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ON ENTROPY SOLUTIONS OF ANISOTROPIC ELLIPTIC EQUATIONS
WITH VARIABLE NONLINEARITY INDICES
IN UNBOUNDED DOMAINS

L. M. Kozhevnikova UDC 517.956.25

Abstract. For a class of second-order anisotropic elliptic equations with variable nonlinearity indices
and summable right-hand sides, we consider the Dirichlet problem in arbitrary unbounded domains.
We prove the existence and uniqueness of entropy solutions in anisotropic Sobolev spaces with variable
exponents.
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Introduction

Let Ω be an arbitrary domain of the space R
n = {x = (x1, x2, . . . , xn)}, Ω � R

n, n ≥ 2. We
consider the Dirichlet problem for equations of the kind

n∑

i=1

(ai(x,∇u))xi = |u|p0(x)−2u+ a(x, u), x ∈ Ω, (1)

with the homogeneous boundary condition

u
∣∣∣
∂Ω

= 0. (2)

Nonlinear second-order elliptic equations
n∑

i=1

(ai(x, u,∇u))xi − a0(x, u,∇u) = f, (3)

where f belongs to L1 or is a measure, have been actively investigated since the end of the previous
century. For equations of the kind (3) with power nonlinearities and f ∈ L1,loc(R

n), weak solutions in
the whole space Rn were investigated, e.g., in [7, 14, 16]. In [12, 13], the existence of weak solutions of
the Dirichlet problem in a bounded domain Ω was proved for elliptic equations under the assumption
that the right-hand side f belongs to L1(Ω) or is a bounded Radon measure.

In [9], for elliptic equations with power nonlinearities and right-hand sides from L1, the entropy
solution of the Dirichlet problem was introduced and its existence and uniqueness were proved. Instead
of the entropy solution introduced in [27] for first-order equations, one can consider renormalized
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solutions as well. Such solutions are elements of the same class of functions as entropy solutions;
however, unlike the latter ones, they satisfy another family of integral relations. There are cases
where the notion of entropy solutions is equivalent to the notion of renormalized ones.

Summability properties and estimates of entropy solutions of the Dirichlet problem for Eq. (3) with
the degenerate coercivity condition in bounded domains were established by Kovalevskiy (see [22]).
For second-order nonlinear elliptic equations with degenerate coercivities and right-hand sides from
L1, the existence of entropy solutions of the Dirichlet problem was proved in [2]; for more general
cases, it was proved by Kovalevskiy in [23].

In [11], local entropy solutions were introduced for the following equation with the p-Laplacian,
absorbtion, and Radon measure f :

Δpu− |u|p0−2u = f, p ∈ (1, n), p < p0. (4)

In particular, for the case where f ∈ L1,loc(R
n), the existence of a local entropy solution of Eq. (4) in

the space R
n is proved by Bidaut-Veron.

In [1, 10, 20], the existence and uniqueness of renormalized and entropy solutions of the Dirichlet
problem were investigated in Orlich spaces for second-order elliptic equations with nonlinearities dif-
ferent from power functions (nonpower nonlinearities) and right-hand sides from L1(Ω), where Ω is a
bounded domain. In [24, 25], for a class of anisotropic elliptic equations with nonpower nonlinearities,
theorems on existence and uniqueness of entropy solutions were proved for the Dirichlet problem in
arbitrary domains.

Nowadays, differential equations and variational problems related to the p(x)-growth conditions are
broadly studied. This interest is motivated by the fact that such equations can be used to simulate
phenomena arising in mathematical physics. For example, they are required for the investigation of
such physical fields as electro-rheological and thermo-rheological liquids (see [21]). Other important
applications are related to the image processing and elasticity.

In [3, 5, 6, 8, 15, 28, 29], for equations with variable powers of the nonlinearities, existence and
uniqueness theorems were proved for renormalized and entropy solutions of the Dirichlet problem in
bounded domains. Papers [15, 28] are the closest to the results presented here. Namely, in [15], in a
bounded subset Ω ⊂ R

n, n ≥ 3, Bonzi and Ouaro considered the Dirichlet problem with condition (2)
for the isotropic equation

n∑

i=1

(ai(x,∇u))xi = f + a(u),

where
n∑

i=1
(ai(x,∇u))xi is an analog of the p(x)-Laplacian, p : Ω → (1,∞) is a measurable function,

and a : R → R is a continuous nondecreasing function. The existence and uniqueness of an entropy
solution were proved under the assumption that f ∈ L1(Ω).

In [28], for the anisotropic equation
n∑

i=1

(ai(x, uxi))xi = f

with f ∈ L1(Ω), Ouaro proved the existence and uniqueness of an entropy solution of the Dirichlet
problem with condition (2) for bounded subsets Ω ∈ R

n, n ≥ 3. Rather restrictive assumptions were
imposed on the Caratheodory functions ai(x, s) : Ω×R → R. For example, one can take the functions

ai(x, s) = |s|pi(x)−2s, i = 1, . . . , n, where pi : Ω → [2, n) are continuous functions such that

p−(n− 1)

n(p− − 1)
< p−i <

p−(n− 1)

n− p−
,

n∑

i=1

1

p−i
> 1,

p+i − p−i − 1

p−i
<

p− − n

p−(n − 1)
,

p− = n

(
n∑

i=1
1/p−i

)−1

, p−i = inf
x∈Ω

pi(x), and p+i = sup
x∈Ω

pi(x), i = 1, . . . , n.
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Note that a lot of papers from this research direction were devoted to the Neumann boundary
condition, including nonlinear Neumann conditions (see, e.g., [18]). We do not discuss these results
here.

Thus, in publications known by the author, the results are obtained for entropy and renormalized
solutions of elliptic problems in bounded domains (except for [9, 11]). In the present paper, the exis-
tence and uniqueness of entropy solutions of problem (1)-(2) are proved in anisotropic Sobolev spaces
with variable exponents such that no boundedness of the domain Ω is assumed and the admissible
class of equations is substantially broader than the one from [15, 28] (see conditions (2.1)–(2.7) below).

1. Anisotropic Sobolev Spaces with Variable Exponents

Let Q � R
n be an arbitrary domain. Introduce the notation

C+(Q) = {p ∈ C(Q) : 1 < p− ≤ p+ < +∞},

where p− = inf
x∈Q

p(x) and p+ = sup
x∈Q

p(x).

