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We consider a generalization of the Scarf theorem on the nonemptiness of game cores

to the case of fuzzy cooperative games without side payments. We consider applications

of the generalized Scarf theorem to finding the nonemptiness conditions for fuzzy cores

of two market games generated by the model of pure economic exchange and the spatial

regional model. Bibliography: 15 titles.

We continue the study of [1] devoted to a generalization of the well-known Scarf theorem on the

nonemptiness of game cores [2]–[4] to the case of fuzzy cooperative games without side payments.

Compared with the traditional games, we have more blocking possibilities due to fuzzy coalitions.

In this paper, we consider applications of the generalized variant [1] of the Scarf theorem to

finding the nonemptiness condition for fuzzy cores for two classes of economic models: the

classical exchange models [3]–[5] and spatial interregional economic models describing important

spatial regional systems [6]. In each case, we consider the class of cooperative games in the

strategic form and, based on the close connections between such games and generalized fuzzy

games, find the existence conditions for unblocked allocations.

The paper is organized as follows. In Section 1, we describe the economic models under

consideration. In particular, we introduce some notions used in the theory of generalized co-

operative games without side payments and formulate the generalized theorem proved in [1]

concerning the nonemptiness of cores of such games. In Section 2, we reduce the existence prob-

lem for unblocked allocations of games in the strategic form to a similar problem for generalized

games without side payments. Finally, in Section 3, we describe rather simple conditions for

the fuzzy cores in the classical exchange model to be nonempty. A similar result is obtained in

Section 4 for the spatial interregional economic model introduced in [6].

1 The Main Notions and Generalized Scarf Theorem

We recall some notions used in the theory of cooperative games (cf. [7]–[10] for details).
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For a natural number n � 2 we put N = {1, . . . , n} and denote by σ0 = 2N the collection of

subsets of N . In the traditional game-theoretic terminology [7], elements of N are called players

and elements of σ0 are referred to as coalitions. Sometimes, it is convenient to identify coalitions

S ⊆ N with the corresponding vertices of the unit n-dimensional cube In = {(τ1, . . . , τn) ∈ R
N |

τi ∈ [0, 1], i ∈ N} (here and below, R denotes the set of real numbers). With each coalition

S ∈ σ0 we associate its indicator function eS defined by

(eS)i =

{
1, i ∈ S,

0, i ∈ N \ S.

We recall (cf., for example, [5]) that, in addition to the vertices, an important role in the

description of the Walrasian allocations of pure exchange models is also played by other elements

of the hypercube In. We set σF = In \ {0} and call elements of σF fuzzy coalitions (cf. [8]).

The quantity of a component τi of a fuzzy coalition τ = (τ1, . . . , τn) is interpreted as the level

of participation of player i in coordinating the efforts of the participants of the grand coalition

N . For a fuzzy coalition τ ∈ σF we denote by N(τ) the support of τ : N(τ) = {i ∈ N | τi > 0}.
Following [1], we list some facts concerning fuzzy cooperative n-person games.

Definition 1. A generalized fuzzy cooperative n-person game is a set-valued mapping τ �→
G(τ), τ ∈ σF , sending a coalition τ ∈ σF to a subset G(τ) of the space RN(τ). Elements of G(τ)

are called payoff vectors of the coalition τ , and the payoff vectors of the coalition eN are also

referred to as the payoff vectors of the game G. We define G at zero by setting G(0) = ∅.

We distinguish those coalitions of the game G that provide a “nontrivial” cooperation effect.

By an efficient set of the game G we mean the set e(G) of all fuzzy coalitions τ such that

G(τ) �= ∅, i.e., e(G) := {τ ∈ σF | G(τ) �= ∅}. Elements of the set e(G) are called blocking

coalitions. In what follows, we use the following assumption.

Assumption 1. The sets G(e{1}), . . . , G(e{n}) and G(eN ) are nonempty and closed. In

particular, the efficiency set of the game G contains all one-element coalitions and the coalition

of all participants: {e{1}, . . . , e{n}, eN} ⊆ e(G).

Definition 2. A generalized fuzzy cooperative game G is called regular if it satisfies As-

sumption 1.

We recall [1] the notion of an F -balanced cover which plays a key role in this paper. Here,

not only usual coalitions, but also fuzzy coalitions can be taken for covering elements, unlike

the classical situation, where all covering elements are standard coalitions [10]. A finite family

of fuzzy coalitions {τk}k∈K is called an F -balanced cover of the set N if there exist nonnegative

numbers {λk}k∈K such that
∑
k∈K

λkτ
k = eN . By analogy with the classical case, λk are called

weights of the fuzzy coalitions τk. We introduce an analog of the balanced vector [1, 4] for

the generalized game G (in what follows, uS ∈ R
S denotes the restriction of a vector u =

(u1, . . . , un) ∈ R
N onto S ⊆ N : (uS)i = ui, i ∈ S). Let G be a generalized cooperative

n-person game. A vector u ∈ R
N is G-balanced if there is an F -balanced cover {τk}k∈K of the

set N such that uN(τk) ∈ G(τk) for all k ∈ K.

Definition 3. A game G is F -balanced if any G-balanced vector belongs to G(N).

