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THERMOELASTIC ANALYSIS OF FUNCTIONALLY GRADED CYLINDRICAL SHELLS 

R. М. Kushnir,1  U. V. Zhydyk,2  and  V. М. Flyachok3,4 UDC 539.3 

We perform the analytic investigation of the stress-strain state of a functionally graded cylindrical shell 
of finite length heated by a two-dimensional temperature field.  The properties of the shell material  
are regarded as analytic functions of the thickness coordinate.  In our investigations, we use the equa-
tions of the refined theory of shells that takes into account the deformation of transverse shear and  
the transverse normal deformation.  The heat-conduction equation is deduced under the assumption of 
linear temperature distribution over the thickness of the shell.  For the boundary conditions of simply 
supported shell, the quasistatic uncoupled problem of thermoelasticity is solved by the methods of Fou-
rier and Laplace transforms.  Numerical examples are presented and discussed to show that it is im-
portant to take into account the influence of inhomogeneity of the properties of materials of the metal–
ceramics composites. 
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Introduction 

Thin-walled structural elements in the form of plates and shells made of inhomogeneous composite materi-
als are often used in the contemporary engineering [1–3, 15].  Much attention is given to the investigation of 
functionally graded (FG) composites with continuous inhomogeneity.  These materials are heat- and fracture-
resistant, capable to operation under the action of elevated thermal stresses, and not susceptible to corrosion and 
erosion.  Therefore, they are suitable for application in advanced technological processes.  Functionally graded 
materials are, as a rule, alloys of ceramics and metal or combinations of different materials.  Their physicome-
chanical characteristics undergo smooth and continuous variations from plane to plane.  To apply nontraditional 
materials for the production of thin-walled structural elements in the form of plates and shells, it is necessary to 
develop new models and methods for their numerical analyses.  Hence, the investigations carried out in this field 
are important and actual.  

In recent years, the FG plates and shells were studied fairly extensively.  Thus, in particular, the influence of 
the inhomogeneity of material on the limit equilibrium of a shell weakened by a surface crack was investigated 
in [3]. The nonstationary thermoelastic response of a cylindrical panel to the action of inhomogeneous thermal 
loads was theoretically investigated in [11].  An exact solution of the equations of thermoelasticity of the shear 
theory of FG cylindrical shells with finite length subjected to the action of thermal loading, internal pressure, 
and axial forces was found in [7].  The classical theory, as well as various refined theories, was used for this 
purpose in [6, 8, 12, 14].  The thermomechanical behavior of FG cylindrical shells was analyzed in [5, 16]  
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by using the equations of coupled thermoelasticity and the finite-element method.  For FG shells and plates, ana-
lytic solutions were constructed on the basis of 3D equations of thermoelasticity in [4, 9, 13, 19].  In [17],  
the loss of stability of FG cylindrical shells under thermal and force loads was analyzed by using the methodolo-
gy based on the Hamiltonian principle. The optimal compositions of FG materials, which enable one to lower 
the level of thermal stresses and improve their heat resistance were analyzed in [10].  A more detailed survey of 
various theories aimed at modeling and investigation of FG shells and plates can be found in [18].  At the same 
time, the stress-strain state of inhomogeneous shells formed under the action of temperature fields determined 
from the heat conduction equation with regard for the heat transfer is studied quite poorly.   

The aim of the present work is to determine the thermoelastic state of an isotropic FG circular cylindrical 
shell heated by a two-dimensional temperature field given at the initial time by using the equations of thermoe-
lasticity of the refined theory of shells and heat conduction equations with regard for the presence of convective 
heat exchange with ambient medium.  

1.  Formulation of the Problem and Basic Equations 

Consider an inhomogeneous isotropic circular cylindrical shell of constant thickness  2h ,  length  l ,  and 
radius of the middle surface  R .  We refer the points of the shell volume to a cylindrical coordinate system  x ,  
θ,  z   whose coordinates correspond to the axial, circumferential, and radial directions, respectively.  In what 
follows, we denote these coordinates by subscripts 1, 2, and 3, respectively.  