If p ∈ C+(Q), then the following Young inequality holds:

|zy| ≤ |y|p(x) + |z|p′(x), z, y ∈ R, x ∈ Q, p′(x) = p(x)/(p(x) − 1). (1.5)

By virtue of the convexity, the following inequality holds:

|y + z|p(x) ≤ 2p
+−1(|y|p(x) + |z|p(x)), z, y ∈ R, x ∈ Q. (1.6)

Define the Lebesgue space Lp(·)(Q) with a variable exponent as the set of real-valued functions v
measurable on Q and such that

ρp(·),Q(v) =
∫

Q

|v(x)|p(x)dx < ∞.

The Luxembourg norm in the space Lp(·)(Q) is defined by the relation

‖v‖Lp(·)(Q) = ‖v‖p(·),Q = inf

{
k > 0

∣∣∣∣∣ ρp(·),Q(v/k) ≤ 1

}
.

In the sequel, we use the notation ‖v‖p(·),Ω = ‖v‖p(·) and ρp(·),Ω(v) = ρp(·)(v). The norm of the space
Lp(Q) is denoted by ‖v‖p,Q while ‖v‖p,Ω = ‖v‖p. The space Lp(·)(Q) is a separable reflexive Banach
space (see [17]).

For each u ∈ Lp′(·)(Q) and each v ∈ Lp(·)(Q), the following Hölder inequality holds:
∣∣∣∣∣∣∣

∫

Q

u(x)v(x)dx

∣∣∣∣∣∣∣
≤ 2‖u‖p′(·),Q‖v‖p(·),Q. (1.7)

Also, the following relations hold (see [17]):

‖v‖p
−

p(·),Q − 1 ≤ ρp(·),Q(v) ≤ ‖v‖p
+

p(·),Q + 1, (1.8)

(
ρp(·),Q(v)− 1

)1/p+ ≤ ‖v‖p(·),Q ≤
(
ρp(·),Q(v) + 1

)1/p−
. (1.9)

Introduce the vector −→p (·) = (p1(·), p2(·), . . . , pn(·)) ∈ (C+(Q))n. Introduce

p+(x) = max
i=1,n

pi(x), x ∈ Q.
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The anisotropic Sobolev space H̊1−→p (·)(Q) with variable exponents we define as the completion of the

space C∞
0 (Q) with respect to the norm

‖v‖H̊1−→p (·)(Q) =

n∑

i=1

‖vxi‖pi(·),Q.

The space H̊1−→p (·)(Q) is a reflexive Banach space (see [19]).

Let

p(x) = n

(
n∑

i=1

1/pi(x)

)−1

, p∗(x) =

⎧
⎨

⎩

np(x)

n− p(x)
, p(x) < n,

+∞, p(x) ≥ n,
and p∞(x) = max{p∗(x), p+(x)}.

The following embedding theorem for the space H̊1−→p (·)(Q) is proved in [19, Theorem 2.5].

Lemma 1.1. Let Q be a bounded domain and −→p (·) = (p1(·), p2(·), . . . , pn(·)) ∈ (C+(Q))n. If q ∈
C+(Q) and

q(x) < p∞(x) ∀ x ∈ Q, (1.10)

then the continuous compact embedding H̊1−→p (·)(Q) ↪→ Lq(·)(Q) holds.

Remark 1.1. If no additional assumptions are imposed on the exponent p(x), then it is not guaran-
teed that smooth functions are dense in W 1

p(·)(Q) (see [30]). However, if the modulus of continuity of

the exponent p(x) satisfies the logarithmic condition, then smooth functions are dense in the space

W 1
p(·)(Q) and, defining the Sobolev space H̊1

p(·)(Q) with a variable exponent as the completion of the

space C∞
0 (Q) with respect to the norm ‖∇ · ‖p(·),Q, one causes no contradiction.

2. Assumptions and Results

Let −→p (·) = (p0(·), p1(·), . . . , pn(·)) ∈ (C+(Ω))n+1 and

p+(x) ≤ p0(x) < p∗(x), x ∈ Ω. (2.1)

It is assumed that the functions a(x, s0) and ai(x, s), i = 1, . . . , n, contained in (1) are measurable
with respect to x ∈ Ω provided that s0 ∈ R and s = (s1, . . . , sn) ∈ R

n and are continuous with respect
to s0 ∈ R and s ∈ R

n for almost all x ∈ Ω. It is assumed that the function a(x, s0) does not decrease
with respect to s0 ∈ R. Also, we assume that there exist positive numbers â and a and nonnegative
measurable functions Φi ∈ Lp′i(·)(Ω), i = 1, . . . , n, such that the inequalities

|ai(x, s)| ≤ â(P(x, s))1/p
′
i(x) +Φi(x), i = 1, . . . , n, (2.2)

(a(x, s) − a(x, t)) · (s− t) > 0, s �= t, (2.3)

a(x, s) · s ≥ aP(x, s) (2.4)

hold for a. e. x ∈ Ω and for all s, t ∈ R
n, where P(x, s) =

n∑
i=1

|si|pi(x), s · t denotes the scalar product

of s = (s1, . . . , sn) and t = (t1, . . . , tn) from R
n, and a(x, s) = (a1(x, s), . . . , an(x, s)). Also, we use the

notation P′(x, s) =
n∑

i=1
|si|p

′
i(x) and P(x, s0, s) = P(x, s) + |s0|p0(x).

Applying (1.6), we derive the following estimates from inequalities (2.2):

|ai(x, s)|p
′
i(x) ≤ ÂP(x, s) + Ψi(x), i = 1, . . . , n, (2.2′).

Here Ψi are nonnegative measurable functions from L1(Ω), i = 1, . . . , n.
The following additional conditions are used in the existence theorem. Assign a(x, s0) = a(x, 0) +

b(x, s0) and assume that
a(x, 0) ∈ L1(Ω) (2.5)
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and

sup
|s0|≤k

|b(x, s0)| = Gk(x) ∈ L1,loc(Ω). (2.6)

The function b(x, s0) is a Caratheodory nondecreasing function with respect to s0 ∈ R and b(x, 0) = 0
for a. e. x ∈ Ω. Therefore, the following inequality holds for a. e. x ∈ Ω and s0 ∈ R:

b(x, s0)s0 ≥ 0. (2.7)

Let L−→p (·)(Ω) denote the space Lp1(·)(Ω)× . . .× Lpn(·)(Ω) with the norm

‖v‖L−→p (·)(Ω) = ‖v‖−→p (·) = ‖v1‖p1(·) + . . .+ ‖vn‖pn(·), v = (v1, . . . , vn) ∈ L−→p (·)(Ω).

Let L−→p (·)(Ω) denote the space Lp0(·)(Ω)× L−→p (·)(Ω) with the norm

‖v‖L−→p (·)(Ω) = ‖v0‖p0(·) + ‖v‖−→p (·), v = (v0, v1, . . . , vn) ∈ L−→p (·)(Ω).

