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DYNAMICAL SYSTEMS AND TOPOLOGY OF MAGNETIC FIELDS
IN CONDUCTING MEDIUM

V. Z. Grines, E. V. Zhuzhoma, and O. V. Pochinka UDC 517.938

Abstract. We discuss application of contemporary methods of the theory of dynamical systems with
regular and chaotic hyperbolic dynamics to investigation of topological structure of magnetic fields in
conducting media. For substantial classes of magnetic fields, we consider well-known physical models
allowing us to reduce investigation of such fields to study of vector fields and Morse–Smale diffeo-
morphisms as well as diffeomorphisms with nontrivial basic sets satisfying the A axiom introduced by
Smale. For the point–charge magnetic field model, we consider the problem of the separator playing
an important role in the reconnection processes and investigate relations between its singularities. We
consider the class of magnetic fields in the solar corona and solve the problem of topological equiva-
lency of fields in this class. We develop a topological modification of the Zeldovich funicular model of
the nondissipative cinematic dynamo, constructing a hyperbolic diffeomorphism with chaotic dynamics
that is conservative in the neighborhood of its transitive invariant set.
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1. Introduction

The topological structure of magnetic fields in conducting moving media is one of the most important
problems of natural science. The main and most actual example of a strongly conducting moving
medium is the plasma. The investigation of magnetic fields in conducting media forms a part of
physics called “magnetohydrodynamics” (for its main definitions and notions, see [3, 14, 32, 59]). Its
theory is based on the classical magnetic field equations and the hydrodynamic motion equations for
the continuous medium (these equations are provided in Sec. 2). Mathematical physics has many
famous theoretical methods for the investigation of this system of equations. In several recent papers,
properties of solutions are studied by means of methods of the geometrical (qualitative) theory of
dynamical systems based on classical works of Poincaré and Lyapunov. The present review is devoted
to applications of methods of the geometrical theory of dynamical systems to the investigation of the
topological structure of the magnetic field of a conducting medium.

Any motion of a well-conducting medium specifically effects its electromagnetic field: the electric
field arising in it is rather rapidly graded by the arising currents. Therefore, the main point in the
investigation of properties of well-conducting media is the investigation of the interaction between the
medium and its magnetic field. The Alfven theorem on the “freezing” of magnetic lines of force into
the moving ideally conducting medium (see [1, 3]) is quite important for theoretical investigations
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Fig. 1. The idealization of a magnetic charge.

and applications. According to this theorem, the movement of lines of force of the magnetic field is
the same as in the case where they are “frozen” into the conducting medium (plasma). Hence, if
the movements of an ideally conducting medium are simple and small with respect to time, then the
topological structure of the magnetic field is not changed. After a sufficiently long interval of time,
the freezing-in of lines of force may give rise to regions with conflicting parts of the magnetic field,
i.e., points such that the boundaries of these regions are close to each other, but the magnetic fields of
these regions have different directions near these points. This leads to the arising of new null points,

i.e., points where the magnetic induction �B is equal to zero.
Moreover, in the photosphere and solar corona, which are examples of well-conducting media, local

regions with an intensive magnetic field regularly arise so that they look like local sources or sinks of
vector fields (from the global viewpoint). An idealized model with point positive and negative magnetic
charges, which are retractions to points of such regions, occurs to be applied for the qualitative study
of the topology of such a magnetic field.

No magnetic charges are found in nature, but the above point–charge model is successfully applied
for the investigation of the structure of the magnetic field and its bifurcations for solar bursts with
small numbers of retraction charges (see, e.g., [6–8, 11, 13, 19, 34–37, 43, 47, 51]). From the viewpoint
of the theory of dynamical systems, the specified idealized model can be treated as a Morse–Sma-
le vector field such that its sink and source equilibrium states correspond to idealized (retraction)
charges, saddle equilibrium states correspond to null points of the magnetic field, one-dimensional
separatrices of each saddle equilibrium state correspond to oppositely directed lines of force of the
magnetic field, and its two-dimensional separatrix belongs to the boundary of the conflicting parts of
the magnetic field.

The class of such dynamical systems (Morse–Smale vector fields and flows) is among the most
studied classes in the contemporary theory of dynamical systems (see, e.g., [4, 21, 23, 55]). The
appearance of such classes is related to the notion of coarse systems, which is very important for the
theory of dynamical systems: in 1937, this notion is introduced by Andronov and Pontrjagin for two-
dimensional surface vector fields in the plane. Coarse vector fields preserve the phase portrait under
sufficiently small C1-perturbations and are such that the homeomorphism transforming trajectories
of the original vector field into trajectories of the perturbed field is close to the identical one. In 1959,
Peixoto extended the coarseness notion to flows defined on closed surfaces and replaced the coarseness
notion by the notion of the structural stability, omitting the requirement for the homeomorphism
taking trajectories of the C1-close vector field to trajectories of the original field to be close to the
identical one. Similarly to the case where a vector field is defined in a bounded part of the plane, vector
fields on surfaces form an open dense set in the space of all vector fields equipped with C1-topology.

In 1960, Smale generalized the two-dimensional case by introducing the class of vector fields on
manifolds of dimension exceeding 2 and such that their nonwandering set consists of a finite number
of hyperbolic equilibrium states and closed trajectories such that the intersection of their stable and
unstable manifolds is transversal. It turns out that such vector fields are structurally stable. They are
called Morse–Smale vector fields. Note that these fields do not form an everywhere dense set in the
set of all fields and do not coincide with the set of all structurally stable fields. Unlike structurally
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stable flows with a countable set of saddle periodic trajectories simulating processes with a chaotic
behavior, Morse–Smale vector fields describe processes with regular dynamics.

