 = 0; y03 = 2H ;  

ϕ2 = ϕ3 =  0)  simulate the load-free boundaries of the layer (right diagram in Fig. 5). 
In Table 2, we present the results of evaluation of the normalized SIF   

 K3
0A,B = K3

1A,B τ1 πa1    
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Fig. 5.   

Table 2 

a 0.5 1 2 4 8 16 

(I) 1.0251 1.0847 1.1446 1.1493 1.1493 1.1493 

(II) 1.0353 1.1246 1.1982 1.2009 1.2009 1.2009 

(III) 1.0165 1.0548 1.1016 1.1085 1.1085 1.1085 

(IV) 1.0378 1.1261 1.2238 1.2280 1.2281 1.2277 

for a crack parallel to the boundary of the modeled layer   (ϕ
1 = 0)  for different relative lengths  a = a2 a1 =   

a3 a1   and four types of materials.  The relative distance from crack center to the boundary of the domain is 
equal to one   (d = H a1 = 1).  

By analogy with Example 1, as the relative length  a   increases, the normalized SIF gradually approach cer-
tain specific values.  Note that, in this case, an error lower than  0.1%  is obtained even for  a = 4   for all inves-
tigated types of materials.  

If the crack is perpendicular to the boundary of the domain  (d = 2,  ϕ1 = π 2),  then, in order to get an error 
lower than  1%,  it is necessary to take the relative length  L2  not smaller than  a = 64 . 

In Fig. 6, for  d = 2   and  a = 64 ,  we present the dependences of the normalized SIF on the orientation an-
gle  ϕ1  for different types of materials.  Since the problem is symmetric, the SIF obtained for the left and right 
crack tips are identical:   

 K3
0A = K3

0B . 

As in the problem for the half space, the plots of the normalized SIF are symmetric about the value  
ϕ1 = π 2  for the orthotropic (in the basic coordinate system) (ІІ) and (ІІІ) and isotropic (І) materials.  As the 

angle ϕ1 increases from zero to π 2, the values of SIF for the materials (І), (ІІ), and (ІІІ) become higher.   
The inclination of the principal axes of orthotropy in the material (IV) violates this symmetry.  For the an-
gle  ϕ1 = π 2 ,  as in Example 1, the SIF for the materials (I), (II), and (III) coincide to within the error of calcu-
lations.   A  conclusion  that  the SIF is independent of the elastic constants of the material orthotropic with respect  
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Fig. 7 

to the crack axis for a symmetrically loaded central crack perpendicular to the boundaries of the layer was also 
made in [18]. 

Example 3.  Consider Example 2 in the case of loading of the surfaces of the layer by tractions  τ   when the 
internal central crack  L1  is free of loads and the external forces are applied to the outer surface (left diagram in 
Fig. 7).  By the method of direct cutting-out, we reduce the original problem to the investigation of elastic bal-
ance of an anisotropic space with three cracks  L1,  L2 ,  and  L3,  where the cracks  L2   and  L3  symmetrically 

loaded by tractions  τ2 = τ3 = −τ  model the loaded boundaries of the layer (right diagram in Fig. 7). 

In Table 3, we present the results of evaluation of the normalized SIF  K3
0A,B = K3

1A,B τ πa1   for a crack 

parallel to the boundary of the modeled layer   (ϕ
1 = 0)  for different relative lengths  a = a2 a1 = a3 a1  and 

four types of materials.  The relative distance from crack center to the boundary of the domain is equal to 
one  (d = H a1 = 1) . 

As the relative length  a   increases,  the SIF gradually approaches its final values.  Note that, even  
for  a = 8,  its values coincide with the values obtained for  a = 16  with an error lower than  0.1%.   Further-
more, the values of SIF for a symmetrically loaded crack in a layer with load-free faces (Example 2) also  
coincide (to within the error of calculations) with the results obtained in the same example for all analyzed mate-
rials. 
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Table 3 

a 0.5 1 2 4 8 16 

(I) 0.0910 0.3635 0.9146 1.1364 1.1492 1.1492 

(II) 0.1022 0.4375 1.0407 1.1966 1.2010 1.2010 

(III) 0.0775 0.2963 0.7870 1.0772 1.1083 1.1085 

(IV) 0.1133 0.4446 1.0711 1.2251 1.2281 1.2287 

Example 4.  Consider the case of longitudinal shear of an anisotropic wedge containing a crack  L1  located 

on its bisectrix and symmetrically loaded by tractions  τ1.  The boundaries of the wedge are free of loads.   
The opening angle of the wedge is  2ϕ.   The center of the crack  L1  is located at a point  x01, 0( )  and its length 
is  equal to 2a1  (left diagram in Fig. 8).  By the method of direct cutting-out, we reduce the original problem to 
the investigation of an anisotropic space with three cracks  L1,  L2 ,  and  L3,  where  L2   and  L3  model the 
load-free boundary of the body (right diagram in Fig. 8). 

