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PRINCIPLE OF MINIMIZING EMPIRICAL RISK
AND AVERAGING AGGREGATE FUNCTIONS

Z. M. Shibzukhov UDC 519.7

Abstract. In this paper, we propose an extended version of the principle of minimizing empirical risk
(ER) based on the use of averaging aggregating functions (AAF) for calculating the ER instead of the
arithmetic mean. This is expedient if the distribution of losses has outliers and hence risk assessments
are biased. Therefore, a robust estimate of the average risk should be used for optimization of the
parameters. Such estimates can be constructed by using AAF that are solutions of the problem of
minimizing the penalty function for deviating from the mean value. We also propose an iterative
reweighting scheme for the numerical solution of the ER minimization problem. We give examples of
constructing a robust procedure for estimating parameters in a linear regression problem and a linear
separation problem for two classes based on the use of an averaging aggregating function that replaces
the α-quantile.

Keywords and phrases: empirical risk, averaging function, aggregation function, loss function, iter-
ative reweighing algorithm.
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1. Introduction. The solution of many problems of machine learning is based on the empirical
risk minimization principle (see [15]). It consists of minimizing the magnitude of the average losses
from erroneous functioning trained system on a given final set of precedents. The magnitude of the
empirical risk is estimated as the arithmetic average of losses:

ER(w) =
1

N

N

k=1

k(w), (1)

where k(w) is the loss function associated with the kth precedent. The loss functions must be uni-
modal. The values w∗ of the parameters in search minimize the empirical risk:

ER(w∗) = min
w

ER(w).

Usually k(w) = L(rk(w)), where L(r) is the loss function, rk(w) the “closing error” function for
the kth precedent. As an example we consider the problem of regression and classification.

The problem of regression. It is required to restore an unknown dependence y = y(x), where

x ∈ R
n. A finite set of entrances is given X̃ = {x̃1, . . . , x̃N} ⊂ R

n, for which the values in search

are known Ỹ = {ỹ1, . . . , ỹN} ⊂ R. Among parametric dependences f(x,w) we seek the one that
approximates y(x). And we need to find the set of parameters w∗ which minimizes the mean quadratic
error:

ER(w) =
1

N

N

k=1

f(x̃k,w)− ỹk
2
. (2)

This corresponds to the classical ordinary least squares method (OLS).
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Classification problem (two classes). It is required to divide the finite set of points in R
n ito

two classes. The set of points X̃ = {x̃1, . . . , x̃N} ⊂ R
n for which the marks of the classes Ỹ =

{ỹ1, . . . , ỹN} ⊂ {−1, 0,+1}N are known is given. For the division into two classes, the parametric
dependence f(x,w) and the following rule are used:

y(x) =

⎧
⎪⎨

⎪⎩

+1, f(x,w) > 1,

0, |f(x,w)| ≤ 1,

−1 f(x,w) < −1.

We search for a set of parameters w∗ that minimizes the following function:

ER(w) =
1

N

N

k=1

1− ỹkf(x̃k,w)
+
, (3)

where (S)+ = max{S, 0, }. This corresponds to the classification method on the basis of the support
vector machine (SVM).

Thus, functions (2) and (3) represent the examples (1).

2. Problem of outliers. Under the conditions of outliers in the empirical distribution of losses,
the estimate (1) often turns out to be biased. At the same time, outliers can be associated both with
distortions in the source data and with the inadequacy of the model used (for example, when a linear
model is used instead of an unknown a priori nonlinear model). The problem of outliers could be
solved by eliminating them, if we were able to identify the outliers, or using a weighted version of the
empirical risk:

ER(w) =

N

k=1

vk k(w), (4)

where v1, . . . , vN ≥ 0, v1+· · ·+vN = 1. However, the difficulty of finding adequate values of the weights
v1, . . . , vN that would compensate for the contribution of outliers is comparable to the complexity of
solving the problem of identifying outliers.

The presence of outliers in the data leads to the fact that the empirical risk estimate is distorted,
since the arithmetic average is unstable with respect to the outliers:

M z1, . . . , zN +Δ −M z1, . . . , zN =
1

N
|Δ|, (5)

i.e. the arithmetic average is distorted by an amount proportional to the magnitude of the distortion
itself. With a large number of distortions of arguments with a relative value comparable to the value
of the mean value z̄ = M z1, . . . , zN a significant distortion z̄ can occur. This, in turn, can lead to
the “displacement” of the desired parameters when solving the problem of minimizing the empirical
risk.

