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NONLOCAL TURBULENT DIFFUSION MODELS
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Abstract. A brief review of the emergence and development of the nonlocal approach to the problem
of turbulent diffusion with a discussion of the physical reasons of the nonlocality is given. The main
attention is paid to fractional differential operators. In concluding the paper, the author’s original
results on applications to the diffusion of cosmic rays in the interstellar galactic medium are presented.
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1. Introduction. In this paper, we will focus on the nonlocal method of describing the transport
process in turbulent media, here referred to as “turbulent diffusion” for brevity.

It must be said, first of all, that nonlocality due to integral operators is not always fatal ; it can often
be overcome by identical transformations, just as conversely, equations containing local differential
operators can be converted to nonlocal type. Take, for example, the Navier—Stokes equation for an
incompressible fluid:

∂v

∂t
+ (v∇)v = −1

ρ
grad p+ νΔv. (1)

Taking the divergence of both sides of the equation and considering that div v = 0, we obtain the
nonuniform Poisson equation

div
(
(v∇)v

)
= −1

ρ
Δp,

with the solution

p(x, t) =
ρ

4π

∫ {
div

(
(v∇)v

)}
x′

|x− x′| dx′. (2)

Combining equations (1)-(2) into one, we see that it is not only nonlinear, but also nonlocal. However,
this nonlocality is removable by performing these actions in reverse order. We will consider further
only situations with nonremovable nonlocality.

Historically, the development of nonlocal methodology began within the framework of a linear
integral model, and, in general, this continues up to now. In 1893 Dugem believed that the stress at
each point of a solid should, in principle, depend on the state of the whole of this body, and not only
on the local deformation at this point. The nonlocal approach was used by Rayleigh in optimizing
sliding bearings (1918), by Oseen in modeling liquid crystals (1933), by Chandrasekhar in radiation
transfer problems (1950), and by Hodgkin in describing the propagation of electric waves in neural
networks (1964). Rogula proposed a nonlocal form of a constitutive law for elastic materials (1965).
Early work on the nonlocal theory of elasticity was motivated mainly by the idea of homogenizing
the atomic structure of crystal lattices in order to more adequately describe phenomena occurring on
scales comparable to interatomic distances. It was found that the nonlocal model of the continuum
well approximates the dispersion of short waves and better describes the interactions between crystal
defects (vacancies, interstices, dislocations).

We now turn to the problem of turbulent diffusion, which, in fact, is the subject of this work.
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2. Local model of Brownian diffusion. The concept of a diffusion (moreover, of a general ran-
dom) process is associated primarily with the image of Brownian motion. This is the movement of
the smallest particles under the influence of continuously continuing impacts of the molecules of the
medium, making random thermal motion. The equation of this process derived by A. Einstein be-
longs to the statistical ensemble of independent particles; it is based on the Markov model of the
random wals of a Brownian particle and is written not for the coordinates of this particle itself, but
for the probability distribution, which behaves similarly to a liquid spreading in a basic medium. This
distribution is characterized by density, f(x, t), normalized to one,

∫
f(x, t)dx = 1,

and satisfying the equation
∂f

∂t
= DΔf(x, t),

where D is a continuous coefficient of diffusion, and

Δ ≡ ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

is the Laplace operator. If at a certain (initial) moment of time t0 the position x0 of the particle
is known, the distribution of f is called propagator and is denoted by G(x, t;x0, t0). In the case of
a homogeneous and stationary environment, the propagator is invariant with respect to space-time
shifts,

G(x, t;x0, t0) = G(x− x0, t− t0),

and satisfies the same diffusion equation

∂G

∂t
= DΔG(x− x0, t− t0) (3)

with the initial condition

G(x− x0, 0) = δ(x− x0).