The geometrical theory of Morse–Smale dynamical systems allows the authors of the present review
to obtain new quantitative relations between the number of charges of different signs and the number
of null points of the magnetic field. These relations are provided in Sec. 3.

Null points of the three-dimensional magnetic field are divided into two types as follows. From the
viewpoint of the theory of Morse–Smale dynamical systems, a fixed null point is a saddle hyperbolic
equilibrium state (a saddle) such that one of its separatrix is one-dimensional, while the other one
is two-dimensional. We say that a null point is of type one (two) if the dimension of the unstable
separatrix is equal to 1 (respectively, 2). In the theory of dynamical systems, this dimension is called
the Morse index of the saddle equilibrium state.

A structurally stable three-dimensional vector field might admit intersections of two-dimensional
stable and unstable separatrices of different saddle equilibrium states. Any trajectory belonging to
such an intersection is called a heteroclinic trajectory. Such trajectories correspond to lines of force,
connecting two null points of a magnetic field. In astrophysics, such magnetic lines are called separa-
tors. It is clear that separators are important for the topological structure of magnetic fields. At the
moment, a lot is known about the existence or nonexistence of heteroclinic trajectories of Morse–Smale
dynamical systems; this existence/nonexistence problem can be reduced to the existence/nonexistence
problem for separators in magnetic fields.

In contemporary astrophysics, the nature of solar bursts is explained as follows: the energy liberation
taking place at solar bursts is a result of the magnetic reconnection, i.e., bifurcations related to the
arising and vanishing of separators of the magnetic field. This changes the topological structure of the
magnetic field so that the new topological configuration possesses a lesser energy (see [48, 49, 53]). The
energy excess liberated due to this bifurcation is spent for the intensive radiation of electromagnetic
waves in various ranges of the spectrum, heating of the plasma, acceleration of charged particles to
high values of the energy, etc. Thus, information on the amount and location of null points and
separators of the magnetic field is quite important for the analysis of magnetic-reconnection processes.
This is discussed in Secs. 3-4. Also, in Sec. 4, we provide necessary and sufficient conditions for the
topological equivalence of a special class of magnetic fields in the solar corona.

In Secs. 3-4, the topological structure of magnetic fields at a fixed time is considered. Such a con-
sideration does not take into account the influence of the motion of the conducting medium (plasma)
on the change of the topology of the magnetic field. However, to explain the nature of important
bifurcations of the topology of magnetic fields related to the birth and vanishing of separators, re-
connections, etc., one has to take the motion of the medium into account. In Sec. 5, we propose
the following approach. In the moving plasma, we select the investigated region V. Then we define
the movement of this region to the three-dimensional closed manifold MV in order that the obtained
transformation of the manifold MV be a Morse–Smale diffeomorphism. Though the information about
the behavior of the magnetic field outside the region V is lost under such an approach, we succeed
in obtaining conditions guaranteeing the existence (or absence) of separators of the original magnetic
field in the region V. Actually, the obtained conditions follow from profound results on Morse–Smale
diffeomorphism defined on closed three-dimensional manifolds (see [9, 21, 23, 27, 28]).

It is known that Earth and Sun both possess a self-magnetic field. Magnetic fields of other planets
and stars are found by radioastronomy methods. It turns out that magnetic fields in planets, stars,
galaxies, and intergalactic space are frequently primary factors of the dynamics of various astrophysical
processes. The natural question about the genesis of these magnetic fields is within the theory called
the kinematic dynamo theory (see [60]). The behavior of the magnetic field under a given flow of the
conducting medium (see [32, 38, 39]) is an important problem of the said theory.

Various aspects of the kinematic dynamo theory are considered in [16, 17, 44] (see [12, 56] as
well). These theoretical investigations face substantial mathematical difficulties because the problem
is essentially nonlinear. An important part of the kinematic dynamo theory is the theory of fast
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kinematic dynamo investigating the existence of motion of the medium, causing the exponential growth
of the so-called seed magnetic field (or magnetic energy) under a small magnetic diffusion (see [5, 40,
61]). It is generally agreed that the effect of fast kinematic dynamo causes the existence of magnetic
fields in the cosmic scale. Up to now, no stable experiment providing an expected effect that could be
treated as an exact analog of the natural one is obtained in the laboratory environment (see [57]).

The great theoretical difficulties of the fast kinematic dynamo problem motivate the development
of various geometric and topological constructions of movements of the conducting medium, leading
to multiple growth of the seed magnetic field. Roughly speaking, the main idea is to construct a
conservative map that takes into account the freezing-in of the lines of force and leads to a multiple
increase of the density of the lines of force of the magnetic field. The most known constructions are the
Alfven decomposition of the magnetic tube and the so-called Zeldovich octuple (both constructions
were proposed in 1970s and correspond to known constructions of the contemporary theory of dy-
namical systems). For example, the Alfven construction from [2] corresponds to the so-called baker’s
transformation, while the Zeldovich one corresponds to the Smale map for the constructing of a hyper-
bolic solenoid (see [4, 29, 30, 55]). The ideas of the Zeldovich construction (also called the funicular
dynamo) underlies many constructions of three-dimensional models of a fast dynamo (see [5, 60]).
From the viewpoint of the contemporary theory of dynamical systems, the Zeldovich construction is
an Ω-stable map of the solid torus into itself introduced in [55]. The nonwandering set of this map is
a topological solenoid and a stretched attractor (see [29, 30, 55]). In [5, Chap. V], it is noted that,
from the viewpoint of the kinematic dynamo theory, a substantial disadvantage of this construction
is that the proposed map is not conservative. In Sec. 6, we present a modification of the Zeldovich
construction such that it is free from this disadvantage in a neighborhood of the nonwandering set.