Let us illustrate this on a simple example of restoring the linear regression. The direct line is restored
using OLS or the more robust least absolute deviation method (LAD)

ER(w) =
1

N

N

k=1

f x̃k,w − ỹk .

The first graph in Fig. (1) illustrates the use of OLS in the presence of slight noise. The second graph
illustrates the use of OLS with 20% of outliers: here the OLS method strongly shifts the straight line.
A more robust LAD can overcome the influence of 20% of outliers. The third graph at 50% outliers
illustrates the displacement of a straight line obtained with the help of OLS. In the last graph, at 80%
of the outliers, the LAD stops working as well.

We also illustrate this problem with a simple example of finding a straight line separating two
classes (see Fig. 2). The first graph of Fig. 2 shows an example of division into two classes using the
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Fig. 1. Linear regression in the situation of outliers.

SVM method with no outliers. The second graph shows that at 100% outliers, the separation line
constructed with the help of the SVM, even with the optimal values of the training parameters, shifts
significantly.

The example with the restoration of linear regression clearly shows what problems will inevitably
be encountered when learning NS in conditions of significant outliers.

3. Robust M-method. The more robust M-method (see [4]) tries to solve the outlier problem by
using a scalar functional transformation, which in some cases can “suppress” outliers. So,

ER(w) =
1

N

N

k=1

( k(w)), (6)

where is a nonnegative quasi-differentiable function with a unique minimum equal to zero. The loss
functions k(w) = L(rk(w)) are such that, in the absence of outliers, the problem of minimizing the
empirical risk (1) can be solved quite effectively. To suppress the effects of outliers, it is important
that (z) grow “slower” than the linear function.
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Fig. 2. Linear division into two classes in situation of outliers.

The minimization allows us to reduce (6) to the solution of the equation

N

k=1

k(w) grad k(w) = 0.

For its solution, the iterative reweighing scheme, IRS, is often used:

procedure IRS(w0)
t ← 0
v = (1/N, . . . , 1/N)
repeat

wt+1 ← argmin
w

N

k=1

vk k(w)

v ← 1(wt) 1(wt) /S , where S ← v1 + · · ·+ vN
t ← t+ 1

until {wt} does not converge
return wt

end procedure

In IRS on each tth step we solve the task of minimization of weighted empirical risk of the form

wt = argmin
w

N

k=1

vk k(w),

where v1 + · · ·+ vN = 1. Then the weights are recalculated using the formula

vk =
( k(wt))

1(wt) + · · · + N (wt)
.

To solve this problem, there are proven effective algorithms. For example, for linear models with respect
to parameters, the weighted least squares method is usually used to solve the regression problem, and
for the classification problem, the linear programming method or the quadratic programming method
is used.
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Fig. 3. Examples of functions .

Often in the regression problem we have k(w) = f(x̃k,w)− ỹk
2
. For such loss functions one can

give the following functions as examples of :

(1) (z) = max{√z −√
c, 0};

(2) (z) =
2 z/c − 1, if z ≥ c,

z/c, if z < c
(the Huber function);

(3) (z) =
1, if z ≥ c,

1− 1− z/c
3
, if z < c

(the Tukey function).

In the classification problem

k(w) = −ỹkf x̃k,w ,

the following functions can be examples of :

(1) (z) = (c+ z)+ (the Hinge function);

(2) (z) =
1

2
1 +

z

c
+ 1 + 1 +

z

c

2
(the smooth Hinge function);

(3) (z) =
1

1 + e−z/c
(the logistic function).

The robustness of the M-method or its absence can be explained using the following relation:

ΔM(Δ) = M (z1) (zN ) −M (z1) (zN +Δ) =
1

N
(z̃) Δ.

For stability with respect to large Δ, the boundedness of (z) (or (z) → 0 for z → ∞) is necessary.
However, this leads to a greater dependence on the initial approximation w0 in the search procedures
for the minimum of ER(w). If | (z)| is bounded below, then the M-method may be unstable with
respect to outliers with large values of Δ.

For instance, in the regression problem
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(i) if is a truncated linear function, or the Huber function, then (z) is bounded;
(ii) if is the Tukey function, then (z) → 0, as z → ∞.

In the classification problem

(i) if is the Hinge function (in particular, smooth), then (z) is bounded;
(ii) if is a logistic function, then (z) → 0 as z → ∞.