Definition 4. We say that a coalition τ ∈ e(G) blocks a payoff vector u = (u1, . . . , un) ∈
G(N) if there exists a vector v = (vi)i∈N(τ) ∈ G(τ) such that vi > ui for all i ∈ N(τ). The set
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of all payoff vectors in G(N) that are not blocked by any coalition τ ∈ e(G) is denoted by C(G)

and called the core of the game G.

We recall (cf., for example, [2, 4]) that the notion of blocking in the classical cooperative

game is defined in the same way as in Definition 4 (for blocking coalitions in σ0). Unlike the

classical situation, we introduce the notion of blocking not only for elements of a finite set of

2n − 1 standard coalitions, but also for all coalitions in e(G).

We recall some assumptions of the classical Scarf theorem [2] that will be used to generalize

this theorem. We set

u0i = uGi := sup {ui ∈ R | ui ∈ G(ei)}, i ∈ N. (1)

It is clear that the necessary condition for the core C(G) to be nonempty is that for each player

i ∈ N the maximal guaranteed payoff uGi of this player is finite (otherwise, the one-element

coalition ei can block any vector in G(N)). Therefore, throughout the paper, we assume that

the following condition is satisfied.

Assumption 2. uGi are finite for all participants of the game G.

As in the classical Scarf theorem, we introduce the set of individually rational payoff vectors

of the grand coalition N :

Ĝ(N) := {u ∈ G(N) | u � uG},
where uG = (uG1 , . . . , u

G
n ) is a vector in R

n with components defined by (1). Hereinafter, we iden-

tify the notation N and eN for the sake of brevity. Moreover, we use the standard abbreviations:

for vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) in R
m we set x � y (x � y) ⇔ xk � yk (xk >

yk), k = 1, . . . ,m. The term individually rational will be applied to all remaining coalitions τ :

the vector u ∈ G(τ) is called the individually rational payoff vector of the coalition τ if u � uGN(τ),

where uGN(τ) is the restriction of uG onto N(τ): uGN(τ) = (uGi )i∈N(τ). The set of individually ra-

tional payoff vectors of a coalition τ is denoted by Ĝ(τ): Ĝ(τ) = {u ∈ G(τ) | u � uGN(τ)}.
We introduce a useful analog of the notion used in the classical theory of cooperative game;

namely, the set of imputations of the game without side payments [9]. By imputations of a

generalized game G we mean elements of the set I(G) of collectively rational payoff vectors in

Ĝ(eN ), i.e.,

I(G) :=
{
u ∈ Ĝ(N)

∣∣ there are no v ∈ G(N) such that v � u
}
.

Remark 1. It is clear that the set I(G) of imputations of a generalized game G, as in the case

of usual games, is a collection of all payoff vectors of the grand coalition eN blocked by neither

one-element coalitions e{1}, . . . , e{n} nor the coalition of all players eN . Hence C(G) ⊆ I(G) for

any regular game G. Therefore, in what follows, elements of the core C(G) of a regular game G

are called, unblocked imputations.

We also recall that the set X ⊆ R
m is said to be comprehensive from below if, together with

each element x ∈ X, the set X contains any element y � x.

Definition 5. We say that a game G is comprehensive from below if all sets G(τ), τ ∈ e(G),

are comprehensive from below.

As established in [1], the Scarf theorem on the nonemptiness of the core of classical cooper-

ative games [2] admits the following generalization.
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Theorem 1 (cf. [1]). If a regular generalized fuzzy cooperative game G is comprehensive

from below and F -balanced, all sets G(τ) are closed, and the set Ĝ(N) is bounded from above,

then the core of G is not empty.

This generalization of the Scarf theorem will be used to find the nonemptiness conditions for

fuzzy cores in pure exchange models and spatial interregional economic systems.

2 Cores of Cooperative Games in Strategic Form.
Reduction to Generalized Cooperative Games

In the further analysis of fuzzy cores of particular economic systems, an important role is

played by the “reduction” result established below, which concerns the nonemptiness of cores of

the so-called cooperative games in the strategic form [8]. According to this result, the existence

problem for unblocked allocations of complicated economic models is reduced to a similar prob-

lem for simpler generalized games without side payments (which allows us to use the generalized

Scarf theorem formulated in Section 1).

We introduce necessary definitions. As above, we set N := {1, . . . , n} and denote by σF
the collection of fuzzy coalitions obtained from elements of the set N . For every i ∈ N we fix

a nonempty set Xi and a function ui:Xi → R. Assume that for each coalition τ ∈ σF we are

given some subset X(τ) of the set
∏

i∈N(τ)

Xi. We recall that N(τ) denotes the support of a fuzzy

coalition τ = (τ1, . . . , τn): N(τ) = {i ∈ N | τi > 0}.
Definition 6. The system Γ = 〈N, {Xi, ui}i∈N , {X(τ)}τ∈σF

〉 is called a generalized coop-

erative n-person game in the strategic form, where N is the set of participants of the game Γ,

Xi is the set of individual strategies used by player i ∈ N , ui : Xi → R is the payoff function of

player i ∈ N , and X(τ) ⊆ ∏
i∈N(τ)

Xi is the set of collective strategies of the coalition τ ∈ σF .

