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COLLECTIVE DYNAMICS AND BIFURCATIONS IN SYMMETRIC NETWORKS OF
PHASE OSCILLATORS. II

O. A. Burylko UDC 517.91

The present paper is the second part of a brief survey of development of the Kuramoto model of cou-
pled phase oscillators. We consider several systems obtained as generalizations of the classical Kuramoto
model and given on symmetric oscillatory networks for different functions of interaction between ele-
ments. We describe the collective dynamics and bifurcations of transitions between different regimes of
interacting elements, namely, full and partial synchronizations, global antiphase regime, and slow switch-
ing. We reveal the relationship between the symmetries of the network and the existence of invariant
manifolds of the system, cluster states, and more complicated collective regimes. We also describe dy-
namics of the model with central element and the systems with circulant and modular networks. The
coexistence of conservative and dissipative dynamics, as well as the existence of chimera states and the
competition for synchronization regimes are demonstrated.

1. Introduction

The present paper is a continuation of the work [1] in which we considered different collective regimes in the
models of coupled oscillators given on symmetric networks. In the first part of the survey, we have briefly outlined
the history of investigation of the collective dynamics (various types of synchronous regimes) in complex systems
of coupled elements and analyzed the motivation of appearance of mathematical models of these systems. One
of the simplest and most popular models of coupled elements (the Kuramoto model of coupled phase oscillators
[2, 3]) was considered in detail. Various generalizations of the standard Kuramoto model of identical globally
coupled phase oscillators were also presented. Systems of this type have the maximum number of symmetries
responsible for the existence of invariant regions, invariant manifolds, various cluster regimes and heteroclinic
cycles.

In the second part of the survey, we consider models of phase oscillators given on symmetric networks but
with already nonglobal interaction between the elements. We describe some important properties of the collective
dynamics of systems with central element, systems with circulant coupling, and systems of indistinguishable ele-
ments. The loss of global interaction in these networks naturally leads to the loss of certain symmetries and the
corresponding cluster regimes, and also to the destruction of canonical invariant regions. The phase closure of the
trajectories in globally coupled systems is also lost as a result of breaking of couplings between the oscillators. In
each of the indicated three cases, the systems may have their own specific features, topological structures, and the
conditions of collective interaction.

To a significant extent, the aim of the present paper is to demonstrate some interesting collective phenomena
observed in oscillatory networks with different architecture of couplings. Note that each phenomenon described in
the present paper for simple systems of phase oscillators is fairly universal and, hence, can be also encountered in
quite complicated physical and neural networks with similar structures of interaction.
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The generalized Kuramoto model of N coupled phase oscillators has the form

d✓i

dt
D !i C

1

N

NX

jD1

KijÄij .✓i � ✓j /; i D 1; : : : ; N; (1)

where ✓i 2 Œ0; 2⇡/ D T1 are phase variables, !i are the eigenfrequencies of oscillators, Kij are the parameters
(strengths) of couplings between oscillators, and Äij .x/ are smooth 2⇡-periodic coupling functions. Each variable
✓i runs over a one-dimensional circle. Hence, the phase space of the system is a torus TN : The right-hand sides
of the general system (1) depend on the phase differences ✓i � ✓j ; which reveals the presence of symmetry of the
phase shift along the circle T1 given by the action ✓i 7! ✓i C ": Thus, parallel with the original system (1), it is
convenient to investigate the system in the phase differences

'i D ✓1 � ✓iC1; i D 1; : : : ; N � 1; (2)

which has the form

d'i

dt
D Åi C

1

N

NX

jD1

�
K1;jÄ1;j .'j�1/ �KiC1;jÄiC1;j .'j�1 � 'i�1/

�
; i D 1; : : : ; N � 1;

where Åi D !1 � !iC1; i D 1; : : : ; N � 1; and '0 D 0: For the sake of convenience of investigations, in order to
reduce system (1), parallel with the phase differences (2), it is also possible to use any collection of N � 1 linearly
independent phase differences 'ij D 'i � 'j because the dynamics of different reduced systems are topologically
equivalent.