However, there are tasks for which the M-method does not allow us to overcome the outlier problem.
In these cases, in a number of problems a different approach is used, based on the empirical average
estimates that are resistant to outliers, for example, the medians (see [10, 11]), quantile (see [7]),
expectile (see [9]) instead of arithmetic mean.

However, the main thing is that the M-method is equivalent to the Kolmogorov average minimiza-
tion:

ERρ(w) = M[ ] 1(w) N (w) ,

where

M[ ] z1, . . . , zN = −1 1

N

N

k=1

(zk) ,

i.e., theM-method is based on minimizing the arithmetic mean of losses that were previously converted
to another “scale” using the function .

In this regard, in this paper we consider a generalizing approach, when arbitrary averaging aggre-
gation functions can be used to estimate average losses, which we call M-mean. This approach in a
certain sense generalizes the M-method and provides a universal method for solving the problem of
minimizing the empirical risk in the situation of outliers.

The further presentation is constructed as follows. First, the class of standard averaging aggregating
functions is determined, the method of their representation and approximate calculation is described.
Next, we introduce the extended concept of empirical risk, the value of which is calculated as the
value of the averaging aggregating function of the magnitude of the losses. To solve the problem
of minimizing the parameterized extended empirical risk, a method for calculating the gradient of
the averaging aggregating function and gradient procedures are determined to solve the problem of
minimizing the extended empirical risk. At the end, examples of the construction of a robust regression
and a robust version of the support vector machine for solving the classification problem based on
the application of a certain parametrically given “approximation” of the median and quantile are
considered.

4. M-means. The arithmetic average is not a robust average, but the median is. Therefore, when
solving problems with outliers, they sometimes began to use the median to estimate the empirical risk

ER(w) = med 1(w) N (w)

instead of the arithmetical.
The median can be defined as follows. Consider the function

P (z1, . . . , zm, u) =

m

j=1

|zj − u|

and denote by M z1,...,zm the set of all u for which P (z1, . . . , zm, u) takes its maximum value. The set
M z1,...,zm is a singleton or a connected segment. Then

med{z1, . . . , zm} = argmin
u

P (z1, . . . , zm, u),

if M z1,...,zm is a singleton, and

med{z1, . . . , zm} =
a+ b

2
,

if M z1,...,zm is a connected segment with the borders a and b.
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The median is resistant to outliers in the following sense: if we increase the initial arguments that
exceed the median, then its value on the new set will remain unchanged. So you can “distort” the values
up to 50% without damage to its value. However, there are cases when it is better to use α-quantile
(0 < α < 1) instead of the median. Such cases occur when the part α of the data is undistorted. The
quantile with α = 0.5 coincides with the median; it can be defined in the same way as the median, if
we put

P (z1, . . . , zm, u) =

m

j=1

|zj − u|α,

where |x|α = α− x < 0 x, s = max{0, s}.
Since the median and the quantile are nondifferentiable functions, algorithms with inevitable ele-

ments of search are actively used to minimize ER(w). It is difficult to use such algorithms to train
the NS.

Arithmetic mean, median, and α-quantile are examples of M-averages. Among them there are robust
and differentiable averages, which could be used instead of the median and the α-quantile.

M-average form a subclass of aggregating functions (AF; see [3, 8]). Take I = [A,B] ⊆ R, where
−∞ ≤ A < B ≤ ∞. The aggregating function M assigns to each set {z1, . . . , zN} ⊂ I the value
M{z1, . . . , zN} ∈ I. It satisfies the following conditions:

inf
z1,...,zN

M{z1, . . . , zN} = inf I, sup
z1,...,zN

M{z1, . . . , zN} = sup I;

if z1 ≤ z1 , . . . , zN ≤ zN , then MN z1, . . . , zN ≤ MN z1 , . . . , zN .