2. Main Statements of Magnetohydrodynamics

Magnetohydrodynamics (MHD) studies the interaction between the electromagnetic field with a
liquid or vapor moving conductor treated as continuous medium. MHD equations combine the Maxwell
equations for the electromagnetic field and the usual hydrodynamic equations describing the movement
of a continuous medium (plasma, liquid, or gas). The Maxwell equations are as follows:

�∇× �H =
4π

c0
·�j +

ε0
c0

· ∂
�E

∂t
, (2.1)

�∇× �E = − 1

c0
· ∂

�H

∂t
, (2.2)

�∇ · �H = 0, (2.3)

and

�∇ · �E =
4π

c0
· ρe, (2.4)

where ρe is the electric-charge density, �j is the current density, and c0 is the electrodynamic constant

(the light speed in vacuum). The Maxwell equations include the magnetic induction �B. However, for

simplicity, we do not distinct the magnetic field �H and the magnetic induction vector �B = μ �H in
Eqs. (2.1)–(2.4) assuming that μ ≈ 1.

If �v denotes the hydrodynamic field of velocities of the continuous medium, then the current density
�j is the sum of the so-called convection current ρe�v, conductivity current σ �E, and induction current

arising in the case where an electrically conducting medium moves in the magnetic field �H with
velocity �v, where σ is the medium conductivity. Thus,

�j = ρe�v + σ �E +
σ

c0
· �v × �H . (2.5)
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The two hydrodynamic equations are the Euler hydrodynamic equation

� · d�v
dt

= −�∇P + �Fe + η ·Δ�v (2.6)

and the equation of continuity
∂�

∂t
= �∇ · (��v) = 0, (2.7)

where � is the density of the medium, P is the pressure, η is the viscosity, and �Fe is the electromagnetic
force. The more usual form of the left-hand side of Eq. (2.6) is as follows:

� · d�v
dt

= � ·
[
∂�v

∂t
+

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
�v

]
= � ·

[
∂�v

∂t
+

(
�v · �∇

)
�v

]
.

The classical MHD is divided into nonrelativistic and relativistic. In the sequel, it is assumed that
we are within the framework of the nonrelativistic MHD, i.e., the considered velocities satisfy the

condition |�v| � c0. Therefore, the term
ε0
c0

· ∂
�E

∂t
of Eq. (2.1) can be neglected. Exclude the electric

intensity �E and the density of the current �j from the Maxwell equations. This yields the following
induction equation, which is among the main MHD equations:

∂ �H

∂t
= rot

[
�v �H

]
+ ν∇2 �H , (2.8)

where ν is the magnetic viscosity inverse to the Reynolds magnetic number (see [5, 32]).
The theory of kinematic dynamo is mainly based on Eq. (2.8), where the medium velocity �v is

assumed to be a given function of the coordinates and time.
In many papers, exact solutions of MHD equations with various initial conditions are found under

additional assumptions (see, e.g., [15]). Also, a comprehensive bibliography is provided in [52].

3. Model of One-Point Charges

In Morse–Smale vector fields simulating magnetic fields �H generated by the set of so-called magnetic
(retraction) charges, the equilibrium states are divided into two classes. The first class consists of all
equilibrium states of the vector field corresponding to null points of the magnetic field. These points
are responsible for the continuity of the vector field simulating the magnetic field with conflicting
regions. The second class consists of all sink and source equilibrium states of the vector field. They
correspond to positive and negative retraction charges.

Let p0 be the equilibrium state of the vector field corresponding to a null point of a magnetic field
�H , and λ1, λ2, and λ3 be the eigenvalues of the Jacobi matrix of the system of equations defining

the field �H in a neighborhood of the point p0. By assumption, the relation ∇ · �H = 0 holds outside

the union of sufficiently small neighborhoods of sinks and sources of the vector field �H (see (2.3)).
This implies the relation λ1 + λ2 + λ3 = 0. Since equilibrium states of Morse–Smale are hyperbolic,
it follows that the real parts of all eigenvalues are different from zero. This implies that, from the
viewpoint of the theory of dynamical systems, each null point of a magnetic field is a saddle equilibrium
state with two one-dimensional separatrices and one two-dimensional separatrix. In physics, each one-
dimensional separatrix is called a spine, while each one-dimensional one is called a fan (see [46, 48, 49]
and Fig. 3(a)). If the magnetic line of force of a one-dimensional separatrix is directed from the null
point, then all magnetic lines on the separatrix surface are directed to the null point, and vise versa.

Thus, the first class of equilibrium states of the vector field �H consists of saddle equilibrium states.
Recall that the Morse index of an equilibrium state p is the dimension dimW u(p) of the unstable

manifold W u(p) of the equilibrium state p, while the topological index is (−1)dimWu(p). If p0 is a saddle
equilibrium state, then only the following cases are possible (up to denotation of the eigenvalues):

(1) λ1 > 0, Reλ2, and Reλ3 < 0;
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Fig. 2. Positive and negative null points.