Define the Sobolev space W̊ 1−→p (·)(Ω) with variable exponents as the completion of the space C∞
0 (Ω)

with respect to the norm

‖v‖W̊ 1−→p (·)(Ω) = ‖v‖p0(·) + ‖v‖H̊1−→p (·)(Ω).

Define the function

Tk(r) =

⎧
⎪⎨

⎪⎩

k for r > k,

r for |r| ≤ k,

−k for r < −k.

Introduce the notation 〈u〉 =
∫

Ω

udx.

Definition 2.1. A measurable function u : Ω → R is called an entropy solution of problem (1)-(2) if:

(1) A(x) = a(x, u) ∈ L1(Ω);

(2) Tk(u) ∈ W̊ 1−→p (·)(Ω) for all positive k;

(3) the inequality

〈(a(x, u) + |u|p0(x)−2u)Tk(u− ξ)〉+ 〈a(x,∇u) · ∇Tk(u− ξ)〉 ≤ 0 (2.8)

holds for each positive k and each ξ(x) ∈ C1
0 (Ω).

Theorem 2.1. Let conditions (2.1)–(2.4) hold and u1 and u2 be entropy solutions of problem (1)-(2).
Then u1 = u2 in Ω.

Theorem 2.2.Let conditions (2.1)–(2.7) hold.Then there exists an entropy solution of problem (1)-(2).

3. Preliminaries

In the sequel, all constants are assumed to be positive.
Let χG(x) be a characteristic function of a set G. From the second assumption of the definition of

the entropy solution, it follows that

∇Tk(u) = χ{Ω:|u|<k}∇u ∈ L−→p (·)(Ω) (3.1)

for every positive k, whence, applying (2.2′), we prove that

χ{Ω:|u|<k}a(x,∇u) ∈ L−→p ′(·)(Ω) (3.2)

for each positive k.
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Lemma 3.1. If u is an entropy solution of problem (1)-(2), then the inequality
∫

{Ω:|u|<k}
P(x, u,∇u)dx + k

∫

{Ω:|u|≥k}
|u|p0(x)−1dx ≤ C1k (3.3)

holds for each positive k.

Proof. Due to inequality (2.8) and the first assumption of the definition of entropy solutions, the
following inequality holds provided that ξ = 0:

∫

Ω

|u|p0(x)−2uTk(u)dx +

∫

{Ω:|u|<k}
a(x,∇u) · ∇udx ≤ −

∫

Ω

a(x, u)Tk(u)dx ≤ k‖A‖1.

Applying inequality (2.4), we establish the inequality

k

∫

{Ω:|u|≥k}
|u|p0(x)−1dx +

∫

{Ω:|u|<k}
|u|p0(x)dx + a

∫

{Ω:|u|<k}
P(x,∇u)dx ≤ k‖A‖1.

This yields (3.3).

Lemma 3.2. Let a measurable function v : Ω → R be such that if k > 0, then Tkv ∈ W̊ 1−→p (·)(Ω) and∫

{Ω:|v|≥k}
|v|p0(x)−1dx ≤ C2. (3.4)

Then
meas {Ω : |v| ≥ k} → 0, k → ∞, (3.5)

and
|v|p0(x)−1 ∈ L1(Ω). (3.6)

Proof. The inclusion (3.6) is an obvious corollary from (3.4). Moreover, inequality (3.4) implies that

kp
−
0 −1meas{Ω : |v| ≥ k} ≤ C2, k ≥ 1,

which yields (3.5).

Remark 3.1. If u is an entropy solution of problem (1)-(2), then Lemmas 3.1-3.2 imply that

meas {Ω : |u| ≥ k} → 0, k → ∞, (3.7)

and
|u|p0(x)−1 ∈ L1(Ω). (3.8)

Lemma 3.3. Let a measurable function v : Ω → R be such that if k > 0, then Tkv ∈ W̊ 1−→p (·)(Ω) and∫

{Ω:|v|<k}
P(x,∇v)dx + k

∫

{Ω:|v|≥k}
|v|p0(x)−1dx ≤ C3k. (3.9)

Then
meas {Ω : P(x,∇v) ≥ h} → 0, h → ∞. (3.10)

Proof. Assign Φ(k, h) = meas {Ω : |v| ≥ k, P(x,∇v) ≥ h}, k, h > 0. It is proved above (see (3.5)) that

Φ(k, 0) → 0, k → ∞.

Since h → Φ(k, h) is a nonincreasing function, it follows that

Φ(0, h) ≤ 1

h

h∫

0

Φ(0, �)d� ≤ Φ(k, 0) +
1

h

h∫

0

(Φ(0, �) − Φ(k, �))d� (3.11)
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for all positive k and h.
Note that

Φ(0, �)− Φ(k, �) = meas {Ω : |v| < k, P(x,∇v) ≥ �}.
Therefore, (3.9) implies that

∞∫

0

(Φ(0, �) − Φ(k, �))d� =

∫

{Ω:|v|<k}
P(x,∇v)dx ≤ C3k.

Now, from (3.11), we obtain the inequality

Φ(0, h) ≤ Φ(k, 0) + C3k/h.

Select k to satisfy the inequality Φ(k, 0) < ε. Then select h to satisfy the inequality Φ(0, h) < 2ε. This
proves (3.10).

Lemma 3.4. Let p ∈ C+(Ω) and vm(x), m ∈ N, and v be functions from Lp(·)(Ω) such that the
sequence {vm}m∈N is bounded in Lp(·)(Ω) and

vm → v, m → ∞, a. e. in Ω.

Then vm ⇀ v weakly in Lp(·)(Ω) as m → ∞.

For the case of bounded domains, Lemma 3.4 is proved in [4]. That proof is valid for the case of
unbounded domains as well.

Lemma 3.5. If u is an entropy solution of problem (1)-(2), then inequality (2.8) holds for every

function ξ ∈ W̊ 1−→p (·)(Ω) ∩ L∞(Ω).

Proof. By the definition of the space W̊ 1−→p (·)(Ω) ∩ L∞(Ω), there exists a sequence of functions ξm ∈
C∞
0 (Ω) such that it is bounded in L∞(Ω), ∇ξm → ∇ξ in L−→p (·)(Ω) as m → ∞, and ξm → ξ in Lp0(·)(Ω)

as m → ∞. This implies that ξm → ξ and ∇ξm → ∇ξ in L1,loc(Ω) as m → ∞; hence, there exists a
subsequence (we preserve the same notation for it) such that ξm → ξ and ∇ξm → ∇ξ a. e. in Ω. Then
the following limit relations hold for every positive k:

Tk(u− ξm) → Tk(u− ξ) and ∇Tk(u− ξm) → ∇Tk(u− ξ), m → ∞, a. e. in Ω. (3.12)

Let k̂ = k + sup
m∈N

(‖ξm‖∞, ‖ξ‖∞). Then

|∇Tk(u− ξm)| ≤ |∇T
̂k
(u)|+ |∇ξm|, x ∈ Ω, m ∈ N.