Definition 7. A fuzzy coalition τ blocks a strategy x = (xi)i∈N ∈ X(N) of the grand

coalition N if there exists a coalition strategy (x̃i)i∈N(τ) ∈ X(τ) such that ui(x̃i) > ui(xi) for

i ∈ N(τ). The set of collective strategies x in X(N), that are not blocked by any coalition in

σF is denoted by CF (Γ) and called the core of the game Γ.

To analyze the nonemptiness conditions for the core CF (Γ), it is more convenient to consider

the generalized cooperative game GF
Γ associated with Γ and defined by

GF
Γ (τ) =

{
v ∈ R

N(τ)
∣∣ ∃(xi)i∈N(τ) ∈ X(τ) [vi � ui(xi), i ∈ N(τ)]

}
, τ ∈ σF .

For the core of the game Γ and the associated generalized cooperative game GF
Γ the following

simple, but important fact holds.

Proposition 1. The core CF (Γ) of the game Γ is nonempty if and only if the core C(GF
Γ )

of the corresponding generalized cooperative game GF
Γ is nonempty.

Proof. The relation

CF (Γ) �= ∅ ⇐⇒ C(GF
Γ ) �= ∅ (2)

is obtain from the implications below.
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1) CF (Γ) �= ∅ ⇒ C(GF
Γ ) �= ∅. Indeed, let a collective strategy x = (xi)i∈N belong to the

core CF (Γ). We show that the imputation u = (ui(xi))i∈N of the coalition N belongs to the core

C(GF
Γ ) of the game GF

Γ . Assume the contrary. Then there exists a coalition τ ∈ σF , a strategy

(xi)i∈N(τ) ∈ X(τ), and a vector v ∈ R
N(τ) such that v � ui(xi)i∈N(τ); moreover uN(τ) � v. By

the last two inequalities, for the collective strategy x = (xi)i∈N(τ) of the coalition τ we have

ui(xi) > ui(xi), i ∈ N(τ), which contradicts the assumption that the strategy x is unblocked.

2) C(GF
Γ ) �= ∅ ⇒ CF (Γ) �= ∅. Indeed, let u be an arbitrary imputation in the core C(GF

Γ ).

According to the definition of the game GF
Γ , there exists a collective strategy x = (xi)i∈N of the

coalition N such that u � (ui(xi))i∈N . Let us show that x belongs to the core CF (Γ). Assume

the contrary. Then there exists a coalition τ and its collective strategy (xi)i∈N(τ) ∈ X(τ) such

that ui(xi) > ui(xi) for all i ∈ N(τ). Setting v = (ui(xi))i∈N(τ), we see that vi > ui(xi) for

all i ∈ N(τ). However, by the construction of v, we have v ∈ GF
Γ (τ) and v � uN(τ), which

contradicts the assumption u ∈ C(GF
Γ ).

Thus, we have proved (2), which completes the proof of Proposition 1.

3 Unblocked Allocations in Economic Exchange Model

We use Theorem 1 (the generalized Scarf theorem) to establish a rather unexpected result:

the standard nonemptiness conditions for a usual core of the economic exchange model turn out

to be sufficient for the nonemptiness of a much narrower fuzzy core of this model. The exchange

model under consideration can be formally described by

E = 〈N, {Xi, ui, w
i}i∈N 〉,

where N = {1, . . . , n} is the set of participants, Xi ⊆ R
l are the consumption sets, wi ∈ R

l are

the endowments, and ui : Xi → R are the utility functions. The natural number l denotes the

number of goods exchanged by the participants (economic agents) in the model. As was already

mentioned, the individual initial endowments are determined by the vectors wi, i ∈ N (a more

detailed description of parameters of the model E can be found, for example, in [3, 5, 4]).

Strategic possibilities X(τ) = XE (τ) of a fuzzy coalition τ = (τ1, . . . , τn) in this model can

be described as follows (cf., for example, [5, 8]):

XE (τ) =
{
(xi)i∈N(τ) ∈

∏
i∈N(τ)

Xi

∣∣ ∑
i∈N(τ)

τix
i =

∑
i∈N(τ)

τiw
i
}
, τ ∈ σF . (3)

In particular, the strategic possibilities of the grand coalition N are determined as the set

X(N) = XE (N) of all possible allocations of the total initial endowment of the exchange par-

ticipants

XE (N) =
{
(xi)i∈N ∈

∏
i∈N

Xi

∣∣ ∑
i∈N

xi =
∑
i∈N

wi
}
,

and the strategic possibilities of one-element coalitions {i} are exhausted by one-element sets

{wi} (if wi belongs to the consumption set Xi; otherwise, XE (e
i) = ∅). We note that we identify

the notation {i}, e{i}, and ei for one-element coalitions.

We recall the definition of F -blocking (by fuzzy coalitions) in the model E . It is a general-

ization of the standard notion of blocking coming back to Edgeworth (cf. also [8, 5]). The sets

XE (τ) considered below are defined by formula (3).
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Definition 8. We say that a coalition τ ∈ σF blocks an allocation x = (xi)i∈N ∈ XE (N)

if there exists x̃ = (x̃i)i∈N(τ) ∈ XE (τ) such that ui(x̃
i) > ui(x

i) for every i ∈ N(τ). The set

of allocations in XE (N) that are not blocked by any coalitions in σF is denoted by CF (E ) and
called the fuzzy core of the model E .