We assume that the shell is made of a metal–ceramics composite.  Then the effective properties of the com-
posite material  Pef   can be expressed via the characteristics of the ceramics  Pc   and metal  Pm   as follows:  

 Pef z( ) = Pc fc + Pm fm , 

where  fc   and  fm   are the relative fractions of the ceramics and the metal in the composite, respectively, whose 
distributions over the thickness should be specified and, in addition,  fc + fm = 1.  We specify the following 
power law of distribution [5, 8]:  

 fc = fc
− + ( fc

+ − fc
− ) z

2h +
1
2

⎛
⎝⎜

⎞
⎠⎟
k

,   

where  fc
+   and  fc

−   are, respectively, the fractions of ceramics  fc   on the upper  z = h   and lower  z = −h   sur-
faces and  k   is the parameter of inhomogeneity that describes the variations of the fraction of material across 
the thickness and takes the values  k ≥ 0 .  Varying the values of this parameter, we can get the optimal proper-
ties of the composite.  In a special case where  fc

− = 0   and  fc
+ = 1,  we find   

 fc =
z
2h +

1
2

⎛
⎝⎜

⎞
⎠⎟
k
,   

and the formula for the effective characteristics of the material takes the form  

 Pef z( ) = Pm + Pc − Pm( ) z
2h + 1

2
⎛
⎝⎜

⎞
⎠⎟
k
. (1) 
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It is clear that, as the parameter  k   decreases down to zero, the material of the shell acquires the properties 
of pure ceramics.  At the same time, as the parameter infinitely increases, the characteristics of the material ap-
proach the characteristics of the pure metal.  We assume that Young's modulus  E(z),  the coefficient of linear 
thermal expansion  αt (z),  and heat-conduction coefficient  λ(z)  are described by Eq. (1) and that Poisson’s 
ratio  ν = const .  

Suppose that the shell is heated either by thermal sources or by a temperature field given at the initial time 
and that convective heat exchange takes place between the surfaces  z = ±h   and the ambient medium.  As a re-
sult, temperature strains and stresses are formed in the shell.  For the investigation of the stress-strain state of  
the shell, we apply the mathematical model proposed in [1, 2] and based on the assumptions that the dependenc-
es of the components of the vector of displacements  U j   and temperature  t   on the radial coordinate  z   are lin-
ear, i.e., 

 U j x,θ, z,τ( ) = u j x,θ,τ( ) + z γ j x,θ,τ( )       j = 1,2,3( ), (2) 

 t x,θ, z,τ( ) = T1 x,θ,τ( ) + z
h T2 x,θ,τ( ) , (3) 

where  u j   are the components of displacements of points of the middle surface;  γ1  and  γ 2   are the angles of 
rotation of the normal;  γ 3  is the radial normal strain, and  

 Ti =
2i −1
2hi t zi−1

−h

h

∫ dz   (i = 1,2)    

are the integral characteristics of temperature.  
The proposed model is formed by the system of heat-conduction and thermoelasticity equations.  In the 

general case, these equations are coupled.  If we neglect the influence of deformation on the variations of tem-
perature field, then the corresponding systems become independent and the heat conduction equations for the 
integral characteristics of temperature  T1  and  T2   take the form 

 
 
Δ 1( )T1 − ε1

tT1 + Δ 2( )T2 + λ 1( )

hR − ε2
t⎛

⎝⎜
⎞
⎠⎟
T2 −C

1( ) !T1 −C
2( ) !T2 = − f1 −W1

t , 

   (4) 

 
 
Δ 2( )T1 − ε2

t T1 + Δ 3( )T2 + λ 2( )

hR − λ 1( )

h2
− ε1

t⎛
⎝⎜

⎞
⎠⎟
T2 −C

2( ) !T1 −C
3( ) !T2 = − f2 −W2

t ,  

where 

 Δ j( ) = λ j( ) ∂11
2 + 1

R2 ∂22
2⎛

⎝
⎞
⎠ ,      λ j( ) ,C j( ){ } = λ z( ),cε z( ){ } z

h
⎛
⎝⎜

⎞
⎠⎟
j−1

dz
−h

h

∫ ,      ( j = 1,2,3) ; 