Since the converging sequence {∇ξm} is bounded in L−→p (·)(Ω), it follows from (3.1) that the norms

‖∇Tk(u − ξm)‖−→p (·), m ∈ N, are bounded. Applying (3.12) and using Lemma 3.4, we obtain the
following convergence for each positive k:

∇Tk(u− ξm) ⇀ ∇Tk(u− ξ), m → ∞, in L−→p (·)(Ω). (3.13)

Now, let us pass to the limit as m → ∞ in the inequality
∫

Ω

(a(x, u) + |u|p0(x)−2u)Tk(u− ξm)dx +

∫

Ω

a(x,∇u) · ∇Tk(u− ξm)dx ≤ 0.

Since a(x, u) and |u|p0(x)−2u belong to L1(Ω) (see Definition 2.1 and (3.8)), it follows from the Lebesgue
theorem that, applying (3.12) to the first term of the latter inequality, one can pass to the limit as
m → ∞. Since a(x,∇u)χ{Ω:|u|<̂k} ∈ L−→p ′(·)(Ω) (see (3.2)), it follows from (3.13) that the second term

of the latter inequality has a limit as k → ∞ as well.
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Remark 3.2. In the sequel, to avoid a cumbersome reasoning, instead of assertions like “from the
sequence {um}, one can select a subsequence (we preserve the same notation for it) converging a. e.
in Ω as m → ∞,” we say “the sequence um selectively converges a. e. in Ω as m → ∞.” Respectively,
we use the term “selectively weakly converges,” etc.

Lemma 3.6 (see [12, Lemma 2]). Let (X,T ,meas) be a measurable space such that meas(X) < ∞.
Let γ : X → [0,+∞] be a measurable function such that meas{x ∈ X : γ(x) = 0} = 0. Then for any
positive ε there exists a positive δ such that the inequality

∫

Q

γ(x)dx < δ

implies the inequality measQ < ε.

4. Uniqueness of Solution

Consider the function Tk,h(r) = Tk(r − Th(r)) under the assumption that k and h are positive. It
is obvious that

Tk,h(r) =

⎧
⎪⎨

⎪⎩

0 for |r| < h,

r − h sign r for h ≤ |r| < k + h,

k sign r for |r| ≥ k + h.

Let u be an entropy solution of problem (1)-(2). Fix positive k and h and assign ξ = Th(u) in (2.8).

Then ξ ∈ L∞(Ω) ∩ W̊ 1−→p (·)(Ω). We have

∫

Ω

|u|p0(x)−2uTk,h(u)dx +

∫

Ω

a · ∇Tk,h(u)dx

= k

∫

{Ω:|u|≥k+h}
|u|p0(x)−1dx +

∫

{Ω:h≤|u|<k+h}
|u|p0(x)−2uTk,h(u) +

∫

{Ω:h≤|u|<k+h}
a · ∇udx

≤ −
∫

Ω

a(x, u)Tk,h(u)dx ≤ k

∫

{Ω:h≤|u|}
|A|dx.

Applying (2.4), we deduce the inequality

k

∫

{Ω:|u|≥k+h}

|u|p0(x)−1dx + a

∫

{Ω:h≤|u|<k+h}

P(x,∇u)dx ≤ k

∫

{Ω:h≤|u|}

|A|dx. (4.1)

Since A ∈ L1(Ω), it follows from (3.7) that the right-hand side of (4.1) tends to zero as h → ∞.

Proof of Theorem 2.1. Let u1 and u2 be entropy solutions of problem (1)-(2). In inequality (2.8) for
u1, assign ξ = Th(u

2). In inequality (2.8) for u2, assign ξ = Th(u
1), h > k. Summing these integral

inequalities, we see that

I(h, k) =

∫

Ω1(h,k)

A1 · ∇(u1 − Th(u
2))dx +

∫

Ω2(h,k)

A2 · ∇(u2 − Th(u
1))dx (4.2)

≤ −
∫

Ω(h,k)

(A1 + |u1|p0(x)−2u1)Tk(u
1 − Th(u

2))dx−
∫

Ω(h,k)

(A2 + |u2|p0(x)−2u2)Tk(u
2 − Th(u

1))dx = J(h, k),

where Ai(x) = a(x,∇ui), Ai(x) = a(x, ui), and Ωi(k, h) = {x ∈ Ω : |ui − Th(u
3−i)| < k}, i = 1, 2.
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Represent the sets Ω1(h, k) and Ω2(h, k) by unions of disjoint subsets: Ω1(h, k) = Ω12(h, k) ∪
Ω1
1(h, k) ∪ Ω1

2(h, k), Ω2(h, k) = Ω12(h, k) ∪ Ω2
1(h, k) ∪Ω2

2(h, k), where

Ω12(h, k) = {x ∈ Ω : |u1 − u2| < k, |u1| < h, |u2| < h},

Ωi
3−i(h, k) = {x ∈ Ω : |ui − h sign u3−i| < k, |u3−i| ≥ h}, i = 1, 2,

Ωi
i(h, k) = {x ∈ Ω : |ui − u3−i| < k, |ui| ≥ h, |u3−i| < h}, i = 1, 2.

On the left-hand side of (4.2), the integrals of the functions Ai · ∇(ui − Th(u
3−i)), i = 1, 2, over the

set Ω12(h, k) take the form
∫

Ω12(h,k)

(A1 −A2) · ∇(u1 − u2)dx = I12(h, k). (4.3)

The integrals of the functions Ai · ∇(ui − Thu
3−i) over the sets Ωi

3−i(h, k), i = 1, 2, respectively, are
nonnegative due to (2.4):

∫

Ω1
2(h,k)

A1 · ∇u1dx +

∫

Ω2
1(h,k)

A2 · ∇u2dx ≥ 0. (4.4)

Finally, using (2.4), we obtain that
∫

Ω1
1(h,k)

A1 · ∇(u1 − u2)dx +

∫

Ω2
2(h,k)

A2 · ∇(u2 − u1)dx

≥ −
∫

Ω1
1(h,k)

A1 · ∇u2dx−
∫

Ω2
2(h,k)

A2 · ∇u1dx = −I11 (h, k) − I22 (h, k). (4.5)

Combining (4.3)–(4.5), we establish the estimate

I(h, k) ≥ I12(h, k) − I3(h, k) and I3(h, k) = I11 (h, k) + I22 (h, k).