Remark 2. Recall (cf., for example, [5]) that the classical notion of blocking can be obtained

from F -blocking by restriction to the standard coalitions constituting the family σ0 : a coalition

S ⊆ N blocks an allocation x = (xi)i∈N ∈ X(N) if there exists x̃ = (x̃i)i∈S ∈ X(S) such that

ui(x̃
i) > ui(x

i) for any i ∈ S, where

X(S) =
{
(xi)i∈S ∈

∏
i∈S

Xi

∣∣ ∑
i∈S

xi =
∑
i∈S

wi
}
, S ⊆ N.

The set of allocations in X(N) that are not blocked by any coalitions S ∈ σ0 is denoted by C(E )
and called the (standard) core of the model E .

We note that the classical characteristic function GE of the exchange model E is defined by

GE (S) = {v ∈ R
S
∣∣ ∃(xi)i∈S ∈ X(S)[vi � ui(x

i), i ∈ S], S ⊆ N.

Finally, we introduce the notion of a generalized cooperative game GF
E associated with the

economic exchange model E and characterizing the utility levels achievable by the efforts of

some fuzzy coalition τ .

Definition 9. A generalized cooperative game GF
E associated with the model E is defined

by the formula

GF
E (τ) =

{
v ∈ R

N(τ)
∣∣ ∃(xi)

i∈N(τ)
∈ XE (τ)

[
vi � ui

(
xi
)
, i ∈ N(τ)

]}
, τ ∈ σF .

To distinguish the extension of the classical characteristic function GE of the market game E
from the vertices eS of the unit cube In to the entire cube In, we use the subscript F , i.e., the

extension is denoted by GF
E . As usual, we set GF

E (0) = ∅.

Remark 3. By the definition of GF
E , if the initial endowment wi of each participant i ∈ N

belongs to the corresponding consumption set Xi, then GF
E (i) = GF

E (e
i) =

{
vi ∈ R | vi �

ui(w
i)
}
, i ∈ N , which means that u0i = sup

{
v ∈ GF

E (i)
}
= ui(w

i) for all i ∈ N .

We indicate a condition for a generalized cooperative game associated with the exchange

model E to be F -balanced.

We recall that ui is quasiconcave if ui(tx
i + (1− t)yi) � min {ui(xi), ui(yi)} for all t ∈ [0, 1]

and xi, yi ∈ Xi.

Proposition 2. If the consumption sets Xi of the exchange model E are convex and the

utility functions ui are quasiconvcave, then the game GF
E is F -balanced.

Proof. Let {τk}k∈K be a finite family of coalitions in σF which forms a balanced cover of

N with weights λk, k ∈ K. We consider an arbitrary vector v ∈ R
n such that vNk

∈ GF
E (τ

k)

for all k ∈ K, where Nk = N(τk), k ∈ K. By the definition of GF
E , for every k ∈ K there is an

allocation (xk,i)i∈Nk
∈ X(τk) such that

vi � ui(x
k,i), i ∈ Nk. (4)
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We set μki = λkτ
k
i , i ∈ Nk, k ∈ K, and define the allocation x = (xi)i∈N by

xi =
∑
k∈Ki

μkix
k,i, i ∈ N, (5)

where Ki = {k ∈ K | i ∈ Nk}, i ∈ N . Taking into account that

∑
k∈K

λkτ
k = eN

and using the definition of μki, we find that μki � 0 for k ∈ K and i ∈ N ; moreover,

∑
k∈Ki

μki = 1 ∀i ∈ N.

Since the sets Xi are convex, from the inclusions xk,i ∈ Xi and formula (5) defining xi we find

that xi ∈ Xi for every i ∈ N . Using again the fact that xi are convex combinations of elements

of Xi and taking into account the quasiconcavity of ui and the inequalities (4), we get ui(x
i) � vi

for every i ∈ N . To complete the proof of the inclusion v ∈ GF
E (N), it remains to show that

∑
i∈N

xi =
∑
i∈N

wi

for x = (xi)i∈N . Making elementary transformations and taking into account (5), we find

∑
i∈N

xi =
∑
i∈N

∑
k∈Ki

μkix
k,i =

∑
k∈K

∑
i∈Nk

μkix
k,i =

∑
k∈K

λk

(∑
i∈Nk

τki x
k,i

)
.

But the last sum takes the form ∑
k∈K

λk

(∑
i∈Nk

τki w
i
)

in view of the relation ∑
i∈Nk

τki x
k,i =

∑
i∈Nk

τki w
i.

Exchanging the summation order, we get

∑
i∈N

(∑
k∈Ki

μki

)
wi =

∑
i∈N

wi,

which is required.