As indicated in Part 1 of this survey, the mathematical definition of the networks of dynamically interacting
elements (oscillators, neurons, etc.) always includes the following three main components:

(1) description of the dynamics of an individual node (not coupled with the other nodes) with the help of
equations or systems of equations;

(2) description of the architecture of interaction between separate elements of the network, which most fre-
quently can be done by using the graph of couplings;

(3) description of the influence of one element upon another in each link of the coupling realized with the
help of additional terms on the right-hand sides of the system of an individual element or with the use of
additional equations or systems of equations.

In the present paper, we mainly consider systems of equivalent elements for which the above-mentioned
components 1–3 are symmetric. Namely, we consider identical oscillators with identical eigenfrequencies

!i D !; i D 1; : : : ; N; (3)

(all nodes of the system are identical) given on symmetric networks (the matrix of couplings K D .Kij /
N
i;jD1

has certain symmetries) and with the same coupling function Äij .x/ D g.x/ (the same external influence upon
each element). As an exception from this situation, we can mention a system with central element in which the
parameters of the central oscillator differ from the parameters of the other identical oscillators. It is clear that, in
the system in phase differences obtained for the model of identical oscillators, we have Åi D 0; i D 1; : : : ; N:
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In the previous part of the present paper, we formulated the definitions of various types of collective dynamics
for systems of coupled phase oscillators. We now recall some of these definitions. We say that:

– two oscillators ✓i and ✓j are phase-synchronized if j✓i .t/ � ✓j .t/j ! 0 as t ! 1I

– ✓i and ✓j are in the antiphase if j✓i .t/ � ✓j .t/j ! ⇡ as t ! 1I

– ✓i and ✓j are phase-locked if

j✓i .t/ � ✓j .t/j  const < 2⇡

for any t I

– ✓i and ✓j are phase-unlocked if the previous condition is not satisfied;

– ✓i and ✓j are desynchronized if they are not phase-locked (the difference can be greater than 2⇡ for large
values of t );

– the system has the regime of full synchronization if all N oscillators are synchronized with each other;

– the system has an m-cluster or partial synchronization if m oscillators are synchronized, 1 < m < N I

– the system is desynchronized if it has at least two desynchronized oscillators;

– system (1) has the regime of slow switching if the corresponding system in phase differences has a hete-
roclinic cycle.

The other necessary definitions are introduced directly prior to their application.
In the present paper, we consider oscillatory models on networks with quite simple symmetries, which can be

easily described. In the next section, we describe an oscillatory model on a starlike network with central executive
element and give a biological motivation of its appearance. In Sec. 3, we consider an oscillatory model on a
circulant network, which has a time-reversal symmetry under the condition of skew-symmetry of the coupling
matrix; thus, in turn, leads to the coexistence of conservative and dissipative dynamics in the system. In Sec. 4, we
mainly consider a phenomenon but not the type of a model. Indeed, we discuss the concept of chimera states in
systems of interacting elements.

All models and phenomena considered in the present paper are, in fact, known and investigated in numerous
research works. The proposed survey is far from being complete, it only gives some preliminary information about
the collective dynamics in various types of oscillatory models. We also present a list of (selected) references in
which the analyzed models are studied in detail.

2. Model with Central Element

In this section, we consider a Kuramoto-type system given on an oscillatory network with central block (ele-
ment) radially coupled with peripheral elements. Networks with central element are encountered as parts of more
complicated networks in various fields, such as communication systems, social networks, and the neural structures
of the brains of mammals. In the last case, they are widespread due to the convergent organization of compounds
in the hierarchy of brain structures [4, 5]. These networks can play an important role in modelling multisensory
integration [6, 7] and attention [8, 9].
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2.1. Neural Model of Memory and Attention. Attention is understood as the ability of mammals to extract
a part of information (usually most interesting or important) from the large amount of simultaneously incoming
data with an aim of its subsequent more detailed processing. The attention system is hierarchic, i.e., it has a
subsystem called central executive component that controls the formation of the focus of attention [8, 10–12].
The experimental data presented in [13] show that the interaction of the central element of attention system with
neural assemblies representing visual objects can be realized by synchronizing their activities at the gamma-band
frequencies. A model of attention based on the frequency adjustment in a system of phase oscillators was proposed
and analyzed in [14–17]. According to this model, attention is focused on an object encoded in the cortex by an
oscillatory activity synchronized with activity of the central element. This model is used for the realization of the
subsequent selection of objects in the focus of attention [9] and for the simultaneous tracing of motion of several
target objects [18, 19]. The investigation of systems with central element may be useful for understanding the
role of synchronization in cognitive functions. Models of phase oscillators give a convenient and mathematically
suitable instrument for these investigations.