Let us show that I3(h, k) → 0 as h → ∞. Using (1.5), we obtain the following estimate of the integral:

|I11 (h, k)| ≤ ‖χ{Ω:h≤|u1|<h+k}P′(x,A1)‖1 + ‖χ{Ω:h−k≤|u2|<h}P(x,∇u2)‖1.

Applying (4.1), (3.2), and (3.7), we find that I11 (h, k) → 0 as h → ∞. The integral I22 (h, k) is estimated
in the same way.

The following representation is obvious: Ω = Ω̃12(h) ∪ Ω̃1(h) ∪ Ω̃2(h), where

Ω̃12(h) = {x ∈ Ω : |u1| < h, |u2| < h}, Ω̃i(h) = {x ∈ Ω : |ui| ≥ h}, i = 1, 2.

Due to the nondecreasing of the functions a(x, s0) and |s0|p0(x)−2s0 with respect to s0, the integrals of

the functions −(Ai+ |ui|p0(x)−2ui)Tk(u
i−Th(u

3−i)), i = 1, 2, over the set Ω̃12(h), which are contained
on the right-hand side of inequality (4.2), satisfy the relations

J12(h) = −
∫

˜Ω12(h)

(a(x, u1)− a(x, u2) + |u1|p0(x)−2u1 − |u2|p0(x)−2u2)Tk(u
1 − u2)dx ≤ 0.

For the integrals of these functions over the set Ω̃1(h), we obtain the estimate

|J1(h)| ≤ k

∫

˜Ω1(h)

(|A1|+ |A2|+ |u1|p0(x)−1 + |u2|p0(x)−1)dx. (4.6)
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A similar estimate holds for the integrals of these functions over the set Ω̃2(h):

|J2(h)| ≤ k

∫

˜Ω2(h)

(|A1|+ |A2|+ |u1|p0(x)−1 + |u2|p0(x)−1)dx. (4.7)

Since A1 and A2 belong to L1(Ω), |u1|p0(x)−1 and |u2|p0(x)−1 belong to L1(Ω), and the measure of the

sets Ω̃1(h) and Ω̃2(h) tends to zero as h → ∞ (see (3.7)), it follows from estimates (4.6)-(4.7) that
lim
h→∞

(|J1(h)| + |J2(h)|) = 0.

Thus, the limit passage in (4.2) yields the relation

lim
h→∞

I12(h, k) = lim
h→∞

∫

Ω12(h,k)

(A1 −A2) · ∇(u1 − u2)dx ≤ 0.

The set Ω12(h, k) converges to Ω̂12(k) = {x ∈ Ω | |u1 − u2| ≤ k} as h → ∞. Therefore, the following
inequality holds for each positive k:

lim
h→∞

I12(h) =

∫

̂Ω12(k)

(a(x,∇u1)− a(x,∇u2) · ∇(u1 − u2)dx ≤ 0.

This contradicts condition (2.3). Hence, ∇(u1 − u2) = 0 a. e. in Ω̂12(k) for each positive k. This
implies that u1 = u2 a. e. in Ω.

5. Existence of Solution

Consider the equation
n∑

i=1

(ai(x,∇u))xi − a0(x, u) = 0, x ∈ Ω. (5.1)

Let there exist positive numbers â and a and measurable nonnegative functions φ ∈ L1(Ω) and
Φi ∈ Lp′i(·)(Ω), i = 0, 1, . . . , n, such that the following inequalities hold for a. e. x ∈ Ω and every

s = (s0, s) ∈ R
n+1:

|a0(x, s0)| ≤ â|s0|p0(x)−1 +Φ0(x), |ai(x, s)| ≤ â(P(x, s))1/p
′
i(x) +Φi(x), i = 1, . . . , n, (5.2)

a0(x, s0)s0 +
n∑

i=1

ai(x, s)si ≥ aP(x, s0, s)− φ(x). (5.3)

Definition 5.1. A function u ∈ W̊ 1−→p (·)(Ω)
is called a generalized solution of problem (5.1), (2) if it

satisfies the integral identity

〈a0(x, u)v〉 + 〈a(x,∇u) · ∇v〉 = 0 (5.4)

for any function v ∈ W̊ 1−→p (·)(Ω).

In [26], the following assertion is proved.

Theorem 5.1. If conditions (2.3), (5.2), (5.3), and (2.1) are satisfied, then there exists a generalized
solution of problem (5.1), (2).

The proof of Theorem 2.2 is based on Theorem 5.1.

Proof of Theorem 2.2.
Step 1. Select a sequence of functions Am(x) ∈ C∞

0 (Ω) to satisfy the limit relations

Am(x) → A0(x) = a(x, 0), m → ∞, in L1(Ω) (5.5)
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and the inequalities
‖Am‖1 ≤ ‖A0‖1, m ∈ N. (5.6)

Consider the equation
n∑

i=1

(ai(x,∇u))xi = am0 (x, u), m ∈ N, (5.7)

where am0 (x, s0) = Am(x) + bm(x, s0) + |s0|p0(x)−2s0, b
m(x, s0) = Tm(b(x, s0))χΩ(m), and Ω(m) = {x ∈

Ω : |x| < m}. It is obvious that
|bm(x, s0)| ≤ |b(x, s0)|, x ∈ Ω, s0 ∈ R. (5.8)

Applying (2.7), we establish the inequality

bm(x, s0)s0 ≥ 0, x ∈ Ω, s0 ∈ R. (5.9)

Any generalized solution of problem (5.7), (2) is a function um ∈ W̊ 1−→p (·)(Ω) satisfying the integral

identity

〈(Am(x) + Tm(b(x, um))χΩ(m) + |um|p0(x)−2um)v〉+ 〈a(x,∇um) · ∇v〉 = 0, m ∈ N, (5.10)

for any function v ∈ W̊ 1−→p (·)(Ω).
Verify conditions (5.2)-(5.3) for the functions a(x, s) and am0 (x, s0). It is obvious that

|bm(x, s0)| = |Tm(b(x, s0))|χΩ(m) ≤ mχΩ(m) ∈ Lp′0(·)(Ω).