(2) λ1 < 0, Reλ2, and Reλ3 > 0.

In the first case, we say that the null point p0 is positive because λ1 ·λ2 ·λ3 > 0. From the viewpoint of
the theory of dynamical systems, the positive null point is a saddle equilibrium state, its Morse index
is equal to 1, and its topological index is equal to −1. This equilibrium state has two one-dimensional
unstable separatrices and one two-dimensional stable separatrix (see Fig. 2 (a)). In the second case,
we say that the null point p0 is negative because λ1 · λ2 · λ3 < 0. It is a saddle equilibrium state, its
Morse index is equal to 2, its topological index is equal to 1, and it has two one-dimensional stable
separatrices and one two-dimensional unstable separatrix (see Fig. 2 (b)).

To present the main results of this section, we refine the notion of positive and negative charges

of a magnetic field �H (according to the point–charge model). We say that the charge of a magnetic

field �H is positive if it is contained in an arbitrarily small ball such that the magnetic field at its
boundary is directed outwards. The negative charge is defined in the same way. From the viewpoint
of the Morse–Smale theory of dynamical systems, each positive charge is a source equilibrium state of
the vector field, and each negative one is its sink equilibrium state.

In each publication applying the point–charge model known to the authors, the number of charges
is finite and sufficiently small. For example, in [47, 50], groups of two and three charges are considered.
In [6, 19, 36, 41, 58], groups of four charges are considered. In [35], a group of six charges is considered.
In each paper, the coordinates of the charges are defined concretely. Also, it is assumed that the field

of magnetic induction �B is potential and a particular relation is applied to compute it. Null points of

the field �B and separators important for the description of the topological structure of the magnetic
field are found by means of intermediate computations. To verify the existence of null points, the
Euler–Poincaré relation is applied. Note that the main concern of the cited papers is the investigation
of the restructuring of the magnetic field under variations of the location of charges.

We say that a magnetic field is quasi-typical if all its null points and charges (treated as equilibrium
states of a vector field) are hyperbolic, two-dimensional separatrices of null points either intersect
each other transversally or do not intersect each other at all, each one-dimensional separatrix has no
intersections with two-dimensional ones, and no one-dimensional separatrices connecting null points
exist (this refers to separatrices connecting a null point with itself as well). In the general case, one-
dimensional separatrices either do not intersect each other or coincide with each other. In the sequel,
only quasi-typical magnetic fields are considered.

Since the Sun radiates energy, the investigation of the so-called positively unbalanced groups of
charges is important in practice. We say that a group C of charges is positively unbalanced if it is
contained in a ball B such that the magnetic field at its boundary is directed outwards, the magnetic
field is quasi-typical inside the ball, and there are no closed magnetic lines inside the ball. The said ball
B = B(C) is called the source region of the group C. We assume that if a line of force does not form a
one-dimensional separatrix of a null point and does not belong to its two-dimensional separatrix, then
it either tends to a singularity of the magnetic field or leaves the source region. Negatively unbalanced
groups of charges (and, respectively, sink regions of groups of charges) are defined in the same way.
The investigation of negatively unbalanced groups is important as well because families of negatively
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unbalanced groups might lie inside a positively unbalanced group and bifurcations of the former ones
might cause a burst (see [46]).

For each region containing an unbalanced group of charges, introduce the following notation: S+

is the number of positive null points, S− is the number of negative null points, N+ is the number of
positive charges, and N− is the number of negative charges. The Euler–Poincaré relation implies that

1 +N− − S+ + S− −N+ = 0.

However, the next result shows that not all negative numbers S+, S−, N+, and N− satisfying this
relation can be realized.

Recall that, following [46, 48, 49], we call each magnetic line connecting two null points a separator.
From the viewpoint of the theory of dynamical systems, each separator is a heteroclinic trajectory
belonging to the intersection of separatrix surfaces of different equilibrium states (see Fig. 3 (b)).

Fig. 3. The null point structure (a) and the heteroclinic separator (b).

Results of the present section are presented below and proved in [63].

Theorem 3.1. Let a positively unbalanced group C contain N+, N+ ≥ 1, positive charges and N−,
N− ≥ 0, negative charges. Then the source region B(C) of this group contains at least N+−1 negative
null points and N− positive null points,

S− ≥ N+ − 1, S+ ≥ N−.

If the group C consists of N+ positive charges, N+ ≥ 2, and B(C) contains N+ − 1 and only N+ − 1
null points, then all null points are negative, there are no separators in B(C), and the structure of the
magnetic field in the region B(C) is unique up to the topological equivalence.

Corollary 3.1. Let C be a negatively unbalanced group containing N− negative charges, N− ≥ 2.
Then the sink region B(C) of this group contains at least N− − 1 positive null points. If the group C
consists of N− negative charges, N− ≥ 2, and B(C) contains N− − 1 and only N− − 1 null points,
then all these points are positive null points and B(C) contains no separators.

If we have the least possible number of null points of both signs (these least numbers are determined
by Theorem 3.1), then the existence of separators is not guaranteed. However, the next theorem shows
that the appearance of at least one “extra” null point implies the existence of at least one separator.
This does not depend of the type of the extra null point (it might be either positive or negative). For
definiteness, we present the said assertion for the case where the extra null point is negative.