 Wi
t = wt

z
h

⎛
⎝⎜

⎞
⎠⎟
i−1

dz
−h

h

∫ ,      fi = t1
zεi

t + t2
zε3−i

t      (i = 1,2) ,       
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 εi
t = α+ − (−1)iα−( ) ,      tiz = 1

2 tz
+ − −1( )i tz

−( );   

λ z( )  is the heat-conduction coefficient;  tz
+   and  tz

−   are the temperatures of the media surrounding the surfaces  
z = h   and  z = −h ,  respectively;  α+   and  α−   are the heat-transfer coefficients for these surfaces;  cε z( )  is the 
specific heat;  wt   is the intensity of heat sources, and the overdot in the notation   

!Ti   denotes the partial deriva-
tive of the function with respect to time  τ . 

We now represent the system of thermoelasticity equations in generalized displacements in the operator 
form as follows: 

 Lrsys
s=1

6

∑ = br r, s = 1,2,…,6( ) ,  (5) 

where   

 y j = u j ,      y3+ j = γ j      ( j = 1,2,3).   

The differential operators  Lrs   Lrs = Lsr( )  and the free terms  br   are given by the formulas  

 L11 = A11 ∂11
2 +

A66
R2 ∂22

2 ,      L12 =
A12 + A66

R ∂12
2 ,       

 L13 =
A12
R ∂1,      L14 = B11 ∂11

2 +
B66
R2 ∂22

2 ,       

 L15 =
B12 + B66

R ∂12
2 ,      L16 = A13 +

B12
R

⎛
⎝⎜

⎞
⎠⎟ ∂1,       

 L22 = A66 ∂11
2 +

A22
R2 ∂22

2 − ′k
A55
R2 ,      L23 =

A22 + ′k A55
R2 ∂2 ,       

 L24 =
B12 + B66

R ∂12
2 ,      L25 = B66 ∂11

2 +
B22
R2 ∂22

2 +
′k A55
R ,       

 L26 =
A23
R +

B22 + ′k B55
R2

⎛
⎝⎜

⎞
⎠⎟
∂2 , 

 L33 = − ′k A44 ∂11
2 −

′k A55
R2 ∂22

2 +
A22
R2 ,      L34 =

B12
R − ′k A44

⎛
⎝⎜

⎞
⎠⎟ ∂1, 

 L35 =
B22 /R − ′k A55

R ∂2 ,      L36 = − ′k B44 ∂11
2 +

B22 − ′k B55 ∂22
2

R2 +
A23
R , 



50 R. М. KUSHNIR,  U. V. ZHYDYK,  AND  V. М. FLYACHOK 

 L44 = D11 ∂11
2 +

D66

R2 ∂22
2 − ′k A44 ,      L45 =

D12 + D66
R ∂12

2 , 

 L46 =
D12
R + B13 − ′k B44

⎛
⎝⎜

⎞
⎠⎟ ∂1,       

 L55 = D66 ∂11
2 +

D22

R2 ∂22
2 − ′k A55 ,      L56 =

B23 − ′k B55
R +

D22

R2
⎛
⎝⎜

⎞
⎠⎟
∂2 ,  

 L66 = A33 +
2B23
R +

D22

R2 − ′k D44 ∂11
2 −

′k D55

R2 ∂22
2 , 

 b1 = A11
t ∂1T1 +

B11
t

h ∂1T2 ,      b2 =
A22
t

R ∂2T1 +
B22
t

Rh ∂2T2 ,  

 b3 =
A22
t

R T1 +
B22
t

Rh T2 ,      b4 = B11
t ∂1T1 +

D11
t

h ∂1T2 ,  

 b5 =
B22
R ∂2T1 +

D22
t

Rh ∂2T2 ,      b6 = A33
t +

B22
t

R
⎛

⎝⎜
⎞

⎠⎟
T1 +

D22
t /R + B33

t

h T2 , 

where 

 Aii ,Bii ,Dii{ } = 1− ν
1+ ν( ) 1− 2ν( ) E z( ) 1, z, z2{ }dz

−h

h

∫       i = 1,2,3( ), 

 Aij ,Bij ,Dij{ } = ν
1+ ν( ) 1− 2ν( ) E z( ) 1, z, z2{ }dz

−h

h

∫      i, j = 1,2,3( ),     i ≠ j( ) , 

 Aii
t ,Bii

t ,Dii
t{ } = 1