The averaging AF satisfies the additional requirement

min{z1, . . . , zN} ≤ M{z1, . . . , zN} ≤ max{z1, . . . , zN}.
Any averaging AF under certain conditions can be determined using the corresponding penalty

function (see [1, 2]).
By definition, the function P (z1, . . . , zN , u) is a penalty function if it satisfies the following require-

ments:

(1) P (z1, . . . , zN , u) ≥ 0 for all u and z1, . . . , zN ;
(2) P (z1, . . . , zN , u) = 0, only if z1 = · · · = zN = u;
(3) the set

M z1...zN = u : P (z1, . . . , zN , u) = Pmin ,

where

Pmin = min
u

P (z1, . . . , zN , u),

is a singleton or a connected segment.

the averaging AF MP , besed on a penalty function, is defined as follows:

MP{z1, . . . , zN} = argmin
u

P (z1, . . . , zN , u), (7)

if M z1...zN is a singleton, and

MP{z1, . . . , zN} =
a+ b

2
,

if M z1...zN is a segment with the ends a and b.
Consider penalty functions of the form

P (z1, . . . , zN , u) =
N

k=1

ρ(zk, u), (8)
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where ρ(z, u) = g h(z) − h(u) , ρ(z, u) is the dissimilarity function, g is nonnegative and convex
(g(0) = 0), and h is a monotone reversible function. By definition, the function ρ(z, u) is a dissimilarity
function if

(i) ρ(z, u) = 0 ⇔ z = u;
(ii) ρ(z1, u) ≥ ρ(z2, u), when z1 ≥ z2 ≥ u or z1 ≤ z2 ≤ u.

The averaging AF, based on a penalty function P of the form (8), defines the M-mean.
The M-means form a sufficiently wide class of functions for calculating the mean. It contains the

following families of averaging functions:

(I) a family of symmetric means:

Mγ{z1, . . . , zN} = argmin
u

N

k=1

|zk − u|1+γ , (9)

where 0 ≤ γ ≤ 1; here M0 is the median and M1 is the arithmetic mean;
(II) a family of nonsymmetric means:

Mγ
α{z1, . . . , zN} = argmin

u

N

k=1

|zk − u|1+γ
α , (10)

where

|u|1+γ
α = (α− [u > 0])u|u|γ , 0 ≤ γ ≤ 1;

here M0
α is the α-quantile and M1

α is the α-expectile;
(III) a family of symmetric means of Kolmogorov type:

Mγ
g{z1, . . . , zN} = argmin

u

N

k=1

|g(zk)− g(u)|1+γ ,

where g is a reversible function, 0 ≤ γ ≤ 1; here M0
g is the scalable median

med
g

{z1, . . . , zN} = g−1 med{g(z1), . . . , g(zN )}

and M1
g is the Kolmogorov mean:

Mg{z1, . . . , zN} = g−1 g(z1) + · · · + g(zN )

N
.

If there exist ρuz(z, u) and ρuu(z, u), then there exist partial derivatives Mρ:

∂Mρ{z1, . . . , zN}
∂zk

=
−ρuz(zk, ū)

ρuu(z1, ū) + · · ·+ ρuu(zN , ū)
, (11)

where z̄ = Mρ{z1, . . . , zN}.
The possibility of calculating the gradient Mρ gives a basis for using Mρ for estimating the mean

losses.

Estimation of robustness of the M-average. To estimate the robustness of the M-average, let us give
an inequality that shows how the mean changes if each element changes by some Δ:

ΔM(Δ) = Mρ z1, . . . , zN +Δ −Mρ z1, . . . , zN =
∂M z1, . . . , zN−1, z̃

∂zN
Δ,

where z̃ ∈ (zN , zN +Δ). Thus, if 0 < a < ρuu(z, u), then

ΔM(Δ) <
1

Na
ρuz(zN , z̃)Δ.
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If ρuz(z, u) ≤ b

|z − u| , then ΔM(Δ) ≤ b

Na
; this implies the boundedness and independence of Δ in

such cases.

Examples of robust and differentiable M-means. For illustration, let us consider parametric families of
functions (by the parameter ε ≥ 0), which are asymptotically equivalent to the median. Such families
must meet the following requirements:

(i) lim
ε→0

ρε(z − u) = |z − u|;
(ii) lim

ε→0
ρε(z − u) = sign(z − u);

(iii) lim
ε→0

ρε(z − u) = δ(z − u).

For example,

(a) ρε(x) = |x| − ε ln(ε+ |x|) + ε ln ε;

(b) ρε(x) =
√
ε2 + x2 − ε.

These families can be generalized to the families which are asymptotically equivalent to the α-quantile.
They must satisfy the following requirements:

(i) lim
ε→0

ρα,ε(z − u) = |z − u|α;

(ii) lim
ε→0

ρα,ε(z − u) =

⎧
⎪⎨

⎪⎩

α, if z − u > 0,

α− 1/2, if z − u = 0,

α− 1, if z − u < 0;

(iii) lim
ε→0

ρα,ε(z − u) = δ(z − u).