Theorem 3.2. Let a positively unbalanced group C contain N+, N+ ≥ 2, positive charges and N−,
N− ≥ 0, negative charges. If B(C) contains N+ and only N+ negative null points, then B(C) contains
at least one separator.

The proofs of Theorems 3.1-3.2 are based on the fact that each quasi-typical magnetic field of
positively unbalanced groups of charges can be extended as a Morse–Smale vector field on the three-
dimensional sphere; then the technique developed in works about the classification of Morse–Smale
dynamical systems on manifolds (see [21, 23–25, 28]) can be applied to such vector fields.
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4. Topology of Magnetic Fields

According to one of the contemporary viewpoints, the magnetic field in the solar corona is generated
by a large number of dipoles located inside the Sun (see, e.g., [48, 49]). These dipoles generate
flow tubes of the magnetic field crossing the photosphere of the Sun and leaving into its corona.
According to the point–charge model, points where flow tubes leave the photosphere and get back
to it are interpreted as point sources and sinks (positive and negative charges) on the photosphere
(see Fig. 4). For the model of a magnetic field B with point sources, we follow [7] to use the two-
dimensional sphere P = {(x, y, z, w) ∈ S

3 | w = 0} in the three-dimensional sphere S3 = {(x, y, z, w) ∈
R
4 | x2 + y2 + z2 +w2 = 1} as the photosphere and the region {(x, y, z, w) ∈ S

3 | w > 0} as the solar
corona. Moreover, we assume that B is symmetrically extended to the region {(x, y, z, w) ∈ S3 | w < 0}
called the corona mirror; hence, it is defined on M = S

3 \
k⋃

i=1
qi, where q1, . . . , qk are points of the

photosphere where the charges are located.

Fig. 4. Dipoles inside the Sun.

It is frequently assumed that the corona magnetic field is irrotational. Taking into account that only
the field topology is studied in this section, we assume (for simplicity) that B is a potential field, i.e.,
B = −∇Φ,where Φ is a scalar potential. The next natural assumption is that the potential Φ is a Morse
function. Recall that a C2-function φ defined on an n-manifold is called a Morse function if for each
of its critical point p there exists an open neighborhood Vp with a coordinate system X = (x1, . . . , xn)

and an integer λp from [0, n], called the index of p, such that φ(x)|Vp = φ(p)−
λp∑
i=1

x2i +
n∑

i=λp+1

x2i .

Since ∇·B = 0, it follows that the three eigenvalues λ1, λ2, and λ3 of the zero of the magnetic field
satisfy the relation λ1 + λ2 + λ3 = 0. Since B is a potential, it follows that all eigenvalues are real.
Since Φ is a Morse function, it follows that each eigenvalue is different from 0. We say that a zero is
positive (negative) if λ1 ·λ2 ·λ3 > 0 (λ1 ·λ2 ·λ3 < 0, respectively). If a zero belongs to the photosphere,
then we say that it is a photospheric zero. If the one-dimensional invariant manifold of a photospheric
zero lies in the photosphere, then we say that it is a horizontal zero. Each photospheric zero with the
vertically directed one-dimensional invariant manifold is called a vertical zero. Each zero located in
the solar corona is called a coronal zero (see [8]).

If two-dimensional invariant manifolds of null points intersect each other, then they form a sepa-
rator connecting two zeroes with opposite signs. Two-dimensional manifolds divide the corona into
different regions called domes. The appearance and vanishing of separators changes the topology of
the decomposition into domes. This situation, called a separator reconnection, is one of the main
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mechanisms of the energy redistribution in the solar corona (see [51]). The simplest reconnection is
known as an intersecting state (see [7] and Fig. 5).

Fig. 5. The intersecting state.

A lot of papers (see [13, 34, 36, 37]) are devoted to the classification of configurations of magnetic-
field domes arising from such point sources. It is natural to introduce the following definition from
the classical work [45] (see [55] as well).

Definition 4.1. Coronal magnetic fields B and B′ are topologically equivalent if there exists a home-
omorphism H : M → M ′ taking magnetic lines of B to magnetic lines of B′ and preserving the
orientation on lines.

It is known (see, e.g., [18]) that the gradient vector field ξ generated by a Morse function φ possesses
a so-called self-indexing energy function ϕ, i.e., a Morse function with the following properties:

(1) the set of critical points of φ and ϕ coincide with each other;
(2) if p is a critical point, then ϕ(x) = φ(x) + const provided that x ∈ Vp and ϕ(p) = λp;
(3) ξ(ϕ) < 0 outside critical points.

Let B be the set of magnetic fields B possessing the energy function ϕ. In the present section, we
investigate the dependence between the existence of separators and the type of zeroes of the magnetic
field B from B and find the relation between the number of zeroes and number of charges. Also, we
obtain a classification of magnetic fields from B up to the topological equivalence.

If p is a zero of a magnetic field B, then Fp denotes its two-dimensional invariant manifold and Sp

denotes its one-dimensional one. Assign Tp = Fp ∩P, i.e., Tp is the trace of the intersection of Fp with
the photosphere P.

Results of the present section are presented below and proved in [26].