Using the Fourier transform over the space variable

G̃(k, t− t0) =

∫
eik(x−x0)G(x− x0, t− t0)dx

it is reduced to an ordinary differential equation for the propagator transformant

∂G̃(k, t)

∂t
= −Dk2G̃(k, t) (4)

with the initial condition G̃(k, 0) = 1.
Let us discuss some aspects of the process under consideration. There is no particle in the equa-

tion (3): it is written for a probability density, which from a dynamic point of view can be interpreted
as the density of some incompressible (due to the law of probability preservation) fluid. Probabilis-
tic fluid (or perhaps more figuratively, liquid probability?) flows according to a rather peculiar law:
a “droplet” of a probability that arises at some point, a moment later takes all the space, ignoring the
postulate of its creator about the relativistic limitations of the velocities of all bodies in the universe.
At the same time, the elements of this fluid (which are called in hydrodynamics liquid particles) do not
interact at all, freely penetrating each other and not leaving any memory of this event in each other.
This is easily explained by the fact that such a liquid exists only in the imagination; in fact, there
is only one particle, which at a given moment can be only at one point, there are no other particles
of this liquid in space, and it only interacts with atoms of the medium, the thermal motion of which
determines the motion of this particle. It is assumed that each of the atoms colliding with this particle
carries away a part of the momentum that it inherits, and does not return to the particle any more;
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therefore, the particle all the time collides with new atoms. It is this assumption (often treated as
absence of the process memory) that makes it possible to use the Markov process model.

An alternative description of the motion of an individual particle is made using the Langevin equa-
tion. Unlike the Einstein equation, whose solution is a deterministic function, the Langevin equation is
written for the random implementation of the process and is associated with the idea of the statistical
ensemble of trajectories, and not just with the positions of the particle at a given time. N. Wiener’s
study of the trajectories corresponding to the Einstein equation found that these trajectories, being
continuous, are nowhere differentiable, and the speed as the limit of the ratio of the increment of
coordinates to the corresponding time interval does not exist. We emphasize that it is impossible to
determine not only the magnitude, but also the direction of speed. These trajectories are self-similar :
on a single time interval such a trajectory contains as many turning points as on doubled, and this
is possible only with infinite density of these points on the time axis. This picture is clearly incom-
patible with what we see by throwing a handful of seeds into a turbulent flow: each of these ”test
particles” (tracer) moves along its own trajectory, and, if necessary, it is easy to determine its speed
using conventional measuring equipment.

3. Local model of turbulent diffusion. In a nonstationary and inhomogeneous medium with
a given velocity field u = U(x, t) and a molecular diffusion coefficient D = Dm(x, t) the diffusion
propagator satisfies the advection-diffusion equation

∂G

∂t
+U∇G = ∇[

Dm∇G(x, t;x0, t0)
]
. (5)

The turbulent character gives this nonstationary and inhomogeneous medium an additional quality:
the fields U and Dm, and with them the propagator G themselves become random. Immediately there
arises a whole “bouquet” of tasks: determining the average characteristics of the motion of the tracer,
its fluctuations, correlations, probabilities of emissions (large deviations), etc. The mathematical ap-
paratus of the theory is enriched: a field of application opens up for spectral theory, the theory of
non-Markov processes and non-Gaussian fields, nonlocal (including fractional-differential) operators.
The most important task is to establish (select) a statistical ensemble, over which the averaging will be
performed. The next most important task is the selection of the procedure for decoupling correlations,
i.e. transformation of, say, ensemble-averaged equation (5)

∂〈G〉
∂t

+ 〈U∇G〉 = ∇〈[Dm(x, t)∇G(x, t;x0, t0)
]〉,

to the equation for the average propagator 〈G(x, t;x0, t0)〉 ≡ g(x−x0, t−t0). However, the assumptions
about the smallness of fluctuations and their space-time small-scale make it possible to circumvent
these difficulties and obtain for turbulent diffusion in a uniform stationary isotropic (average) random
environment the equation

∂g

∂t
= DΔg(x, t), (6)

where D is the total (molecular and vortex) diffusion coefficient. We emphasize that with the above
restrictions in the asymptotics of large distances and times, the turbulent diffusion on average is
described by the same local equation as the molecular one, but with a greater numerical value of the
diffusion coefficient.

4. Spatial nonlocality. The nonlocal nature of the turbulent diffusion equation can be traced from
the long-standing work [4], which is based on the results of W. Heisenberg and A. N. Kolmogorov on
the theory of turbulence. In this paper, by the known transformations of a hydrodynamic turbulent
system, the author reduced the equation for the Fourier transform of the average tracer propagator
(labeled molecules) to the form

∂2g̃(k, t)

∂t2
= [k2ν(k)]2g̃(k, t),
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where the turbulent viscosity ν(k) is related to the spectral density of turbulent dissipation per unit
time F (k) by the Heisenberg formula (see [6]):

ν(k) = κ

∞∫

k

√
F (q)

q3
dq; (7)

here κ is an arbitrary number near 1. The family of solutions for (7) contains the solutions of the
equation

∂g̃(k, t)

∂t
= −k2ν(k)g̃(k, t). (8)

If we ignore the dependence of ν(k) on k, putting ν(k) = ν0 in the whole range of wavenumbers, then
we arrive at the usual diffusion equation

∂g(x, t)

∂t
= ν0Δg(x, t).