For example, if Mρε with ρε(x) is asymptotically equivalent to the mediane, then we put by definition

ρα,ε(x) =

⎧
⎪⎨

⎪⎩

αρε(x), if x > 0,

0, if x = 0,

(1− α)ρε(x), if x < 0;

ρα,ε(x) =

⎧
⎪⎨

⎪⎩

αρε(x), if x > 0,
1
2 αρε(0

+) + (1− α)ρε(0
−) , if x = 0,

(1− α)ρε(x), if x < 0.

Gradient procedures for calculating M-averages. For calculating the M-average one can apply arbitrary
method for minimizing the function

P (u) = P (z1, . . . , zN , u) =

N

k=1

ρ(zk, u).

If the derivative ρu(z, u) exists, then to calculate the approximate value of Mρ{z1, . . . , zN} one can
use any gradient minimization method (8), for example, the full gradient method:

ut+1 ← ut − τQt,

where

Qt ← 1

N

N

k=1

ρu(zk, ut).

To construct a stochastic analogue with the same order of convergence, you can use the SAG
algorithm construction scheme (see [12]). In this scheme, the value Qt is updated according to the
rules

Qt =
1

N

N

k=1

Qt,k,
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and the set {Qt+1,k : k = 1, . . . , N} is updated by the rule

Qt+1,k =
ρu(zk, ut), if k = k(t),

Qt,k otherwise;

here k = k(t) is the index of value from {z1, . . . , zN}, chosen randomly at the step t. To shorten the
computation, it is better to use the following rule:

Qt+1 = Qt +
1

N
ρu(zk, ut)−Qt,k .

In all algorithms, the learning rate parameter τ does not depend on the step number.
To improve convergence, one can apply the AdaM algorithm scheme (see [5]). It uses the following

update method u:
mt+1 = β1mt + (1− β1)Qt, vt+1 = β2vt + (1− β2)Q

2
t ,

mt and vt are the moments of first and second order, respectively,

m̃t+1 =
mt+1

1− βt+1
1

, ṽt+1 =
vt+1

1− βt+1
2

,

m̃t and ṽt are the corrected values of moments,

ut+1 = ut − τ
m̃t+1√
ṽt+1 + ε

,

m0 = v0 = 0; 0.5 < β1 ≤ β2 < 1. This scheme allows one to increase the stableness of the search
procedure of w.

In cases where there is a nondegenerate second derivative ρuu(z, u), one can also use the Newton–
Raphson method.

Iterative procedures for calculating the values of a standard averaging function. Under certain condi-
tions, the following iterative method can be used to calculate the average value. It follows from the
definition that the value u = Mρ{z1, . . . , zN} satisfies the equation

N

k=1

ρ (zk − u) = 0. (12)

We set ϕ(x) = ρ (x)/x and assume that ρ(x) is twice differentiable, and ϕ(x) has sense on the whole
domain of ρ. Then

N

k=1

ϕ(zk − u) · (zk − u) = 0,

and hence

u =
N

k=1

ϕ(zk − u)zk

N

k=1

ϕ(zk − u) .

This allows us to give the iterational scheme for calculating z̄:

ut+1 =

N

k=1

ϕ(zk − ut)zk

N

k=1

ϕ(zk − ut) . (13)

This scheme converges if the following condition holds:

N

k=1

ϕ (zk − z̄)(zk − z̄) <
N

k=1

ϕ(zk − z̄) . (14)

For example for the averaging aggregating function given above, Mα and Mγ
α, and 0 < γ < 1, this

condition holds.

592



5. Principle of minimizing average losses. Let Mρ be some M-average. Let us define the em-
pirical risk based on Mρ as follows:

ERρ(w) = Mρ 1(w) N (w) . (15)

The classical empirical risk (1) is a special case of (15), when Mρ is the arithmetic mean. In accordance
with the principle of risk minimization the optimal set of parameters w∗ minimizes the function

ERρ(w
∗) = min

w
Mρ 1(w) N (w) . (16)

This approach has already been used to define aggregating functionals for evaluating the quality of
algorithms in [13, 14] when determining aggregate correct operations on algorithms. In [10, 11], when
solving the regression problem of estimating the mean square error, the median was used instead of
the arithmetic mean, since it is a robust estimate of the mean value. In [7], in constructing one robust
version of the SVC method, the median and the α-quantile were used to average losses.