Therefore,

|am0 (x, s0)| ≤ |Am(x)|+ |bm(x, s0)|+ |s0|p0(x)−1 ≤ |s0|p0(x)−1 +Φm
0 (x), Φm

0 ∈ Lp′0(·)(Ω). (5.11)

Inequalities (5.2) follow from (2.2) and (5.11).
Further, applying (1.5) and (5.9), we conclude that

am0 (x, s0)s0 = (Am(x) + bm(x, s0) + |s0|p0(x)−2s0)s0 ≥ |s0|p0(x) − ε|s0|p0(x) − C(ε)|Am|p′0(x).
Then, selecting ε < 1, we obtain the inequality

am0 (x, s0)s0 ≥ (1− ε)|s0|p0(x) − φm
0 (x), φm

0 (x) ∈ L1(Ω). (5.12)

Combining (2.4) and (5.12), we establish inequality (5.3).

Due to Theorem 5.1, for any m ∈ N there exists a generalized solution um ∈ W̊ 1−→p (·)(Ω) of prob-

lem (5.7), (2). The uniqueness of the solution of problem (5.7), (2) follows from the strong monotonicity
condition posed by (2.3) and the nondecreasing of the function a(x, s0) with respect to s0 ∈ R.

Step 2. Assign v = Tk,h(u
m) in (5.10). Then, taking into account (5.9), we have the inequality

∫

{Ω:h≤|um|<k+h}
a(x,∇um) · ∇umdx + k

∫

{Ω:|um|≥k+h}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx (5.13)

+

∫

{Ω:h≤|um|<k+h}

(
bm(x, um) + |um|p0(x)−2um

)
(um − h sign um)dx ≤ k

∫

{Ω:|um|≥h}
|Am|dx.

Due to (5.9), the inequality (bm(x, um) + |um|p0(x)−2um)(um − h sign um) ≥ 0 holds provided that
h ≤ |um|. Taking this into account, from (5.13), we deduce the inequality

∫

{Ω:h≤|um|<k+h}
a(x,∇um) · ∇umdx

+ k

∫

{Ω:|um|≥k+h}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx ≤ k

∫

{Ω:|um|≥h}
|Am|dx.
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Using (2.4) and (5.6), we reduce the last inequality to the form

a

∫

{Ω:h≤|um|<k+h}
P(x,∇um)dx + k

∫

{Ω:|um|≥k+h}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx (5.14)

≤ k

∫

{Ω:|um|≥h}

|Am|dx ≤ k‖A0‖1, m ∈ N.

Now, take Tk(u
m) for the test function in (5.10). Applying (5.6), we establish the inequality
∫

{Ω:|um|<k}
a(x,∇um) · ∇umdx + k

∫

{Ω:|um|≥k}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx

+

∫

{Ω:|um|<k}
|um|p0(x)dx ≤ k‖Am‖1 ≤ k‖A0‖1.

Then, using inequality (2.4), we conclude that
∫

{Ω:|um|<k}
P(x,∇um)dx + k

∫

{Ω:|um|≥k}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx

+

∫

{Ω:|um|<k}
|um|p0(x)dx ≤ kC1, m ∈ N. (5.15)

From estimate (5.15), we have
∫

Ω

|Tk(u
m)|p0(x)dx =

∫

{Ω:|um|<k}

|um|p0(x)dx +
∫

{Ω:|um|≥k}

kp0(x)dx

≤
∫

{Ω:|um|<k}

|um|p0(x)dx + k

∫

{Ω:|um|≥k}

|um|p0(x)−1dx ≤ kC1, m ∈ N. (5.16)

Also, (5.15) implies the estimate
∫

{Ω:|um|<k}
P(x,∇um)dx =

∫

Ω

P(x,∇Tk(u
m))dx ≤ C1k, m ∈ N. (5.17)

Since the positive k is selected arbitrarily, it follows from inequality (5.15) that

‖bm(x, um)‖1 + ‖|um|p0(x)−1‖1 ≤ C1, m ∈ N. (5.18)

Finally, using (5.8) and (2.6), we establish the relation

sup
|um|≤k

(|bm(x, um)|+ |um|p0(x)−1) ≤ sup
|um|≤k

|b(x, um)|+ kp
+
0 −1 + 1 (5.19)

= Gk(x) + kp
+
0 −1 + 1 ∈ L1,loc(Ω), m ∈ N.

Step 3. Due to Lemma 3.2, from (5.15), we deduce that

meas (Ω : |um| ≥ h) → 0, h → ∞, uniformly with respect to m from N. (5.20)

Let us prove the limit relation

um → u, m → ∞, a. e. in Ω. (5.21)
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Let ηR(r) = min(1,max(0, R+1−r)). Applying (1.6), from estimate (5.17), we deduce the inequalities
∫

Ω

P(x,∇(ηR(|x|)Tk(u
m)))dx ≤ C2

∫

{Ω:|um|<k}
P(x,∇um)dx + C2

∫

Ω

P(x, Tk(u
m)∇ηR(|x|))dx

≤ C3(k,R), m ∈ N.

This implies the boundedness of the sequence {ηR(|x|)Tk(u
m)}m∈N in H̊1−→p (·)(Ω(R+1)) for every fixed

positive k and R. By Lemma 1.1, the space H̊1−→p (·)(Ω(R + 1)) is compactly embedded into the space

Lp0(·)(Ω(R + 1)) because condition (2.1) is satisfied. Thus, for every fixed positive k and R, the
selective convergence ηR(|x|)Tk(u

m) → vk in Lp0(·)(Ω(R + 1)) as m → ∞ is established. This implies
the convergence Tk(u

m) → vk in Lp0(·)(Ω(R)) as well as the selective convergence Tk(u
m) → vk a. e. in

Ω(R) as m → ∞, k ∈ N. Using the diagonal process, we show the existence of a measurable function
u : Ω → R such that vk = Tk(u) and um → u a. e. in Ω(R) for any positive R. This implies the
convergence (5.21).

From the convergence of um → u a. e. in Ω(R), the convergence with respect to measure follows for
any positive R. Hence, it implies that the sequence {um} is fundamental with respect to measure, i.e.,

meas {Ω(R) : |um − ul| ≥ ν} → 0 as m, l → ∞ for each positive ν. (5.22)

Step 4. From (5.17) and (2.2′), we have the following estimate for any positive k:

‖P′(x, a(x,∇um))χ{Ω:|um|<k}‖1 ≤ C4(k), m ∈ N. (5.23)

Due to Lemma 3.3, from inequality (5.15), we have the following convergence:

meas {Ω : P(x,∇um) ≥ h} → 0 as h → ∞ uniformly with respect to m ∈ N. (5.24)

First, we establish the convergence

∇um → ∇u, m → ∞, locally with repect to measure. (5.25)

For positive ν, θ, h, and R, consider the set

Eν,θ,h(R) = {Ω(R) : |ul − um| < ν, P(x,∇ul) ≤ h, P(x,∇um) ≤ h, |ul| < h, |um| < h,

|∇(ul − um)| ≥ θ}.
Since the inclusion

{Ω(R) : |∇(ul − um)| ≥ θ} ⊂ {Ω : P(x,∇ul) > h} ∪ {Ω : P(x,∇um) > h}
∪{Ω(R) : |ul − um| ≥ ν} ∪ {Ω : |ul| ≥ h} ∪ {Ω : |um| ≥ h} ∪ Eν,θ,h(R)

holds, it follows from (5.20) and (5.24) that one can select h to satisfy the inequalities

meas {Ω(R) : |∇(ul − um)| ≥ θ} (5.26)

< 4ε+measEν,θ,h(R) + meas {Ω(R) : |ul − um| ≥ ν}, m, l ∈ N.