In fact, the value of ν is not constant; its dependence on k is determined by the form of the spectral
function F in the formula (7). According to the 5/3 Kolmogorov–Obukhov law, the latter is represented
in the power form:

F (q) = q−5/3ψ(q), (9)

where ψ(q) is a window function (filter), which rapidly decreases outside the inertia region. This fact
is the most important argument against the local model of turbulent diffusion.

Using formulas (7) and (9) and taking the inverse Fourier transform, let us write the spacial analog
of equation (8) in the form

∂g(x, t)

∂t
= N̂g(x, t), (10)

where

N̂g(x, t) ≡ 1

(2π)3

∫
dke−ikx

⎡

⎣−κk2
∞∫

k

q−7/3ψ(q)dq

⎤

⎦
∫

dxeikxg(x, t)

is an explicitly nonlocal operator.
If we now take ψ(q) as a constant equal to, say, ψ0 for all q > 0 (note that this is not the same thing

as taking the constant ν(k)), then (10) takes the form of an evolution equation with a Laplacian in a
fractional degree:

∂g(x, t)

∂t
= −κ(−Δ)α/2g(x, t), (11)

where α = 2/3, but in the general case α ∈ (0, 2]. The explicit form of the fractional Laplacian is

(−Δ)α/2f(x) = Cαp.v.

∫
f(x)− f(x′)
|x− x′|3+α

dx′,

where p.v. is the symbol of the principal value of the integral, and

Cα =
2α−1αΓ((3 + α)/2)

π3/2Γ(1− α/2)

a norming constant. The inverse operator

(−Δ)−α/2f(x) = C−α

∫
f(x′)dx′

|x− x′|3−α

is called the Riesz potential.
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The solution of the equation (11) with the initial condition g(x, 0) = δ(x−x0) is expressed in terms
of the three-dimensional density of the isotropic stable distribution (the Levi–Feldheim distribution)
p3(x;α) by the equality

g(x, t) = (κt)−3/αp3

(
(κt)−1/αx;α

)
, α ∈ (0, 2].

For α = 2 this distribution coincides with the three-dimensional normal distribution, for α < 2 it is
narrower than the normal in the middle part and heavier at the periphery, and as a result, the second
moment turns into infinity. To characterize the propagation of a diffusion packet with time, in this case
one should choose another measure of its width, for example, the width at half-height or the radius
of the sphere containing the given probability. Being proportional to each other, these measures grow
with time in proportion to t1/α, which agrees with the Richardson law for α = 2/3.

However, it should be noted that ignoring the deviation of the actual behavior of the fluctuation
spectrum from a power law outside the inertial interval (as a result of which the fractional degree of the
Laplace operator appears) somewhat discredits this equation, prompting us to look for a more adequate
representation of the nonlocal version of the theory of turbulent diffusion. One of the directions of this
search is the adaptation of fractional operators to the conditions of boundedness of wave numbers by
introducing a damping factor into their core, limiting the influence of a power factor.

In addition, there are still at least two problems associated with the development of the theory of
turbulent diffusion: the problem of collective motions and the return to the model of the concept of
velocity.

5. Relative diffusion. The simplest and most studied example of a collective effect is the problem
of the relative motion of a pair of tracers that were at the initial moment in a neighborhood of each
other. The specificity of the turbulent diffusion of a pair of particles is due to the effect on this pair of
vortices of different sizes that exist in a turbulent medium. The distance between them can significantly
change in a short time only under the action of a vortex, the dimensions of which are comparable
with this distance. The farther from each other are these particles, the larger is the size of the vortices
that distribute them from each other, and the faster the increase in the distance l between them. The
experiment shows that 〈l2(t)〉 ∝ t3. In the framework of the classical (local) diffusion theory, this effect
can be achieved by introducing the dependence of the relative diffusion coefficient either on distance
or on time. The first approach was implemented by L. Richardson (see [10]), obtaining Dl(r) ∝ r4/3