1− 2ν E z( )αt z( ) 1, z, z2{ }dz
−h

h

∫      i = 1,2,3( ), 

 Aii ,Bii ,Dii{ } = 1
2 1+ ν( ) E z( ) 1, z, z2{ }dz

−h

h

∫      i = 4,5,6( ) , 

and   

 ∂1=
∂
∂x ,       ∂2=

∂
∂θ ,   

′k   is the shear coefficient [2]. 
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According to the known displacements and temperature fields, the forces and moments in the shell can be 
found as follows:  

 

N11

N22

N33

M11

M 22

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

A11 A12 A13 B11 B12
A12 A22 A23 B12 B22
A13 A23 A33 B13 B23
B11 B12 B13 D11 D12

B12 B22 B23 D12 D22

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

∂1u1
∂2u2 + u3

R
γ 3
∂1γ1

∂2 γ 2 + γ 3
R

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

−

A11
t

A22
t

A33
t

B11
t

B22
t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

T1 −

B11
t

B22
t

B33
t

D11
t

D22
t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

T2
h , 

 
N12
M12

⎛
⎝⎜

⎞
⎠⎟
=

A66 B66
B66 D66

⎛
⎝⎜

⎞
⎠⎟

∂1u2 +
∂2u1
R

∂1γ 2 +
∂2 γ1
R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,       

   (6) 

 
N13
M13

⎛
⎝⎜

⎞
⎠⎟
= ′k

A44 B44
B44 D44

⎛
⎝⎜

⎞
⎠⎟

γ1 + ∂1u3
∂1γ 3

⎛
⎝⎜

⎞
⎠⎟

, 

 
N23
M 23

⎛
⎝⎜

⎞
⎠⎟
= ′k

A55 B55
B55 D55

⎛
⎝⎜

⎞
⎠⎟

γ 2 +
∂2u3 − u2

R
∂2 γ 3
R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.  

2.  Procedure of Solution 

For the uniqueness of the solution of systems (4) and (5), it is necessary to impose the corresponding 
boundary conditions for the mechanical and temperature functions and also the initial conditions for tempera-
ture.  Assume that the ends  x = 0   and  x = l   of the shell are simply supported and kept at temperature equal  
to zero.  Then we have the following boundary conditions:  

 u3 = u2 = γ 3 = γ 2 = 0,      N11 = M11 = 0 ,  (7) 

 T1 = T2 = 0 .  (8) 

At the initial time, we specify the temperature characteristics as the following functions of coordinates: 

 T1 x,θ,0( ) = T1
0 x,θ( ),      T2 x,θ,0( ) = T2

0 x,θ( ) . (9) 

It is assumed that the conditions of heat exchange on the surfaces  z = ±h   are identical:  α+ = α− = α z ,  
tz
+ = tz

− = 0 ,  the heat sources are absent, and  cε = const .  Hence, by using the Laplace integral transformation 
and double finite Fourier transformation, in view of conditions (8) and (9), we find the solution of system (4)  
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in the form 

 T1 =
pi − g4( )T1nm0 + g2T2nm

0

pi − p j
e− piτ sin πnxl cosmθ

i≠ j=1

2

∑
m=0

∞

∑
n=1

∞

∑ , 

   (10) 