By the monotonicity condition (2.3) and the well-known fact that a function continuous on a compact
set attains its infimum, there exists γ(x) positive a. e. in Ω and such that the inequality

(a(x, s) − a(x, t)) · (s− t) ≥ γ(x) (5.27)

holds provided that P(x, s) ≤ h, P(x, t) ≤ h, and |s− t| ≥ θ.
Introduce the notation Am

0 (x) = am0 (x, um) = Am(x) + bm(x, um) + |um|p0(x)−2um. From (5.6)
and (5.18), it follows that the sequence {Am

0 }m∈N is bounded in L1(Ω). Substitute u
m and ul into (5.10)

and subtract the latter from the former. We obtain that∫

Ω

(
a(x,∇um)− a(x,∇ul)

)
· ∇vdx +

∫

Ω

(Am
0 −Al

0)vdx = 0.
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Substituting the test function v = ηR(|x|)ηh(|ul|)ηh(|um|)Tν(u
m − ul), we establish the relation

∫

Ω

(
a(x,∇um)− a(x,∇ul)

)
· ∇(ηR(|x|)ηh(|ul|)ηh(|um|)Tν(u

m − ul))dx

= −
∫

Ω

(Am
0 −Al

0)ηR(|x|)ηh(|ul|)ηh(|um|)Tν(u
m − ul)dx ≤ C5ν, m, l ∈ N. (5.28)

Further, applying (5.27), we deduce the inequality
∫

Eν,θ,h(R)

γ(x)dx ≤
∫

Eν,θ,h(R)

(
a(x,∇um)− a(x,∇ul)

)
· ∇(um − ul)dx

≤
∫

{Ω:|um−ul|<ν}

ηR(|x|)ηh(|ul|)ηh(|um|)(a(x,∇um)− a(x,∇ul))∇(um − ul)dx. (5.29)

Combining (5.28) and (5.29) and applying (1.5), (5.17), and (5.23), we see that
∫

Eν,θ,h(R)

γ(x)dx ≤
n∑

i=1

∫

{Ω:|um|<h+1,|x|<R+1}
|ai(x,∇um)||Tν(u

m − ul)|dx

+
n∑

i=1

∫

{Ω:|ul|<h+1,|x|<R+1}

|ai(x,∇ul)||Tν(u
m − ul)|dx

+

n∑

i=1

∫

{Ω:h<|ul|<h+1,|um|<h+1}

(|ai(x,∇um)|+ |ai(x,∇ul)|)|ulxi
||Tν(u

m − ul)|dx

+

n∑

i=1

∫

{Ω:h<|um|<h+1,|ul|<h+1}

(|ai(x,∇um)|+ |ai(x,∇ul)|)|umxi
||Tν(u

m − ul)|dx + C5ν (5.30)

≤ ν(3‖P′(x, a(x,∇um))χ{Ω:|um|<h+1}‖1 + 3‖P′(x, a(x,∇ul))χ{Ω:|ul|<h+1}‖1
+ 2‖P(x,∇um)χ{Ω:|um|<h+1}‖1 + 2‖P(x,∇ul)χ{Ω:|ul|<h+1}‖1 + C6(R)) ≤ C7(R,h)ν.

Take an arbitrary positive δ and fix R and h. Then, selecting ν from (5.30), we establish the inequality
∫

Eν,θ,h(R)

γ(x)dx < δ.

Applying Lemma 3.6, for any positive ε, we deduce the inequality

measEν,θ,h(R) < ε. (5.31)

Due to (5.22), one can select m0(ν,R, ε) to satisfy the inequality

meas {Ω(R) : |ul − um| ≥ ν} < ε, m, l ≥ m0. (5.32)

Thus, combining (5.26), (5.31), and (5.32), we deduce the following inequality for any positive θ:

meas {Ω(R) : |∇(ul − um)| ≥ θ} < 6ε, m, l ≥ m0.

This implies that the sequence {∇um}m∈N is fundamental with respect to measure on the set Ω(R)
for any positive R. This implies convergence (5.25) as well as the selective convergence

∇um → ∇u, m → ∞, a. e. in Ω. (5.33)
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Step 5. Let us prove that

|um|p0(x)−2um → |u|p0(x)−2u and bm(x, um) → b(x, u), m → ∞, in L1,loc(Ω) (5.34)

and

|um|p0(x)−2um → |u|p0(x)−2u and bm(x, um) → b(x, u), m → ∞, a. e. in Ω. (5.35)

Assigning k = h in (5.14), we obtain the inequality
∫

{Ω:|um|≥2h}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx ≤

∫

{Ω:|um|≥h}

|Am −A0|dx +
∫

{Ω:|um|≥h}

|A0|dx, m ∈ N.

Fix an arbitrary positive ε. Using the inclusion A0 ∈ L1(Ω), convergence (5.5), and the absolute
convergence of the integrals on the right-hand side of the latter inequality, we take into account (5.20)
to find sufficiently large h such that

∫

{Ω:|um|≥2h}

(
|bm(x, um)|+ |um|p0(x)−1

)
dx < ε, m ∈ N. (5.36)

From the continuity of b(x, s0) with respect to s0 and convergence (5.21), it follows that for any fixed h,
we have the limit relations

χ{Ω:|um|<2h}|um|p0(x)−2um → χ{Ω:|u|≤2h}|u|p0(x)−2u, m → ∞, a. e. in Ω,

χ{Ω:|um|<2h}bm(x, um) → χ{Ω:|u|≤2h}b(x, u), m → ∞, a. e. in Ω.

Let K be an arbitrary compact subset of Ω. According to (5.19), applying the Lebesgue theorem, we
prove that

χ{Ω:|um|<2k}|um|p0(x)−2um → χ{Ω:|u|≤2k}|u|p0(x)−2u, m → ∞, in L1(K),

χ{Ω:|um|<2k}bm(x, um) → χ{Ω:|u|≤2k}b(x, u), m → ∞, in L1(K).