In networks with central block, global interactions of elements are realized via the central oscillator, which
has both feedforward and feedback couplings with all other elements called peripheral oscillators. In addition
to couplings with the central oscillator, peripheral oscillators may also have local couplings with their neighbors,
which are, as a rule, much weaker than their couplings with the central oscillator [9, 19–21].

Assume that the central oscillator has index 0 and the peripheral oscillators are marked by the indices
i D 1; : : : ; N: Consider a model whose dynamics is described by the following system of ordinary differential
equations:

d✓0

dt
D !0 C

NX

iD1

f .✓i � ✓0/; (4)

d✓i

dt
D ! C g.✓0 � ✓i /; i D 1; : : : ; N; (5)

where .✓0; ✓1; : : : ; ✓N / 2 TNC1 are phase variables on an .N C 1/-dimensional torus, ✓i 2 Œ0; 2⇡/; ! is the
eigenfrequency of (identical) peripheral oscillators, f .x/ and g.x/ are, respectively, the functions of influence of
the peripheral oscillators on the central oscillator, and vice versa. Assume that the functions f .x/ and g.x/ are
odd, 2⇡-periodic, and smooth. Under these assumptions, in particular, we get

f .0/ D f .⇡/ D g.0/ D g.⇡/ D 0: (6)

System (4), (5) is a special case of the more general system (1) with the coupling matrix K D
�
Kij

�N
i;jD0

;

where Ki0 D K0j D 1; i; j D 1; : : : ; N; and Kij D 0; otherwise, and the coupling functions Ä0j .x/ D f .x/=N;

j ¤ 0; and Äi0.x/ D g.x/=N; i ¤ 0: Subtracting Eq. (4) from Eq. (5), we obtain the following system in phase
differences:

d'i

dt
D �

NX

jD1

f .'j / � g.'i /; i D 1; : : : ; N; (7)

where 'i D ✓i � ✓0; i D 1; : : : ; N: Denote

f 0.0/ D a1; f 0.⇡/ D a2; g0.0/ D b1; f 0.⇡/ D b2: (8)
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System (7) possesses the permutation symmetry SN ; which is the common property with the original system
of globally coupled identical oscillators (in the variables ✓i ). The main difference is that the reduced system does
not have the phase-shift symmetry. Despite the fact that system (7) possesses the invariant cluster regimes 'i D 'j ;

i ¤ j [corresponding to the clusters ✓i D ✓j of the original system (4), (5)], these clusters no longer select a closed
invariant region C in TN (see the description of the invariant regions in Part 1 of the present paper [1]) because
'i D 0 are not invariant sets of the system in the analyzed case. Unlike the system with global coupling, the system
with starlike coupling possesses phase-unlocked regimes corresponding to the trajectories nonhomotopic to zero.

2.2. Antiphase States in the Model with Central Element. The points ˆ D .'1; : : : ; 'N / with coordinates
'i 2 f0;⇡g; i D 1; : : : ; N; are equilibria of system (7), (8) (however, the system may also have some other
equilibria). By ˆk we denote the points that have k coordinates equal to 0 and .N � k/ coordinates equal to ⇡:

A point of this kind corresponds to a regime in which k peripheral oscillators are winners in the competition for
synchronization with the central oscillator, whereas the remaining N � k peripheral oscillators are losers in this
competition (they are in the antiphase with the central oscillator). From the viewpoint of attention modeling, the
stable regimesˆk can be well interpreted because they describe situations in which k objects (properties) are in the
focus of attention and the remaining objects are out of the focus. In terms of this notation, the pointˆN D ˆsync is
the regime of full synchronization, the pointˆ0 is the regime in which all peripheral oscillators are in the antiphase
with the central oscillator, and ˆ1 is the “winner-takes-all” regime (only one peripheral oscillator wins in the
competition for synchronization with the central oscillator).