 T2 =
pi − g1( )T2nm

0 + g3T1nm
0

pi − p j
e− piτ sin πnxl cosmθ

i≠ j=1

2

∑
m=0

∞

∑
n=1

∞

∑ , 

where 

 pi =
g1 + g4

2 + (−1)i
(g1 − g4 )

2

4 + g2g3 ,       

 
 
g1 = β1ξ +

Bi
δ2

,      g2 = β2ξ − β1 δ ,      g3 = 3β2ξ ,      g4 = 3 β3ξ +
β1
δ2

−
β2
δ + Bi

δ2
⎛
⎝⎜

⎞
⎠⎟ ,      

 ξ = µn
2 + m2 ,      µn = πnR

l ,      Bi =
α zh
λm

,      δ = h
R ,      

 β1 =
λc /λm + k

k +1 ,      β2 =
λc /λm −1( )k
k +1( ) k + 2( ) ,      β3 =

3 k2 + k + 2( )λc /λm + k k2 + 3k + 8( )
3 k +1( ) k + 2( ) k + 3( ) . 

Here, 

 Tinm
0 =

k0
πl Ti

0 x,θ( )sin πnl x cosmθdxdθ
−π

π

∫
0

l

∫ ,      k0 =
1, m = 0
2, m ≠ 0

⎧
⎨
⎪

⎩⎪
     i = 1,2( ). (11) 

As an example, at the initial time, we specify a plane temperature field described by the following piecewise 
continuous function: 

 T1
0 x,θ( ) = T 1−

x − x0( )2
d2

⎛

⎝
⎜

⎞

⎠
⎟ 1− θ2

η2
⎛
⎝⎜

⎞
⎠⎟

  

  × S− x − x0 + d( )− S+ x − x0 − d( )[ ] S− θ + η( )− S+ θ − η( )[ ] , 

   (12) 
 T2

0 x,θ( ) = 0 , 

where  T = const ,  2d   and  2η  are, respectively, the width and angle of the domain of heating,  x0 ,0( )   are 
the coordinates of the center of this domain, and  

 S+ x( ) = 1, x > 0,
0, x ≤ 0,

⎧
⎨
⎪

⎩⎪
S− x( ) = 1, x ≥ 0,

0, x < 0,

⎧
⎨
⎪

⎩⎪
      are unit functions. 
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Relations (11) and (12) now imply the following expressions for the Fourier coefficients: 

 T1n0
0 = 16

3
ηT *

π3n2 d /l( )2
1
πn sin πndl − d

l cos
πnd
l

⎛
⎝⎜

⎞
⎠ sin

πnx0
l ,      T2n0

0 = 0 , 

 T1nm
0 = 32T *

π3n2m2η2 d /l( )2
1
πn sin πndl − d

l cos
πnd
l

⎛
⎝⎜

⎞
⎠⎟

1
m sinmη− ηcosmη⎛

⎝⎜
⎞
⎠⎟ sin

πnx0
l , 

 T2nm
0 = 0       m ≠ 0( ) . 

We find the components of generalized displacements caused by the temperature field (10) with regard for 
the boundary conditions (7) from the system of differential equations (5) also by the method of double finite 
Fourier transforms.  The forces and moments are determined from Eqs. (6).  

3.  Analysis of Numerical Results 

The numerical computations were carried out for a shell made of a metal–ceramics composite with the fol-
lowing physicomechanical characteristics [5]:  

 – metal:  ν = 0.3;  Em = 66.2GPa;  αm
t = 10.3⋅10−6 1/K ;  λm = 18.1W/mK ;  

 – ceramics:  ν = 0.3;  Ec = 117GPa ;  αc
t = 7.11⋅10−6 1/K ;  λc = 2.036W/mK . 

The values of the other parameters are as follows:  h/R = 0.05 , l /R = 3, η = π/6 , d /l = R/l( )sinη, x0 = l /2 ,  
′k = 5/6 ,  and  Bi = 0.2 . 