and different from the normal distribution density of the distance ∝ e−9r2/3/4t; the second was used
in the work of G. Batchelor [1], who presented the coefficient of relative diffusion proportional to t2,

which corresponds to an increase in the width of the distribution of the random distance Δl(t) ∝ t3/2.
Richardson explained the dependence of Dl(r) by the multiscale vortices in a turbulent medium: with
increasing distance, larger vortices are involved in the process of relative motion, and the particle
speeds increase. In the framework of the Kolmogorov concept of turbulence, the exponent 4/3 in the
formula for the coefficient of relative diffusion is a direct consequence of the dimension: it suffices to
assume that both the initial and final distances are much smaller than the typical size L of the largest
vortices and is much larger than the Kolmogorov length η = (ν3/ε)1/4, where ν is the viscosity and
ε is the average dissipation rate of the turbulent component of the kinetic energy (see [9]). Finally,
A. S. Monin derived an equation for relative turbulent diffusion with a “diffusion coefficient” that
does not depend on coordinates or time, but gives the same propagation law for a diffusion package
(see [7]). This was achieved at the cost of introducing the fractional Laplacian Δ1/3, although due
to the divergence of the second moment, it was necessary to change the measure of the width of the
diffusion package. The very solution, i.e. the probability distribution density for the vector of the
relative position of a pair of particles turned out to be the isotropic stable Levy–Feldheim density,
whose width Δ increases in proportion to t1/α, and this is fundamentally important. When α = 2,
the graph of the Δ(t) ∝ √

t curve initially abruptly goes up, then the curve becomes flatter, and the
velocity corresponding to its values decreases (the divergence of particles slows down). This happens
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in the case of local diffusion, a type of which is molecular diffusion (Brownian motion). The molecules
that are close at the initial moment quickly diverge, and then the process of divergence (increasing the
distance between them) slows down more and more. But the diffusion is nonlocal, α = 2/3, the graph

of the function Δ(t) ∝ t3/2 initially lies on the x-axis, and only after some time noticeably detaches
from it and with acceleration begins to grow. This means that the behavior of the pair of tracers in
this case is opposite: at first, the particles remain close to each other for some time (although they
may move with the fluid element into which they fell) and only after some time they begin to diverge
from ever increasing (in average) relative speed.

The visual kinematic interpretation of the nonlocality of turbulent diffusion due to the vortex nature
of turbulent flows was given by Schönfeld (see [13]). Defending his point of view, he examined a flat
vortex of characteristic size � centered on the point (x, y) of the coordinate plane, generating at the
origin of coordinates a velocity w directed at an angle ϕ to the x axis. The contribution of this vortex
to the change in impurity concentration

n(x, y) 
→ n
(
x− � cosϕ, y − � sinϕ

)

he estimated through the x-component of the diffusion flow

δjx = n
(
x− � cosϕ, y − � sinϕ

)
w cosϕ

and summed it over all the distances � from the axes of the vortices, characterized by the axisymmetric
(independent of the angle ϕ) distribution Wd�/�:

jx =
1

2π

∞∫

0

d�

�
W (ρ)n

(
x− �w cosχ, y − � sinχ

)
cosχ.

The Fourier transform over both spatial variables with the subsequent substitution of the continuity
equation into the Fourier transform

∂ñ

∂t
= ikxj̃x + iky j̃y

gives

∂ñ

∂t
+ k2ν(k)ñ(k, t) = 0. (12)

As before, we arrive at the Fourier transform of the nonlocal diffusion equation (8).
Chavanis, returning in [5] to Onsager’s long-standing idea of representing the turbulent medium

using the microcanonical vortex ensemble (see [8]) and using the mathematical apparatus developed
by Chandrasekar to analyze the Poisson star distribution model, developed a statistical mechanics
of two-dimensional systems of plane vortices with parallel axes, the random positions of which form
a homogeneous (on average) Poisson ensemble with a density of n. We will consider here only one
moment connected with the definition of the propagation law for a diffusion package in a turbulent
medium. Chavanis found an equilibrium distribution W (V |N) of the total velocity

V (x) = −
N∑

i=1

γi
2π

[
z,

xi − x

|xi − x|2
]
,

created in the center of the region containing N vortices, as well as the characteristic duration of
fluctuations of a given velocity value T (V |N). Averaging T (V |N) over speed, he obtained (in the
main approximation over lnN)

tN =

∞∫

0

T (V |N)W (V |N)2πV dV ∝ 1

nγ
√
lnN

.
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Elementary calculations lead to the formula for the vortex diffusion coefficient

DN =
1

4

∫
T (V |N)W (V |N)V 2 d2V ∝ γ

√
lnN.