In view of the existing symmetry, all points ˆk have identical properties. The stability and bifurcation proper-
ties of these points can be described by using notation (8). According to [20], the pointˆk is asymptotically stable
if, for the corresponding values of k; the following conditions are satisfied:

k D 0W b2 > 0; a2 > �b2=N;

k D 1W b2 > 0; L1 > 0; L2 > 0;

2  k  N � 2W b1 > 0; b2 > 0; L1 > 0; L2 > 0; (9)

k D N � 1W b1 > 0; L1 > 0; L2 > 0;

k D N W b1 > 0; a1 < �b1=N;

where

L1 Dkb2a1 C .N � k/b1a2 C b1b2; L2 D ka1 C .N � k/a2 C .b1 C b2/:

In order that a stable point ˆk be a node, in addition to inequalities (9), the following relation must be true:

✓
ka1

2

◆2

C
✓
.N � k/a2

2

◆2

� 0:

Otherwise, these points are stable foci.
The surfaces L1 D 0 and L2 D 0 are bifurcation surfaces in the space of parameters .a1; a2; b1; b2/: Each

of these surfaces is associated either with the Andronov–Hopf bifurcation or with the pitchfork bifurcation of the
point ˆk depending on the relationship between the parameters and the dimension of the phase space. Note that,
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in numerous cases, the local bifurcations mentioned above are parts of global heteroclinic bifurcations and lead to
complex heteroclinic cycles. In the spaces with dimensions N � 3; depending on the form of the functions f .x/
and g.x/; these bifurcations also lead to analogs of Shilnikov’s saddle-focus bifurcations and Shilnikov–Hopf-type
bifurcations. For specific functions f .x/ and g.x/; these bifurcations were considered in more detail in [20, 22].

2.3. Model with Two-Harmonic Coupling. We now present a more detailed analysis of the case where
coupling functions are two-harmonic, namely,

f .x/ D a.sin x C r sin.2x//; g.x/ D b.sin x C p sin.2x//;

where a; b; r; and p are parameters. In the analyzed case, the system in phase variables (7) takes the form

d'i

dt
D �

NX

jD1

a.sin'j C r sin.2'j // � b.sin'i C p sin.2'i //; i D 1; : : : ; N: (10)

In view of the symmetries of the network and the oddness of the functions f and g; we can find the invariant
manifolds of system (10) and describe its bifurcation properties in more detail. This system has two types of
invariant cluster manifolds:

– m-dimensional manifolds

Mm D
¶
.'1; : : : ; 'N /W'k1

D 'k2
D � � � D 'n�mC1

·
; m D 1; : : : ; N;

corresponding to .n�mC1/-clusters of peripheral oscillators with regard for their permutation symmetry;

– m-dimensional manifolds

Qm D
¶
.'1; : : : ; 'N /W'ki

C 'kj D 0; 'kl
2 f0;⇡g

·
;

i D 1; : : : ; m; j ¤ i; l D 2mC 1; m D 1; : : : ; ŒN=2ç;

(where Œxç is the integer part of x) appearing due to the oddness symmetry of the right-hand sides of the
system.

System (10) has the following bifurcations of the points ˆk [among other (mainly global) bifurcations]:

– Andronov–Hopf bifurcations at the point ˆk given in the parametric space with the surface

AH.ˆk/ D f.a; b; r; p/W 4bp C 2Nar C .2k �N/a D 0g ; k D 1; : : : N � 1I

– pitchfork bifurcations given, depending on the parameter k; by the expressions

PF.ˆk/ D
¶
.a; b; r; p/W a.N.4pr C 2r � 2p � 1/

C 4k.p � r//C b.4p2 � 1/ D 0
·
; k D 1; : : : N � 1;
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PF.ˆN / D f.a; b; r; p/W b.2p C 1/CNa.2r C 1/ D 0g ;

PF.ˆ0/ D f.a; b; r; p/W b.2p � 1/CNa.2r � 1/ D 0g

and leading to the appearance (disappearance) of two new points inside the invariant manifold MmI