Proposition 3. If the consumption sets Xi of the model E are closed bounded from below

and include the initial endowments of the participants (wi ∈ Xi, i ∈ N), whereas the utility

functions ui are continuous for every i ∈ N , then the sets GF
E (τ) are nonempty, closed, and

comprehensive from below for all coalitions τ ∈ σF ; moreover, the set ĜF
E (N) is nonempty and

bounded from above.
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Proof. It is clear that all sets X(τ) = XE (τ) are not empty since the allocations (wi)i∈N(τ)

belong to X(τ) for all τ ∈ σF (which is a direct consequence of formula (3) defining the sets

X(τ) and the assumption wi ∈ Xi, i ∈ N). It is easy to verify that if the sets Xi are bounded

from below, then all sets X(τ) are bounded: namely, for every τ ∈ σF there exists a positive

number Lτ such that for any allocation x = (xi)i∈N(τ) ∈ X(τ) the inequality ‖xi‖∞ � Lτ holds

for all i ∈ N(τ) (here, as usual, ‖x‖∞ := max{|xr|
∣∣ r = 1, . . . ,m} for x = (x1, . . . , xm) ∈ R

m).

Indeed, by assumption, for every i ∈ N there exists a vector ai ∈ R
l such that yi � ai for every

yi in Xi. Therefore, for any allocation x = (xi)i∈N(τ) ∈ X(τ) from the inequalities xi � ai and

the identity ∑
i∈N(τ)

τix
i =

∑
i∈N(τ)

τiw
i

we get

xi = wi(τ)− 1/τi

[ ∑
j∈N−i(τ)

τjx
j
]
� wi(τ) + ai(τ),

where

wi(τ) = 1/τi

[ ∑
j∈N(τ)

τjw
j
]
, ai(τ) = −1/τi

[ ∑
j∈N−i(τ)

τja
j
]
,

and N−i(τ) = N(τ) \ {i}. Setting bi(τ) = wi(τ) + ai(τ), we have ai � xi � bi(τ), i ∈ N(τ),

for any x = (xi)i∈N(τ) ∈ X(τ). Consequently, the set X(τ) is also bounded in the above sense:

‖xi‖∞ � Lτ for all x = (xi)i∈N(τ) ∈ X(τ), i ∈ N(τ), and some Lτ > 0. Finally, by the obvious

identity ‖x‖∞ = max
i∈N(τ)

‖xi‖∞ for any x = (xi)i∈N(τ) ∈ X(τ), we obtain the required assertion:

‖y‖∞ � Lτ for all y ∈ X(τ).

Thus, all sets X(τ) are bounded. Taking into account that the identity∑
i∈N(τ)

τix
i =

∑
i∈N(τ)

τiw
i

defining these sets is preserved under the passage to the limit with respect to x, we conclude

that the closedness of the sets Xi for i ∈ N(τ) implies the closedness of all sets X(τ). Therefore,

for each coalition τ ∈ σF the set X(τ) is a nonempty compact set. But the sets GF
E (τ) are

closed since they are algebraic sums of compact sets U(τ) and cones −R
N(τ)
+ , where U(τ) =

{ui(xi)i∈N(τ)

∣∣(xi)i∈N(τ) ∈ X(τ)}. Indeed, by the definition of GF
E (τ), we have

GF
E (τ) = U(τ)− R

N(τ)
+ , τ ∈ σF , (6)

where R
N(τ)
+ is a closed set and U(τ) is a compact set because it is the continuous image of

the compact set X(τ). We recall that all functions ui are continuous under the assumptions of

Proposition 3. Since the algebraic sum of a compact set and a closed set is a closed set in a

finite-dimensional space, from (6) we obtain the required assertion, i.e., if the sets Xi are closed

and bounded from below and the functions ui are continuous, then all sets GF
E (τ) are closed.

We note that these sets are comprehensive from below by definition.

To complete the proof of Proposition 3, it remains to note that the nonemptiness of the set

ĜF
E (N) follows from the inclusion (wi)i∈N ∈ X(N) and the relations u0i = sup {vi ∈ R

∣∣ vi ∈
GF

E (i)} = ui(w
i), i ∈ N (obtained from the assumption wi ∈ Xi, i ∈ N). The boundedness

of ĜF
E (N) = ĜF

E (e
N ) from above follows from the obvious relation ĜF

E (e
N ) � U(eN ) and the
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compactness of U(τ) (as usual, for X,Y ⊆ R
m the relation X � Y is understood in the sense

that for any x ∈ X there is y = y(x) ∈ Y such that x � y).

It turns out that, under the same assumptions as in the well-known theorem on the nonempti-

ness of the usual core of the pure exchange model [3, 5], a much more subtle optimality-stability

principle for F -blocking is realizable. Namely, under the standard assumptions guaranteeing

the nonemptiness of the usual core, we establish the existence of allocations that are stable not

only under standard blocking, but also under blocking by a continual set of fuzzy coalitions.

By standard blocking we understand the classical blocking defined only for the set of (2n − 1)

nonempty standard coalitions.

Theorem 2. If the initial endowments of the participants of the model E belong to their

consumption sets (wi ∈ Xi, i ∈ N)), Xi are closed and bounded from below for every i ∈ N ,

and the utility functions ui are continuous and quasiconcave for all i ∈ N , then the fuzzy core

CF (E ) of this model is nonempty.