Taking into account (5.36), this implies (5.34).

From (5.18), (5.35), and the Fatou theorem, we conclude that b(x, u) and |u|p0(x)−2u belong to
L1(Ω). Hence, (2.5) yields the validity of the first assumption of Definition 2.1.

Step 6. Let us prove that Tk(u) ∈ W̊ 1−→p (·)(Ω) for any positive k. Combining (5.16), (5.17), and (1.9),

for any fixed positive k, we deduce the estimate

‖Tku
m‖W̊ 1−→p (·)(Ω) =

n∑

i=0

‖DxiTk(u
m)‖pi(·) ≤

n∑

i=0

⎛

⎝1 +

∫

Ω

|DxiTk(u
m))xi |pi(x)dx

⎞

⎠
1/p−i

≤ C8(k), m ∈ N.

The reflexivity of the space W̊ 1−→p (·)(Ω) allows one to select a subsequence such that Tku
m ⇀ v, m → ∞,

in W̊ 1−→p (·)(Ω) and v ∈ W̊ 1−→p (·)(Ω). The continuity of the natural mapping W̊ 1−→p (·)(Ω) → L−→p (·)(Ω) implies

the weak convergence

Tk(u
m) ⇀ v, m → ∞, in Lp0(·)(Ω). (5.37)

Using convergence (5.21) and applying Lemma 3.4, we have the following weak convergence for any
fixed positive k:

Tk(u
m) ⇀ Tk(u), m → ∞, in Lp0(·)(Ω). (5.38)

Relations (5.37)-(5.38) imply that v = Tku ∈ W̊ 1−→p (·)(Ω).
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Step 7. To prove (2.8), substitute the test function v = Tk(u
m− ξ), ξ ∈ C1

0 (Ω), into identity (5.10).
We obtain the relation∫

Ω

a(x,∇um) · ∇Tk(u
m − ξ)dx +

∫

Ω

(
bm(x, um) + |um|p0(x)−2um +Am

)
Tk(u

m − ξ)dx = Im + Jm = 0.

Assign M = k+‖ξ‖∞. If |um| ≥ M, then |um− ξ| ≥ |um|−‖ξ‖∞ ≥ k. Therefore, {Ω : |um − ξ| < k} ⊆
{Ω : |um| < M}, which means that

Im =

∫

Ω

a(x,∇um) · ∇Tk(u
m − ξ)dx (5.39)

=

∫

Ω

a(x,∇TM (um)) · (∇TM (um)−∇ξ)χ{Ω:|um−ξ|<k}dx = Im1 − Im2 .

From (5.21), (5.33), and the continuity of the function a(x, s) with respect to s, we have the limit
relation

a(x,∇TM (um))·∇TM (um)χ{Ω:|um−ξ|<k} → a(x,∇TM (u))·∇TM (u)χ{Ω:|u−ξ|≤k}, m → ∞, a. e. in Ω.

Applying (5.17), (5.23), and (1.5), we establish the estimate

Im1 =

∫

{Ω: |um−ξ|<k}
a(x,∇TM (um)) · ∇TM (um)dx ≤ C9(k), m ∈ N.

Then the Fatou lemma yields the inequality
∫

Ω

a(x,∇TM (u)) · ∇TM (u)χ{Ω:|u−ξ|≤k}dx ≤ lim
m→∞ inf Im1 . (5.40)

Estimate (5.23) implies the boundedness of the sequence of norms:

‖P′(x, a(x,∇TM (um))χ{Ω:|um−ξ|<k}‖1 ≤ ‖P′(x, a(x,∇um))χ{Ω:|um|<M}‖1 ≤ C10(k), m ∈ N.

Applying Lemma 3.4, we establish the following weak convergence:

a(x,∇TM (um))χ{Ω:|um−ξ|<k} ⇀ a(x,∇TM (u))χ{Ω:|u−ξ|≤k}, m → ∞, in L−→p ′(·)(Ω).

Passing to the limit in Im2 , we have the relation

lim
m→∞ Im2 =

∫

Ω

a(x,∇TM (u)) · ∇ξχ{Ω:|u−ξ|≤k}dx. (5.41)

Combining (5.39)–(5.41), we establish the relation

lim
m→∞ inf Im ≥

∫

Ω

a(x,∇TM (u)) · (∇TM (u)−∇ξ)χ{Ω:|u−ξ|≤k}dx

=

∫

Ω

a(x,∇u) · ∇(u− ξ)χ{Ω:|u−ξ|≤k}dx =

∫

Ω

a(x,∇u) · ∇Tk(u− ξ)dx. (5.42)

Since

Tk(u
m − ξ) → Tk(u− ξ), m → ∞, a. e. in Ω

and

|vTk(u
m − ξ)| ≤ k|v| ∈ L1(Ω), ∀ v ∈ L1(Ω), m ∈ N,

it follows from the Lebesgue theorem that

Tk(u
m − ξ)

∗
⇀ Tk(u− ξ), m → ∞, in L∞(Ω). (5.43)
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The integral Jm is decomposed into two terms as well. The first integral

Jm
1 =

∫

Ω

(
bm(x, um) + |um|p0(x)−2um

)
Tk(u

m − ξ)dx

is estimated as follows. Consider the increasing sequence {K l} of compact subsets Ω such that
∞⋃
l=1

K l = Ω. Let supp ξ ⊂ K l, l ≥ l0, v
m = um − ξ, v = u− ξ, cm(x, um) = bm(x, um) + |um|p0(x)−2um,

and c(x, u) = b(x, u)+ |u|p0(x)−2u. Then, taking into account (5.9), we have the following relation valid
under the assumption that l ≥ l0:

Jm
1 =

∫

Ω\Kl

cm(x, um)Tk(u
m)dx +

∫

Kl

cm(x, um)Tk(v
m)dx ≥

∫

Kl

cm(x, um)Tk(v
m)dx = J

lm
1 .

Applying (5.34) and (5.43), pass to the limit as m → ∞. Then pass to the limit as l → ∞. We obtain
that ∫

Ω

(b(x, u) + |u|p0(x)−2u)Tk(u− ξ)dx = lim
l→∞

lim
m→∞J

lm
1 ≤ lim

m→∞ inf Jm
1 . (5.44)

Using (5.5) and (5.43), we pass to the limit as m → ∞ in the second integral and obtain that

Jm
2 =

∫

Ω

AmTk(u
m − ξ)dx →

∫

Ω

A0Tk(u− ξ)dx. (5.45)

Combining (5.42) and (5.44)-(5.45), we deduce (2.8).
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