– pitchfork bifurcations observed on the bifurcation surfaces

PF⇤.ˆk/ D f.a; b; r; p/Wp D �1=2g ; k D 1; : : : ; N;

PF ⇤.ˆk/ D f.a; b; r; p/Wp D 1=2g ; k D 0; : : : ; N � 1;

in the directions transcritical for the invariant manifolds and leading to the appearance of k � 1 for
PF⇤.ˆk/ and N � k � 1 for PF ⇤.ˆk/ pairs of new equilibria from each fixed point ˆkI

– degenerate “switch” bifurcation in the hyperplane

SW.ˆk/ D f.a; b; r; p/W b D 0g ; k D 0; : : : ; N;

which changes the direction of influence of the central oscillator on peripheral oscillators.

Numerous collective properties described above are also preserved for a more general system with starlike
structure of couplings but with different functions of influence f1; : : : ; fN of peripheral oscillators upon the central
oscillator. The corresponding system in phase differences takes the form

d'i

dt
D �

NX

jD1

fj .'j / � g.'i /; i D 1; : : : ; N: (11)

This system loses some of its symmetry properties depending on the relations between the functions fi : Under
conditions (6), this system also has the equilibria ˆk (parallel with some other equilibria). Moreover, system
(11) has invariant manifolds Mm and Qm for any functions f1; : : : ; fN ; g: The hierarchical structure of system
(11) relative to its invariant manifolds Mm is an important specific feature, which is absent in the major part of
oscillatory systems given on networks with different architecture. This means that any m-dimensional system (11)
has the same dynamics as the dynamics on a certain invariant manifoldMm of the general N -dimensional system
(11) (m < N ) with new odd functions ef i that are linear combinations of the old functions fi : This feature enables
one to automatically describe the dynamics of the system on its invariant manifolds by using the results already
obtained for the same system of lower dimensions. The results of detailed investigations of low-dimensional
systems of this kind, including a great variety of phase portraits and bifurcation and schematic diagrams can be
found in [20, 22].

In [20, 23], the collective dynamics of systems with central element was investigated in the presence of inter-
action between the peripheral elements, i.e., system (4), (5) takes a more general form

d✓0

dt
D !0 C

NX

iD1

f .✓i � ✓0/;

d✓i

dt
D ! C g.✓0 � ✓i /C

X

k2Ni

h.✓k � ✓i /; i D 1; : : : ; N;
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where h.x/ is the function of local interaction between the peripheral oscillators and Ni is the set of indices of
interactions between the peripheral oscillators. It is clear that systems with weak peripheral couplings give more
adequate models of neural processes. In the cited works, much attention was given to the problem of influence of
the architecture of peripheral couplings and the strength of interaction between different peripheral oscillators on
the total collective dynamics of the system. In particular, it was shown that the stable regime of full synchronization
(ˆN for the system in phase differences) remains stable even for fairly weak couplings between peripheral elements
independently of configuration of the couplings. The greater the number of peripheral oscillators in the network,
the more difficult is problem of breaking the stability of this regime. At the same time, the stability of antiphase
regimes can be easily violated as a result of the appearance of weak couplings between peripheral elements.

2.4. Conservative Chaos. An oscillatory starlike system with three or more peripheral oscillators may ex-
hibit a quite complicated chaotic behavior. We can indicate the relationship between the vector field (4), (5) and the
well-known ABC-flow (Arnold–Beltrami–Childress flow). For the first time, this flow was investigated by Arnold
in [24]. Consider a system

d'1

dt
D A sin'3 C C cos.'2 � ı/;

d'2

dt
D B sin'1 C A cos.'3 � ı/; (12)

d'3

dt
D C sin'2 C B cos.'1 � ı/:

System (12) is an ABC flow with parameters A; B; and C for ı D 0 and coincides with the system in phase
differences (7) for the model with three peripheral oscillators and the coupling functions

f .x/ D g.x/ D � sin x

for A D B D C D 1 and ı D ⇡=2: The chaotic behavior of the ABC-flow was studied and described in
the literature from different points of view [25–28]. The system has so-called conservative chaos when a chaotic
trajectory fills almost the entire phase torus T3 with the exception of one- and two-dimensional invariant manifolds
of this system. A similar behavior is observed for the phase flows in system (4), (5) of three peripheral oscillators
for a certain distribution of the parameters. Thus, the system has three invariant planes M2 of the form 'i D 'j
decomposing the phase space T3 into two invariant regions filled with chaotic phase-unlocked trajectories [22].
The phase space is also pierced by one-dimensional invariant sets M1W'1 D '2 D '3 and Q1 of the form