Proof. By Propositions 2 and 3, if the assumptions of Theorem 2 hold, then the generalized

cooperative game GF
E satisfies all the assumptions of Theorem 1. Hence the core C(GF

E ) is not

empty. By Proposition 1, we have the nonemptiness of the core of the cooperative game in the

strategic form ΓE = 〈N, {Xi, ui}i∈N , {XE (τ)}τ∈σF
〉, which coincides with the core CF (E ) of the

economic exchange model E .

4 Fuzzy Core of Many-Regional Economic System

The economic model of interaction of regions exchanging m transportable products is ex-

pressed by [6]:

M = 〈N, {As, Gs, Hs, bs, ds}s∈N 〉, (7)

where N = {1, . . . , n} is the list of regions, As is an ns× ls-matrix characterizing the production

sector of region s ∈ N , Gs and Hs are ns × m-matrices describing the export and import

methods in region s ∈ N , bs is the ns-dimensional column-vector characterizing the resource–

technological potential of region s ∈ N , ds is the ns-dimensional column-vector describing the

costs of resources and products caused by the achievement of the goals of development of region

s ∈ N .

A detailed discussion of the interpretation and important applications of the model (7), as

well as some generalizations can be found in [6] and [11]–[13]. In this paper, we formulate only

the definitions necessary to introduce the notions of a core and a fuzzy core of the model M .

The resource–technological potentials Zs of a region s ∈ N are defined by

Zs = {zs = (xs, us, vs, λs) ∈ R
ls
+ × R

m
+ × R

m
+ × R+ | Asxs +Gsus +Hsvs � bs + λsd

s},
where the nonnegative column-vectors xs = (xsi )

ls
i=1, u

s = (usj)
m
j=1, and vs = (vsj )

m
j=1 are the

volumes of production, export, and import respectively, and λs ∈ R+ is the level of achieving

the goals of development of region s ∈ N (as above, R stands for the set of real numbers and

inequalities for vectors are understood in the component sense: x � y means that xk � yk,

k = 1, . . . , l for any x = (x1, . . . , xl) and y = (y1, . . . , yl) in R
l). Elements of Zs are called plans

of region s.
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The quality of a plan zs ∈ Zs is estimated by the function ts sending the vector zs =

(xs, us, vs, λs) to its last component λs:

ts(z
s) = ts(x

s, us, vs, λs) = λs, (xs, us, vs, λs) ∈ Zs, s ∈ N. (8)

In other words, the mapping ts : Zs → R is the objective function of participant s ∈ N

characterizing the level of achieving the goals of regional development.

We set ZM =
∏
s∈N

Zs and denote by ZM (N) the set of balanced plans of the model M

ZM (N) =
{
(xs, us, vs, λs)s∈N ∈ ZM

∣∣ ∑
s∈N

us �
∑
s∈N

vs
}
.

Together with plans of the grand coalition N , we also consider balanced plans ZM (S) of other

standard coalitions S ⊆ N

ZM (S) =
{
(xs, us, vs, λs)s∈S ∈ ZM

∣∣ ∑
s∈S

us �
∑
s∈S

vs
}
. (9)

A particular role in the analysis of the coalition stability of plans in ZM (N) is played by one-

element coalitions {s}. The corresponding sets of balanced plans

Z(s) = ZM (s) =
{
(xs, us, vs, λs) ∈ Zs

∣∣ us � vs
}
, s ∈ N,

will be referred to as the sets of autarchic plans of the corresponding regions. Furthermore, to

analyze the boundedness conditions for ZM (N), it is required to consider balanced plans of the

homogeneous model M defined by

M0 = 〈N, {As, Gs, Hs, 0, ds}s∈N 〉. (10)

By definition, the model M0 differs from M by the fact that its initial resource–technological

potential vanishes: bs = 0 for every s ∈ N . Consequently, the set ZM0(N) of balanced plans of

the model M0 is the set of solutions to the homogeneous system of linear inequalities

Asxs +Gsus +Hsvs − λsd
s � 0, xs � 0, us � 0, vs � 0, λs � 0, s ∈ N ;

∑
s∈N

us −
∑
s∈N

vs � 0.

We recall [11] the definition of a standard core of the model M which will be the basis of

the notion of a fuzzy core introduced below.

Definition 10. We say that a plan z = (zs)s∈N ∈ ZM (N) is blocked by a (standard)

coalition S ⊆ N (S �= ∅) if there exist regional plans z̃s = (x̃s, ũs, ṽs, λ̃s) ∈ Zs, s ∈ S, such that

∑
s∈S

ũs �
∑
s∈S

ṽs

and ts(z̃
s) > ts(z

s) for all s ∈ S. The set of plans in ZM (N) that are not blocked by any

coalition S ⊆ N is denoted by C(M ) and called the (standard) core of the model M .
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We indicate simple conditions (cf. [12]) guaranteeing that the standard core C(M ) of the

model M is not empty. These conditions are related to individual properties of regions, as well

as to some integral characteristics of the M in whole:

(M1) ZM (s) �= ∅ for every s ∈ N ,

(M2) ZM0(N) = {0}.
Remark 4. Assumption (M1) means a certain autarchy of regions of the model M in the

sense that each region has at least one autarchic plan. Assumption (M2) can be interpreted as

the absence of a “horn of plenty” in the system M . We note that the homogeneous component

M0 defined by (10) differs from the model M only by the fact that the resource–technological

potential of every region vanishes. Therefore, the fact that there is no “horn of plenty” in the

system means, as in the classical model of equilibrium analysis [14], that if the system has zero

economic potential, then the system cannot have any economic activity. We also note that the

relation ZM0(N) = {0} in the formal plan is necessary and sufficient for the boundedness of the

set ZM (N) of balanced plans of the model M (which is valid because ZM (N) is polyhedral and

in view of results of convex analysis [15]).