Theorem 4.1. The following assertions hold for each magnetic field B:

(1) if p is a zero of the magnetic field B and lp is a connected component of the set Sp \p, then there
exists i from {1, . . . , k} such that the set cl lp \ (lp ∪ p) consists of one and only one charge qi;

(2) if p is a zero of the magnetic field B, then the two-dimensional manifold Fp contains no sep-
arators if and only if there exists i from {1, . . . , k} such that the set cl Fp \ Fp consists of one
and only one charge qi;

(3) if there exist zeroes p1, . . . , pn of the magnetic field B such that
n⋃

i=1
cl Spi is a simple closed

curve, then the set Fpi contains at least one separator for each i ∈ {1, . . . , n}.
Theorem 4.2. The following assertions hold for any arbitrary coronal magnetic field B from B:

(1) the two-dimensional manifold Fp of each coronal and each vertical null point p contains at least
one separator;
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(2) the two-dimensional manifold Fp of any horizontal null point p contains no separators if and
only if there exists i ∈ {1, . . . , k} such that cl Tp \ Tp consists of one and only one charge qi.

Let m denote the number of zeroes of a field B from B. Assign g = (m− k + 2)/2.

Theorem 4.3. The following assertions hold for any arbitrary coronal magnetic field B from B:
(1) g is a nonnegative integer;
(2) the vector field B has at least 2g zeroes such that their two-dimensional invariant manifolds

contain at least one separator;
(3) the level set Σ = ϕ−1(3/2) is an orientable surface of genus g.

Suppose that N+(N−) denotes the set of positive (negative) zeroes of a magnetic field B. Assign
F+ =

⋃
p∈N+

Fp (F− =
⋃

p∈N−
Fp).

Definition 4.2. We say that self-indexing energy functions ϕ and ϕ′ of magnetic fields B and B′ are
consistently equivalent if there exists homeomorphism H : M → M ′ preserving the orientation and
possessing the following properties:

(1) ϕ′H = ϕ;
(2) H(Σ ∩ F+) = Σ′ ∩ F ′

+ and H(Σ ∩ F−) = Σ′ ∩ F ′−.

Theorem 4.4. The magnetic fields B and B′ are topologically equivalent if and only if their self-
indexing energy functions ϕ and ϕ′ are consistently equivalent.

5. Existence Conditions for Separators in Moving Plasma

In Secs. 3-4, existence conditions for separators are provided. However, they do not take into
account the plasma movement. In the present section, we provide conditions taking this movement
into account.

In [22], the following approach to this problem is proposed. In the plasma, a three-dimensional body
of a special kind is selected. A movement is considered such that all boundary components of the body
are translated inside or outside and, once the movement is over, all boundary components are parallel
to the original boundary components (strict definitions are provided below). Since the topological
structure of the magnetic field is not changed during the movement, it is assumed (for simplicity)
that the skeleton of the magnetic field inside the selected body is invariant with respect to the plasma
movement. Note that no immovability of all skeleton points are required, but the movement inside
the body leaves all the skeleton points on the skeleton. The only substantive restriction is as follows:
all null points are hyperbolic not only for the field, but for the plasma movement simulated by a
diffeomorphism with fixed hyperbolic points. It is important to note that, due to the Kupka–Smale
theorem from the theory of dynamical systems, all periodic points (including fixed ones) of any typical
diffeomorphism are hyperbolic (see [42]). Thus, one can assume that the proposed model describes
the class of typical movements of plasma.

Let us pass to strict definitions.
Let M2

p be an orientable closed surface of a nonnegative genus p smoothly embedded into the

Euclidean space R3. By virtue of the orientability, M2
p decomposes R3 into a bounded region (interior)

and unbounded region (exterior). The union of the interior with the boundary M2
p is denoted by

M3
p and is called a body of genus p, p ≥ 0. The simplest example is the closed three-dimensional ball

M3
0

def
= D3 bounded by the two-dimensional sphere S2. The body M3

1
def
= P 3 is a solid torus, i.e., the

set D2 × S1 homeomorphic to the product of the two-dimensional closed disk D2 and the circle S1.
We say that two smoothly embedded surfaces M2

p1 and M2
p2 are parallel if p1 = p2 = p and they

bound a region of R3 homeomorphic to M2
p × (0; 1). This implies that M2

p1 ∩M2
p2 = ∅.
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Let a body M3
p contain pairwise disjoint bodies M3

p1 , . . . , M
3
pk

inside itself. Assign

M3
p \ (intM3

p1 ∪ . . . ∪ intM3
pk

) def
= M3

p(p1,...,pk)
.

In particular, M3
0(0) = S is the closed spherical layer, i.e., the set S = S2 × [−1;+1] homeomorphic to

the product of the sphere S2 and the closed segment [−1;+1]. It is clear that the topological type of
the body M3

p(p1···pk) depends on the embedding of M3
p1 , . . . , M

3
pk

into M3
p . For example, the so-called

thick surface, i.e., the body homeomorphic to the product of the two-dimensional surface M2
p of a

positive genus p and the segment [0; 1] is a case of M3
p(p). Let M3 denote a body of type M3

p(p,0,0),

which is a thick surface with two holes.
Consider a body M3

p(p1,...,pk)
smoothly embedded into the space R

3. The body M3
p(p1,...,pk)

is a part

of the plasma of an astrophysical object with a magnetic field �B. Let �B0 denote the restriction of the

field �B to M3
p(p1,...,pk)

, i.e., �B0 = �B|M3
p(p1,...,pk)

. Assume that the field �B0 is quasi-typical (see Sec. 3).