Let ρ(z, u) have derivatives ρuz(z, u) and ρuu(z, u). We introduce the notation z̄ = Mρ{z1, . . . , zN}.
Then the kth partial derivative (1 ≤ k ≤ N) is calculated as follows:

∂Mρ

∂zk
=

−ρuz(zk, z̄)
N

l=1

ρuu(zl, z̄)

,

except when the denominator is zero. If ρ(z, u) is convex with respect to u, then the denominator is
zero only if {z1, . . . , zN} ⊆ M z1...zN , and in this case, Mρ{z1, . . . , zN} is found trivially. If the function
ρ(z, u) is strictly convex in u, then the denominator is always nonzero except for the trivial case
z1 = · · · = zN .

If the gradients 1(w) N (w) exist, then

gradERρ(w, z̄) =
N

k=1

−ρuz k(w), z̄ grad k(w)
N

k=1

ρuu k(w), z̄ , (17)

where z̄ = Mρ 1(w) N (w) . For convenience let us write (17) in another form:

gradERρ(w, z̄) =

N

k=1

αk(w, z̄) grad k(w),

where

αk(w, z̄) =
−ρuz( k(w), z̄)

ρuu( 1(w), z̄) + · · ·+ ρuu( N (w), z̄)
.

Note that if ρ(z, u) = g(zu), where g is a strictly convex function, then αk(w, z̄) ≥ 0, αk(w, z̄) = 1.
In this case, the gradient ERρ(w, z̄) is the weighted arithmetic mean of loss gradients 1(w) N (w)
with variable weights:

αk(w, z̄) =
g ( k(w)− z̄)

g 1(w)− z̄ + · · ·+ g N (w)− z̄
.

Connection with the M-method. The approach proposed here can be considered in a certain sense as
a generalization of the M-method (see [4, 16]). Within this method, the minimization problem for
functional (6) is solved. If is a strictly monotone continuous function, then its solution coincides
with the solution of the problem of minimizing the Kolmogorov mean:

Q(w) = Mρ r1(w), . . . , rN (w) = −1 1

N

N

k=1

(rk(w)) , (18)
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where ρ(z, u) = ( (z) − (u))2. Thus, the solution to the problem of minimizing functional (6) in a
certain sense coincides with the solution of the problem of minimizing empirical risk calculated as a
Kolmogorov average (18) from losses with the scaling function .

Gradient schemes for minimizing averaging functional. Solving the problem (16) of finding the optimal
set of parametersw∗ and the minimum risk u∗ can be done numerically using gradient descent methods:

procedure PBFG(w0)
t ← 0
repeat

ut ← Mρ{ 1(wt) N (wt)}

wt+1 ← wt − ht

N

k=1

αk(wt, ut) grad k(wt)

t ← t+ 1
until {ut} and {wt} is not stabilized

end procedure

Here in the calculation of the value ut = Mρ 1(wt) N (wt) at each step one can use any
gradient or interactive procedure, if the sufficient condition of its convergence (14) is satisfied. As an
initial approximation for ut one can use ut−1.

Note that w∗ and u∗ are a solution for the system of equations:

N

k=1

ρ ( k(w), u) = 0,

N

k=1

αk(w, u) grad k(w) = 0.

Therefore, to solve this system of equations, one can use an analogue of the Seidel iterative method
for solving systems of nonlinear equations:

procedure PBFG2(w0)
t ← 0
repeat

ut ← Mρ{ 1(wt) N (wt)}

wt+1 ← w :
N

k=1

αk(w, ut) grad k(w) = 0.

t ← t+ 1
until {ut} and {wt} is not stabilized

end procedure

Here on each step one calculates first ut = Mρ 1(wt) N (wt) , which is a solution of the first
equation with respect to u for a given wt. Then one seeks the solution wt+1 of the second equation
with respect to w for a given ut.