We recall [11] the definition of F -blocking on ZM (N) based on the natural extension on σF
of the mapping S �→ ZM (S) given by (9) for standard coalitions S ⊆ N . This natural extension

τ �→ ZM (τ) has the form

ZM (τ) =
{
(xs, us, vs, λs)s∈N(τ) ∈

∏
s∈N(τ)

Zs

∣∣ ∑
s∈N(τ)

τsu
s �

∑
s∈N(τ)

τsv
s
}
, τ ∈ σF .

Definition 11. We say that a plan z = (zs)s∈N ∈ ZM (N) is blocked by a fuzzy coalition

τ = (τ1, . . . , τn) ∈ σF if there exist regional plans z̃s = (x̃s, ũs, ṽs, λ̃s) ∈ Zs, s ∈ N(τ), such that∑
s∈N(τ)

τsũ
s �

∑
s∈N(τ)

τsṽ
s

and ts(z̃
s) > ts(z

s) for all s ∈ N(τ). The set of plans in ZM (N) that are not blocked by any

fuzzy coalition τ ∈ σF is denoted by CF (M ) and called the fuzzy core of the model M .

According to the above scheme, with a cooperative game in the strategic form ΓM =

〈N, {Zs, ts}s∈N , {ZM (τ)}τ∈σF
〉 we associate the generalized cooperative game GF

M defined by

GF
M (τ) =

{
v ∈ R

N(τ)
∣∣ ∃ (zs)s∈N(τ) ∈ ZM (τ)

[
vs � ts(z

s), s ∈ N(τ)
]}

, τ ∈ σF ;

here and below, ts is defined by (8).

Proposition 4. For any data of the model M the game GF
M is F -balanced.

Proof. It is clear that for GF
M (τ) = ∅ for all τ ∈ σF the required assertion immediately

follows from the definition of balance. We consider the nontrivial case where for some balanced

cover {τk}k∈K of the coalition N all sets GM (τk), k ∈ K, are nonempty and for some vector

ω ∈ R
N and all k ∈ K we have ωNk

∈ GF
M (Nk), where, as above, Nk = N(τk). Let us show

that ω belongs to the set GF
M (N). Indeed, by the definition of the game GF

M , the inclusions

ωNk
∈ GF

M (Nk), k ∈ K, mean that there exist plans (xks, uks, vks, λks) ∈ Zs, s ∈ Nk, k ∈ K,

such that ∑
s∈Nk

τks (u
ks − vks) � 0, k ∈ K. (11)
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Moreover, for the plans zks = (xks, uks, vks, λks) and corresponding components of the vector ω

we have

ωs � λks, s ∈ Nk, k ∈ K. (12)

We construct a plan z = (zs)s∈N of the grand coalition N by setting

zs =
∑
k∈Ks

μksz
ks, s ∈ N, (13)

where Ks = {k ∈ K | s ∈ Nk}, s ∈ N , and μks are defined by μks = δkτ
k
s , k ∈ Ks, s ∈ N , where

δk are weights of fuzzy coalitions τk under the condition that the cover {τk}k∈K is balanced:

δk � 0, k ∈ K, and ∑
k∈K

δkτ
k = eN . (14)

By (14) and in view of nonnegativity of δk and τks , all μks are nonnegative and∑
k∈Ks

μks = 1 ∀ s ∈ N.

From (13) and the convexity of Zs it follows that z
s ∈ Zs for every s ∈ N . Let us show that the

plan z is balanced. To prove that z = (xs, us, vs, λs)s∈N ∈ ZM (N), we again use formula (13) and

calculate the volumes of export us and import vs corresponding to the regional components zs of

the plan z. From the definition of zs it immediately follows that the corresponding expressions

(in terms of uks, vks, μks) have the form

us =
∑
k∈Ks

μksu
ks, vs =

∑
k∈Ks

μksv
ks ∀ s ∈ N.

We show that ∑
s∈N

us �
∑
s∈N

vs

which implies that the plan z is balanced. For this purpose we multiply each inequality in (11)

by δk � 0 and summarize the obtained relations. Taking into account the identities μks = δkτ
k
s ,

we find ∑
k∈K

∑
s∈Nk

μksu
ks �

∑
k∈K

∑
s∈Nk

μksv
ks.

Hence, exchanging the summation order, we find∑
s∈N

∑
k∈Ks

μksu
ks �

∑
s∈N

∑
k∈Ks

μksv
ks,

which proves ∑
s∈N

us �
∑
s∈N

vs

in view of (13). Thus, z ∈ ZM (N) is proved.