This implies that M3
p(p1,...,pk)

contains only a finite set of null points. Further, assume the following

assumptions:

(1) if separatrices of null points intersect each other, then they intersect each other transversally;
(2) if separatrices intersect components M2

p1 , . . . , M
2
pk

of the body M3
p(p1,...,pk)

, then they intersect

them transversally.

A map

f0 : M
3
p(p1,...,pk)

→ f0

(
M3

p(p1,...,pk)

)
⊂ R

3

is called an (a-d)-movement if it satisfies the following conditions:

(a) f0 is a diffeomorphism onto its image such that it preserves the orientation and its nonwandering

set consists of fixed hyperbolic points coinciding with zeroes of the magnetic field �B0;

(b) boundary components of the body f0

(
M3

p(p1,...,pk)

)
are pairwise disjoint with boundary com-

ponents of the body M3
p(p1,...,pk)

;

(c) at least one boundary component M2
pi is mapped inside M3

p(p1,...,pk)
, and at least one boundary

component M2
pj is mapped outside M3

p(p1,...,pk)
, i.e.,

f0(M
2
pi) ⊂ M3

p(p1,...,pk)
, f0(M

2
pj ) ∩M3

p(p1,...,pk)
= ∅;

(d) fans and spines are invariant with respect to f0, while fixed points of the diffeomorphism f0
have the same type as zeroes of the field �B0.

Note that no transversal intersections of lines of force of the magnetic field �B0 with boundary compo-
nents are required. Therefore, in general, intersections of fans and spines with boundary components
of the body M3

p(p1···pk) over several connected components are possible. From the viewpoint of physics,

the proposed model means that the plasma movement is considered during the time interval such that
singular points with fans and spines are preserved within this interval. It follows from the provided
properties that if separators exist, then they are invariant with respect to f0 and their number is not
changed during the observed time interval (this is still valid for the case where this number is equal
to zero).

For a closed spherical layer S, Conditions (a)–(d) mean the following. Assume that a sphere
S2×{−1} = Sint (called the internal sphere) bounds a ball B3 in R

3 such that B3 does not contain S.
The sphere S2 × {+1} = Sext is called the external sphere. Then components of intersections of
spines and fans with the spheres Sint and Sext are points and (closed or nonclosed) curves. Without
loss of generality, one can assume that Condition (d) has the following form: f0(Sint) ⊂ S and
f0(Sext) ⊂ R

3 \ (S ∪B3
)
such that f0(Sint) decomposes S into two spherical rings (see Fig. 6). Now,

we present the initial two results of [22] for (a-d)-movements of a plasma spherical layer.
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Fig. 6. The movement of the spherical layer S.

Their proofs are based on results on the topological interdependence between the dynamics of Mor-
se–Smale diffeomorphisms and the topology of enveloping manifolds (see, e.g., [23]). It is possible
to apply these results because the movements introduced above can be extended as Morse–Smale
diffeomorphisms defined on closed three-dimensional manifolds with a known topological structure.

Theorem 5.1. Let f0 : S → f0(S) ⊂ R
3 be an (a-d)-movement of a spherical layer S of a plasma

with a magnetic field �B0. Assume that �B0 has null points in S. Then their number is even (and,
therefore, there are at least two null points). Their separatrix surfaces intersect each other, and the
number of heteroclinic operators is positive and finite.

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied, and the spine and fans of null points

of the magnetic field �B0 have no intersections in S. Then the separatrix surface of each null point of
S contains at least one heteroclinic operator.

The thick surface M3 with two holes has four boundary components, which are the two 2-spheres
S1 and S2 and two two-dimensional surfaces T1 and T2 of a positive genus p. For the movement of the
body M3, realize Condition (d) as follows.

(d) One sphere (for definiteness, the sphere S1) is mapped inside the body M3, while the other one
is mapped outside. One surface (for definiteness, the surface T1) is mapped inside M3, while
the other one is mapped outside. The restriction f0|Ti : Ti → f0(Ti) is homotopically trivial for
each i = 1, 2.

Let us clarify the notion of the homotopic triviality. Unlike the sphere having (from the homotopic
viewpoint) only one class of homeomorphisms preserving the orientation, each surface of nonzero genus
has a countable family of such classes. For each i = 1, 2, the surfaces Ti and f0(Ti) are parallel to each
other. Therefore, one can assume a natural isomorphism between generators of their fundamental
groups. The homotopic triviality means that the restrictions f0|Ti are homotopically identical. The
following assertions are valid for (a–d)-movements of the body M3.

Theorem 5.3. Let f0 : M3 → f0(M3) ⊂ R
3 be an (a-d)-movement of a body M3 belonging to a

plasma region with a magnetic field �B0. Then the field �B0 has at least two null points in M3 such
that their separatrix surfaces intersect each other, and the number of heteroclinic separators is positive
and finite.

Theorem 5.4. Let the assumptions of Theorem 5.3 be satisfied, and spine and fans of null points of
the magnetic field �B0 have no intersections in M3. Then the separatrix surface of each null point of
M3 contains at least one heteroclinic operator.

In [20], an existence condition for separators close to Theorem 5.4 is provided.