As N → ∞, it is natural to consider DN tN as Dt, thus we obtain1

〈r2〉 = Dt =
1

n
.

Referring to direct numerical simulation and experiments, Chavanis gives the formula for the decay
(relaxation) of the turbulent vortices in the form n ∝ t−ν, where ν ≥ 1. As a result, the formula for
the diffusion coefficient takes the form D ∝ tν−1. Obviously, for ν = 1, the result agrees with the local
model, and for ν = 3/2 with the numerical simulation data. The experiments also give values close to
the theoretical: 1.3–1.4.

6. Nonlocality in time. As is known, hydrodynamic equations can be derived from the Boltzmann-
type gas-dynamic equations describing the random walks of particles along trajectories consisting of
straight-line segments connecting the collision points. At the same time, piecewise-linear gas-dynamic
trajectories are crushed, turning into smooth hydrodynamic trajectories. For computational purposes,
you can use the inverse procedure: to make the transition from a hydrodynamic model in which a
liquid particle continuously changes its speed of movement, to a gas-dynamic one, in which the speed
of a particle (molecule) changes only at the collision points. Generally speaking, this transformation
can be considered as a variant of the finite difference method with randomized time nodes. The fact
that a particle has a constant velocity between collisions introduces correlations between successive
displacements, which is not the case in the Brownian (local) model, but these correlations are clearly
distinguishable by direct observations of turbulent diffusion. The paths themselves are also considered
independent in the case of molecular (local) diffusion distributed exponentially.

From the one-dimensional linearized Boltzmann equation, the following relation between current
and concentration is easily derived:

∂j

∂t
+ 2μj(x, t) = F (x, t),

where the right-hand side has the form

F (x, t) = −v2
∂n

∂x
.

Assuming that the right-hand side is known and supplementing the equation with the initial condition
j(x, 0) = 0, we solve it with respect to j(x, t):

j(x, t) =

t∫

0

e−2μ(t−t′)F (x, t′)dt′.

Using this transformation, Bourret presented the result in the form

j(x, t) = − ∂

∂x

t∫

0

R0(t′)n(x, t− t′)dt′

(see [3]) and substituted the exponential autocorrelation function R0(t) = v2e−2μt by the more gen-
eral R(t):

j(x, t) = − ∂

∂x

t∫

0

R(t′)n(x, t− t′)dt′. (13)

1Recall that n is the concentration of the axes of vortices represented by points in a two-dimensional space; its
dimension is inverse to the area dimension.
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As a result, an eliminable (because of its exponential nature) nonlocality in time turned into a none-
liminable, and the process itself into a non-Markov one:

∂n

∂t
=

∂2

∂x2

t∫

0

R(t′)n(x, t− t′)dt′.

Supplementing this equation by its three-dimensional analog, Bourret wrote the result in the form

∂n(r, t)

∂t
=

∂2

∂xi∂xj

t∫

0

Rij(t
′)n(r, t− t′)dt′,

where Rij(t
′) = 〈vi(t)vj(t+ t′)〉 is the autocorrelational tensor. In support of this approach, the author

referred to the opinions of Batchelor and Townsend (see [2]), who argued that a satisfactory theory of
turbulent diffusion should be written in the form of an integral equation. Despite this, Bourret remained
dissatisfied with his result. He wrote: “The absence of any spatial correlation term in our equation
is conspicuous; consequently, use of the new formulation is probably justified only in application to
regimes in which the spatial coherence is negligible in comparison with time coherence. In particular,
application to plasmas with collective excitations may be precluded for these reason.”