To simplify the calculations, it can be reduced to a variant of the iterative re-weighting method,
in which the values of the weight functions vk = αk(w, u) are calculated before solving the second
equation.

procedure IRLAL(w0)
t ← 0
repeat

z1, . . . , zN ← 1(wt) N (wt)
ut ← Mp{z1, . . . , zN}
(v1, . . . , vN ) = gradMp{z1, . . . , zN}
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Fig. 4. Outlier data that “unfold” the straight line.

wt+1 ← w :

N

k=1

vkgrad k(w) = 0.

t ← t+ 1
until {ut} and {wt} is not stabilized

end procedure

Robust estimates of average losses. The arithmetic average, as an empirical estimate of average losses
in (1), is statistically adequate on the basis of the maximum likelihood principle, if the values of the
losses are distributed according to the normal law. However, even for a normal law, the arithmetic
mean is not a robust estimate. Therefore, in order to estimate the mean, in some cases, instead of the
arithmetic mean, use median (M0) or even quantile (Mγ

0 , 0 < γ < 1). In these cases

ER(w) = Mγ
0 1(w) N (w) . (19)

It is shown (see [10, 11]) that in the problem of restoring linear regression by minimizing the median
from the square of the error, it is possible to find the desired parameters in conditions when there is up
to 50% outliers, which is almost impossible to achieve in the M-method (see [4]). Using theMM-method
(see [16]), it is possible to find the desired parameters in principle. However it assumes a successive
solution of two problems: first, the task of finding the scale parameter in the distribution of losses, and
only then, the problem of minimizing average losses, taking into account the scale parameter found.

Since the median is a nondifferentiable function, the gradient procedures cannot be applied to
minimize the risk functional. However, instead of the median, you can use the mean functions from
the parametric family of differentiable M-average values given above.

Similarly, one can construct parametrized averaging functions that, for α → 0, converge uniformly
to the function ρα(x) = |x|α (see (10)), which defines quantiles.

6. Application in building robust procedures for solving regression and classification
problems. Based on the risk estimate (19), we construct methods for estimating stable linear regres-
sion parameters and a straight line dividing the two classes on a plane. Examples will be selected to
demonstrate the robust capabilities of the proposed approach.
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Fig. 5. Strongly noisy data that “unfold” the straight line.

The regression problem is usually reduced to the problem of minimizing the mean square error:

ER(w) =
1

N

N

k=1

rk(w)2,

where rk(w) = f(xk,w)− yk is the closing error, f(x,w) a linear function.
The problem of linear separation of two classes can be reduced to the problem of minimizing the

functional

ER(w) =
1

N

N

k=1

(1− dk(w))+,

where dk(w) = f(xk,w)yk is the shift, f(x,w) a linear function, (S)+ = [S ≥ 0]S.
To construct a robust procedure for solving the regression problem and classification, instead of the

arithmetic mean, we will use the averaging function Mρα with ρα(x), α ≈ 10−2–10−3, where ρα are
the dissimilarity functions listed above.

The results of the calculations are presented below in the figures with the description of the source
data. In the case of linear regression, the LQSα algorithm is constructed, a variant of the LQS method
(least quantile of squares; see [10, 11]), which is based on minimizing the averaging function medα
(α = 0.01) from the squares of the error. In the case of the classification problem, the LQHSα algorithm
(least quantile of hinge of squares) is built, which is based on minimizing the averaging function medα
(α = 0.01) from the values of the Hinge function on the shift value. For numerical calculations we use
the library mlgrad1 and the algorithm mlgrad.PbFG to minimize the average risk, based on PBFG3
procedure outlined above. The stochastic version of mlgrad.PbSAG, which is similar to the SAG, is
also used, but it is more sensitive to the choice of setting the pace of learning, although sometimes it
converged faster.

Example 1 (see Fig. 4). In this example, the data is artificially selected so that the use of the least
squares method and the M-method leads to the “unfold” of the straight line. The undistorted linear

1See http://bitbucket.org/intellimath/mlgrad
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Fig. 6. Strongly noisy data that “unfold” the straight line separating two classes.

dependence is y = 3x. Distortions include: uniform noise with amplitude 3 and 6, respectively; outliers
from the top and bottom of the original straight line are 100% and 150%, respectively.

Example 2 (see Fig. 5). In this example, the data is artificially selected so that the use of the least
squares method and the M-method leads to the “unfold” of a straight line. The undistorted linear
dependence is y = 3x. The distortions include: uniform noise with amplitudes 2 and 4, respectively;
the ratios of the volume of data for restoring by the least squares method to the distortions that
represent noise “tending” the upper and lower borders of the graph are 1/4 and 1/5, respectively.
These distortions also certainly “unfold” the straight line when recovering with method QRα (quantile
regression) with the best selection of the parameter α.

Example 3 (see Fig. 6). In this example, the data are artificially selected so that the use of the SVM
method leads to the “unfold” of the straight line that divides the two classes.
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