6. Funicular-Type Model of Kinematic Dynamo

In the present section, we modify the Zeldovich construction finding a diffeomorphism and a vector
field such that the latter exponentially increases under the action of the former.
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On the Cartesian plane R
2, consider the disk D2 = {(x, y) ∈ R

2 | x2 + y2 ≤ 1} and the map
w : D2 → R

2 forming the Smale horseshoe (see [54, 55]). Namely, the map w is the composition of a
contraction along the Ox axis, extension along the Oy axis, inflection (regardless its direction) of the
obtained ellipse, and a translation such that the intersection D2 ∩ w(D2) is the union of two disjoint
bands symmetric with respect to the Oy axis.

It is known from [4, 54] that w can be extended as a map of the whole plane R
2 such that it is

the identical map outside of a neighborhood of the disk D2. It is clear that, using the contraction and
extension, one can ensure that the Jacobian J(w) of the map w onto D2 is equal to 1/2. In the sequel,
we assume these conditions are satisfied.

Let sh0 : R
2 → R

2 denote the translation (x; y) −→
(
x+

1

2
; y
)
along the Ox axis. Let S0 : R

2 → R
2

denote the central symmetry with respect to the origin (0; 0), S0(x; y) = (−x;−y). Again, using the
contraction, extension, and inflection, one can ensure the fulfillment of the following conditions:

(1) the intersection D2 ∩ sh0 ◦ w(D2) consists of two disjoint bands;
(2) w(D2) ∩ (

S0 ◦ w(D2)
)
= ∅.

The first condition means that the map sh0 ◦w = w0 forms a Smale horseshoe. The second one means
that the horseshoe w(D2) does not intersect its image with respect to the central symmetry S0. Note
that S0 ◦ w(D2) forms a horseshoe configuration as well.

Let Rt : R
2 → R

2 denote the counterclockwise rotation

x̄ = x cos πt− y sinπt, ȳ = x sinπt+ y cos πt

of the plane R
2 to the angle πt. Assign

wt = R2t ◦ w0 ◦R−t : D
2 → R

2.

This map can be interpreted as follows: a horseshoe is formed in the direction orthogonal to the line
y = tan πt · x; then Rt is counterclockwise rotated to the angle πt.

Let S1= [0; 1]/(0∼1) be a circle endowed with the natural parametrization [0; 1]→ [0; 1]/(0∼1)=S1.
The map E2 : S

1 → S1 of kind t → 2tmod1 is an extending endomorphism of a circle of power 2. In
the space R3, consider the embedded solid torus S1 ×D2 ⊂ R

3 and the map F : S1 ×D2 → R
3 acting

as follows:
(t; (x; y)) �−→ (E2(t);wt(x; y)) , t ∈ S1, (x; y) ∈ D2.

Assign Dt = {t}×D2 ⊂ S1×D2 and R
2
t = {t}×R

2. By virtue of the definition of the map F, we have

F (Dt) ⊂ R
2
E2(t)

= R
2
2tmod 1.

The map F : S1 ×D2 → F (S1 ×D2) is a diffeomorphism onto its image.

Since the Jacobian J(w) of the map w is equal to
1

2
on D2, it follows that the Jacobian of the map

F is equal to J(F ) = J(w) ·DE2 =
1

2
· 2 = 1. Therefore, F is a conservative diffeomorphism onto its

image. In the standard way, complete the space R
3 by the point at infinity {∞} so that the union

R
3 ∪ {∞} is identified with the three-dimensional sphere S3.
From the technique developed in [10, 62], it follows that f is extended as a diffeomorphism

f : S3 → S3 of the sphere possessing the conservativity property in a neighborhood of the solid torus
S1 ×D2.

The solid torus S1×D2 embedded into S3 is called the base solid torus and is denoted by B. Assign

Ω =

∞⋂
n=−∞

f(B).

The set Ω is invariant with respect to f (see [4]) and is not empty because it contains an invariant
nontrivial (zero-dimensional) set Ω0 of the Smale horseshoe in D0 = {0} ×D2 ⊂ B (see [4, 54, 55]).
Let Diff 1(S3) denote the space of diffeomorphisms of the 3-sphere S3 endowed with the C1-topology.
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The set Ω is hyperbolic and the restriction f |Ω of the diffeomorphism f on Ω has a positive (topo-
logical) entropy. Moreover, the space Diff 1(S3) contains a neighborhood U(f) of the diffeomorphism
f such that each diffeomorphism g from U(f) has a hyperbolic invariant set Ωg that is a subset of B,
the diffeomorphisms f |Ω and g|Ωg are adjoint, and the restriction g|Ωg has a positive entropy.

Now, on S1 × D2, consider the magnetic field �B formed by unit vectors tangent to the curves
S1 × {z}, z ∈ D2. We assume that the curves S1 × {z} are oriented towards the direction of growth

of the parameter. It is clear that �B can be extended to the whole sphere S3 as a unit (and, therefore,

divergence-free) vector field. We assume that the diffusion of �B is equal to zero (i.e., the magnetic
energy is not scattered). Since the curves S1 × {z} are extended two times under the action of f, it

follows that f takes the field �B to the field f∗( �B) possessing the following property: there exists a

constant λ such that λ > 1 and the length of vectors of the field f∗( �B) exceeds the length of vectors of

the field �B at least λ times. The same property holds for the lengths of vectors of the field fn+1∗ ( �B)

with respect to the field fn∗ ( �B). If the energy dissipation is not taken into account, then this implies

that the energy of the vector field fn∗ ( �B) increases exponentially with the positive exponent log λ.
Thus, the diffeomorphism f : S3 → S3 is a fast nondissipative kinematic dynamo with respect to the
magnetic field �B.
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