Further, multiplying each inequality in (12) by the corresponding nonnegative number μks

and taking the sum of the obtained relations with respect to k ∈ Ks for every s ∈ N , we get

ωs = ωs

∑
k∈Ks

μks �
∑
k∈Ks

λksμks, s ∈ N.
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Since

λs =
∑
k∈Ks

λksμks, s ∈ N,

by construction of the plans zs = (xs, us, vs, λs), we obtain the required relation

ωs � ts(z
s) = λs, s ∈ N,

for z = (zs)s∈N in ZM (N), and, consequently, ω belongs to GF
M (N).

Proposition 5. For each coalition τ ∈ σF the set GF
M (τ) is comprehensive from below and

closed; moreover, Assumption (M1) guarantees that all sets GF
M (τ), τ ∈ σF , are nonempty.

If, in addition to (M1), the model M satisfies Assumption (M2), then the set of individually

rational imputations ĜF
M (N) of the game GF

M is nonempty and bounded from above.

Proof. The fact that the sets GF
M (τ) are comprehensive from below immediately follows

from their definition. To verify the closedness of these sets, we fix arbitrarily τ ∈ σF and

show that Z(τ) is polylhedral. Indeed, since the sets Zs are polyhedral, the Cartesian product∏
s∈N(τ)

Zs is also polyhedral. Since the set ZM (τ) is obtained (by definition) from the set
∏

s∈N(τ)

Zs

by imposing additional linear constraints∑
s∈N(τ)

τs(u
s
k − vsk) � 0, k = 1, . . . ,m,

we see that ZM (τ) is also polyhedral. But, in this case, since the functions ts are linear, the set

UM (τ) =
{
ts(z

s)s∈N(τ)

∣∣ (zs)s∈N(τ) ∈ ZM (τ)
}

is polylhedral because it is the linear image of the set ZM (τ) (cf. [15]). Since the set

GF
M (τ) = UM (τ)− R

N(τ)
+ (15)

is the algebraic sum of polylhedral sets, it is also polylhedral [15], which implies the closedness

of GF
M (τ).

Let Assumption (M1) be satisfied for the model M . We fix plans zs0 ∈ ZM (s), s ∈ N . It is

clear that (zs0)s∈N(τ) ∈ ZM (τ) for every τ ∈ σF . Therefore, under Assumption (M1), all sets

ZM (τ) are nonempty and, consequently, all sets GF
M (τ) are nonempty in view of (15).

Passing to the proof of the last part of Proposition 5, we recall [15] that Assumption (M2)

implies the boundedness of the set ZM (N) (regarded as the set of solutions to a system of

linear inequalities such that the corresponding homogeneous system has a unique solution).

Consequently, by Assumption (M1) and the closedness of all sets ZM (τ), we conclude that

ZM (N) is a nonempty compact set. But, since it is the image of a compact set, UM (N)

is also a nonempty compact set. By (15), the set GF
M (N) is bounded from above. By the

obvious embedding ĜF
M (N) ⊆ GF

M (N), the set ĜF
M (N) is bounded from above. To prove the

nonemptiness of this set, we first show that all ZM (s) are nonempty compact sets provided

that the assumptions of Proposition 5 hold. Taking into account that these sets are nonempty

by Assumption (M1) and closed in view of the polylhedral convexity, it remains to show the

boundedness of ZM (s), s ∈ N . For this purpose we note that from the definition of ZM (N) we
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immediately obtain the inclusions ẑ = (ẑ1, . . . , ẑn) ∈ ZM (N) for any ẑs ∈ ZM (s), s ∈ N . Since

the set ZM (N) is bounded in view of Assumption (M2), we conclude that all sets ZM (s) are

bounded.

Thus, every set ZM (s) is a nonempty compact set. Consequently, the continuous functions

ts attain their maximal values on the corresponding individual plans zs∗ ∈ ZM (s) realizing the

maximal guaranteed playoffs u0s of one-element coalitions {s}:

u0s = max
zs∈ZM (s)

ts(z
s) = ts(z

s∗), s ∈ N.

Since the collective plan z∗ = (zs∗)s∈N belongs to ZM (N), it follows that (u01, . . . , u
0
n) =

(t1(z
1∗), . . . , tn(zn∗)) ∈ UM (N). By (15), u0 = (u01, . . . , u

0
n) belongs to G

F
M (N). But, in this case,

u0 also belongs to ĜF
M (N) (by the definition of these sets) which implies its nonemptiness.

Using Theorem 1 and Propositions 4 and 5, we conclude that the assumptions guaranteeing

the nonemptiness of the standard core C(M ) also guarantee realization of a much more subtle

optimality principle. Namely, if Assumptions (M1) and (M2) hold, then there exist collective

plans of the model M that are not blocked even by fuzzy coalitions τ ∈ σF \ σ0.
Theorem 3. If a model M satisfies Assumptions (M1) and (M2), then its fuzzy core

CF (M ) is not empty.

Proof. We argue in the same way as in the proof of Theorem 2. By Propositions 4 and 5,

if all the assumptions of Theorem 3 hold, then the generalized cooperative game GF
M satisfies

all the assumptions of Theorem 1. Consequently, the core C(GF
M ) is nonempty. By Proposition

1, the core of the cooperative game in the strategic form ΓM = 〈N, {Zs, ts}s∈N , {ZM (τ)}τ∈σF
〉

coinciding with the core CF (M ) of the system M is not empty.
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