For the given parameters, we computed the values of dimensionless deflections   

 ′w =
u3

RαmT
* ,   

normal forces   

 ′Ni =
Nii

EmhαmT
* ,   

and bending moments   

 ′Mi =
Mii

Emh
2αmT

*    

for the dimensionless times  ′τ =
λmτ
cεh

2   equal to 0.05 and 5  and also for parameter of inhomogeneity  k  = 1, 5, 

and 20. 
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Fig. 1.  Dependences of the deflection  ′w   on the axial coordinate  ′x . 

 

Fig. 2.  Dependences of the deflection  ′w   on the circumferential coordinate  θ . 

In Figs. 1 and 2, we show the variations of radial deflections  ′w   along the generatrix  θ = 0   and along the 
directrix  ′x = 0.5 ,  respectively.  We recorded the maximal deflections at the center of the domain of heating.  
Along the generatrix, these deflections monotonically decrease to zero on approaching the ends of the shell.   
At the same time, along the directrix, they oscillate between positive and negative values.  Moreover, the deflec-
tions become larger as the parameter of inhomogeneity k  (the fraction of metal in the composite) increases.  

The dependences of normal forces  ′N1   and  ′N2   on the axial  ′x   and circumferential  θ  coordinates are 
presented in Figs. 3–6.  The normal forces acting at the center of the domain of heating are always compressive.  
Their variations along the directrix are oscillating, and the maximal positive values are attained on the boundary 
of the heated and unheated domains.  The maximal values of the force  ′N2   are higher than  ′N1 . 

As shown in Figs. 7–10, the characters of changes in the bending moments  ′M1  and  ′M 2   both along the 
generatrix and along the directrix are oscillating starting from the center of the heated domain.  At the cen-
ter of this domain, they take positive values.   For the moment  ′M1 ,  these values are maximal.   The maximal 
values  of  the  moment  ′M 2   are  first  attained  at  a  point  (0.5;  30°)  and then shift (with time) toward the center  
of the heated domain.   In  general,  the maximal values of  ′M1  are higher than  ′M 2 .   As  the  fraction  of  ceramics   
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Fig. 3.  Dependences of the normal force  ′N1   on the axial coordinate  ′x . 

 

Fig. 4.  Dependences of the normal force  ′N1   on the circumferential coordinate  θ . 

 

Fig. 5.  Dependences of the normal force  ′N2   on the axial coordinate  ′x . 
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Fig. 6.  Dependences of the normal force  ′N2   on the circumferential coordinate  θ. 

 

Fig. 7.  Dependences of bending moment  ′M1   on the axial coordinate  ′x . 

 

Fig. 8.  Dependences of the bending moment  ′M1   on the circumferential coordinate  θ . 
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Fig. 9.  Dependences of the bending moment  ′M 2   on the axial coordinate  ′x . 

 

Fig. 10.  Dependences of the bending moment  ′M 2   on the circumferential coordinate  θ. 

in the composite increases  (the parameter  k   decreases),  the forces and moments become higher because the 
Young modulus of the ceramics is higher than for the metal. 

CONCLUSIONS 

By using the equations of the refined theory of uncoupled thermoelasticity, we analyze the stress-strain state 
of inhomogeneous (across the thickness) isotropic circular cylindrical shells subjected to the action of nonsta-
tionary local heating.  By the methods of Fourier and Laplace transforms, we constructed, in the closed form, 
a solution of the quasistatic thermal-stress problem for a finite shell simply supported at its ends and subjected  
to heating by temperature fields specified at the initial time.  We perform the numerical analysis for a metal–
ceramics composite whose properties vary in the radial direction according to the power law from the ceramics 
on the outer surface of the shell to the metal on its inner surface.  We also study the dependences of radial dis-
placements, normal forces, and bending moments on the radial and circumferential coordinates for different 
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times and different values of the parameter of inhomogeneity.  The accumulated numerical results are presented 
in the graphical form.  
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