7. Nonlocality in space and time. Due to the special nature of Brownian (in the Wiener sense)
trajectories, which manifests itself in nondifferentiability (absence of smoothness), they cannot be
adequately represented either analytically or numerically, unless you restrict yourself to a finite set
of points in time. It can be both deterministic and random choice. Combining in the latter case the
successive positions of the particle in straight-line segments, we obtain some approximation of the
Brownian trajectory. If these segments (free paths) are considered to be distributed exponentially, and
their directions are isotropic, then we obtain the transport model described by the linear Boltzmann
equation underlying the kinetic theory of nuclear reactors. In the limit of small runs (or the same,
large times) the Boltzmann equation turns into a diffusion one with the coefficient

D =
lv

3
,

where l is the mean free path as the only reminder of the kinetic origin of the diffusion equation (the
equation itself does not contain any signs of the run-collision scheme). If we do not go to the limit,
we get a model with continuous trajectories represented by broken lines consisting of independent
straight-line segments of a random variable interpreted as free paths of particles between collisions. In
the case of short (for example, exponential) runs, such a scheme imitates Brownian motion, but with
a power distribution of ranges, long ranges characteristic of turbulent diffusion are observed. Such a
model of turbulent diffusion was proposed in [14]. At the same time, R. Kraichnan introduced the
space-time nonlocality into the diffusion model, but N. Romanov extended this model to diffusion in
an anisotropic medium (see [11]), and gave the diffusion equation in the form

∂〈C(x, t)〉
∂t

+
∂〈uiC(x, t)〉

∂xi
=

∂

∂xi

t∫

0

dt′
∫

R3

dx′Dij(x, t ← x′, t′)
∂〈C(x′, t′)〉

∂x′j
.

If we add the capture model to the considered model (with some probability as a result of another
collision the particle finds itself in a trap and stays there at random time, after which it continues
to wander; an analogue of such a process takes place in nuclear reactors), we obtain a temporary
nonlocality, which is eliminable if the time distribution of waiting in traps is exponential. Assuming a
nonexponential nature of runs and rest times, we come to a group of nonlocal models called continuous
time random walk, abbreviated as CTRW. The time interval between successive collisions is made up
of time in the trap and the time of motion. Neglecting the latter (i.e., assuming the speed is infinite),
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we obtain a jump process, which is often denoted by the same term, but to avoid uncertainty, we will
use Yermin random flights with continuous time (RFCT). If runs (and often times in traps as well)
are distributed according to the law with a heavy tail of a power type, then this process is called Levy
flights. If power asymptotics have both distributions, then the equation for the propagator contains
fractional derivatives both in coordinates (fractional Laplacian) and in time:

∂βg

∂tβ
+Dα(−Δ)α/2g(r, t) = δ(r)δβ(t), α ∈ (0, 2], β ∈ (0, 1] (14)

(this equation is derived in the book [19], its one-dimensional analogue was obtained earlier in [12]).
Here δβ(t) is the Riemann—Liouville derivative of fractional order β with respect to time of the

unit step function 1+(t). Note that the dimension of each term in this equation is L−3T−β, and the
coefficient Dα, which stands in the place of the diffusion coefficient, has the dimension LαT−β and
has this form strictly speaking, only for α = 2, β = 1. The solutions of these equations are expressed
in terms of probability densities belonging to the class fraction-stable distributions (see [15]).

The disadvantage of these RFCT equations is the spasmodic view of the trajectories of the processes
described by them, which is not very characteristic of representing the motion of an impurity in a
turbulent flow. More suitable for this purpose are the equations derived in [16], in which the sum of
partial derivatives of fractional orders in time and coordinates is replaced by the total derivative of
fractional order in time, followed by averaging over directions. In natural variables, the corresponding
equations are as follows:

〈(
∂

∂t
+ v∇

)α〉
g(x, t) = Sα(x, t), 0 < α < 1;

[
∂

∂t
− Aα

vα−1〈R〉
〈(

∂

∂t
+ v∇

)α〉]
g(x, t) =

1

〈R〉Sα(x, t), 1 < α < 2;

(
∂

∂t
− v〈R2〉

6〈R〉 Δ
)
g(x, t) =

1

〈R〉S2(x, t), α > 2.

Here R denotes a random run, angle brackets mean averaging over the direction of velocity (its value
is assumed to be constant), and Sα is the density of sources corresponding to a given propagator. The
fractional power of the operator of the total time derivative is determined by the ratio

(
∂

∂t
+ v∇

)α

N(r, t) =

(
∂

∂t
+ v∇

)(
∂

∂t
+ v∇

)α−1

N(r, t)

=

(
∂

∂t
+ v∇

) t∫

0

N(r − v(t− τ), τ)

Γ(1− α)(t− τ)α
dτ.

The reader can find details related to the derivation and application of these equations in the re-
views [17, 18].
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