By  ε2  and  ε3   we denote the distances from neighboring tips of the cracks  L2   and  L3  to the point of 
intersection of their axial lines.  Suppose that  ε = ε2 a1 = ε3 a1  is the relative distance to the virtual edge of the  
wedge and  a  = a2 a1 = a3 a1   is the relative length of simulating cracks. 

We now study the influence of  a   on the rate of convergence of the method of direct cutting-out for an an-
gle  ϕ = π 6 .   Suppose that  ε = 0.001  and the relative distance from the center of the crack  L1  to the edge of 
the wedge is  d = x01 a1 = 2.  

In Table 4, we present the results of evaluation of the normalized SIF for the left  (А)  and right  (В)  crack 
tips   (K3

0A,B = K3
1A,B τ1 πa1)  for different relative lengths  a   and four types of materials.  

It is easy to see that, as the relative length  a   increases,  the normalized SIF approach their final values.  
Even for  a = 8,  they coincide with the results of evaluation of the normalized SIF for  a = 16   with an error 
smaller than 0.1%,  which enables us to treat this result as the actual value of the normalized SIF for a loaded 
crack in the wedge. 
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Table 4 

K3
0A   

a 0.5 1 2 4 8 16 

(I) 1.0055 1.1042 1.2148 1.2215 1.2216 1.2216 

(II) 1.0097 1.1193 1.2708 1.2775 1.2776 1.2776 

(III) 1.0044 1.0922 1.1712 1.1775 1.1777 1.1777 

(IV) 1.0119 1.1475 1.3015 1.3101 1.3101 1.3101 

K3
0B  

(I) 1.0036 1.0195 1.1238 1.1374 1.1376 1.1376 

(II) 1.0055 1.0179 1.1595 1.1753 1.1754 1.1754 

(III) 1.0020 1.0217 1.0972 1.1083 1.1087 1.1087 

(IV) 1.0075 1.0259 1.1800 1.1983 1.1985 1.1985 

Table 5 

 K3
0A  K3

0B  

ε  0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001 

(I) 1.9658 2.2013 2.2015 2.2015 1.3966 1.4037 1.4037 1.4037 

(II) 2.1544 2.3619 2.3617 2.3627 1.4741 1.4795 1.4793 1.4798 

(III) 1.8020 2.0652 2.0657 2.0653 1.3323 1.3421 1.3426 1.3425 

(IV) 2.1731 2.4425 2.4474 2.4469 1.5141 1.5208 1.5211 1.5209 

We now analyze the influence of the relative distance to the virtual edge of the wedge  ε  on the rate of 
convergence of method of direct cutting-out.  Suppose that  a = 16   and relative distance from the center of the 
crack  L1  to edge of the wedge is  d = 1.1  because it is clear that the stress concentration becomes weaker as the 
distance between the tip of the crack  L1  and the edge of the wedge O   increases. 

In Table 5, we illustrate the results of evaluation of the normalized SIF  K3
0A   and  K3

0B   for different values 
of the parameter  ε   and four types of materials.  High accuracy of the results is attained even for  ε = 0.01.   
The results obtained for the isotropic material and presented in Tables 4 and 5 coincide (to within the error of 
calculations) with the data obtained earlier [2], which additionally confirms the reliability of the performed cal-
culations. 
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Conclusions 

The method of direct cutting-out developed in our previous works is generalized by taking into account the 
anisotropy of materials in the problems of longitudinal shear of homogeneous bodies weakened by cracks.  By 
analyzing several illustrative examples of investigation of the elastic balance of an anisotropic half space, a lay-
er, or a wedge containing cracks, we confirm the efficiency and reliability of this method.  In the problems of 
antiplane deformation of a half space (or a layer) in the presence of defects, for certain geometric parameters and 
types of loading of the crack, it was discovered that the SIF do not depend on the elastic constants of the materi-
al orthotropic with respect to the crack axis.  The obtained results of evaluation of the normalized SIF coincide 
with the data known from the literature with an error that does not exceed  1%.  It was established that the meas-
ure of anisotropy and orientation of the principal axes of anisotropy in numerous cases strongly affect the values 
of the stress intensity factors.  
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