'i C 'j D 0; 'k 2 f0;⇡g; i; j; k D 1; 2; 3:

By analyzing the conditions of stability of equilibria (9), one can find an open region in the space of pa-
rameters such that all points ˆk 2 T3 of the system are saddle points. In [22], one can find a description of
the situation in which the system has equilibria only in the form of saddle points ˆ0 and ˆ3 and the saddle-
node points ˆ1 and ˆ2 (in view of the symmetry, we have three points in each case) and all these points are
connected into a heteroclinic cycle with the help of one-dimensional invariant manifolds W u.ˆk/ and W s.ˆk/

some of which coincide with the above-mentioned manifolds M1 and Q1 and the other (focal) ones belong to
manifolds of the form M2: In this case, the entire phase space is pierced by a network of heteroclinic cycles.
These cycles serve as a basis for the existence of chaotic trajectories by analogy with the situation of chaos in
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the vicinity of a saddle-focus loop described by Shilnikov [29]. Bifurcations of codimension two described, in
particular, in [30, 31] lead to the appearance of heteroclinic cycles whose nodes are saddle points and saddle cy-
cles. These bifurcations are responsible for the deformation and compression of chaos, which may, in this case,
occupy not the entire toroidal phase space. Note that the motion of a phase point along the heteroclinic trajectory
with different nodes ˆk corresponds to the model of attention switching from one object to another in the neural
system.

According to the above-mentioned hierarchy of the structure relative to the proper invariant manifolds, the
system in phase differences of dimension N � 4 has a chaotic structure inside the invariant manifolds Mm;

m D 3; : : : ; N �1; if it has a structure of this kind forN D 3: Hence, for a system of phase oscillators with central
element, it is possible to find a coupling function, which has either a conservative chaos similar to the ABC-flow
or a chaotic attractor for any dimensions N � 3:

2.5. Other Models with Central Element. Based on the biological motivation for a more exact description of
the neural processes of memory and attention, an oscillatory system with central element and adaptation [obtained
as a natural generalization of system (4), (5)] was proposed and studied in [32, 33]. In the cited works, the authors,
in fact, studied a system of coupled oscillators with central element and coupling strengths Kij D Kij .t/: In the
analyzed case, the indicated strengths are unknown functions described by additional differential equations rather
than constants. In this model, the frequency of the central oscillator !0 D !0.t/ is also determined from an
additional differential equation, which is used to adapt this frequency to the frequency of the peripheral oscillator
synchronized with the central oscillator (it turns out that, in the considered case, this oscillator is unique). This
model gives an adequate description of the “winner-takes-all” computational principle, which is frequently used in
the investigations of artificial neural networks and neural processes running in the brain [34–38].

For the physical and biological reasons, the researchers also studied various systems with central element and
several hubs. Thus, in particular, collective regimes were investigated in discrete starlike networks [39], in starlike
Stuart–Landau systems [40], in recurrent neural networks [41, 42], and in various oscillatory and neural networks
with several hubs [7, 43–47].

3. Conservative-Dissipative Dynamics in Oscillatory Models

In the present section, we consider oscillatory networks with cyclic symmetry. The investigations of networks
of this kind are aimed at the description of various natural phenomena and demonstration of interesting mathe-
matical effects. We study the case where the interactions between each pair of oscillators have opposite directions
but the same strength. This network has reversal symmetry, which, in turn, results in coexistence of two opposite
dynamics (conservative and dissipative) in the same phase space.

3.1. Oscillatory Model with Circulant Coupling. Consider a translationally invariant ring of coupled phase
oscillators with periodic boundary conditions

d✓

dt
D !i C

NX

jD1

Kj�ig.✓i � ✓j /; i D 1; : : : ; N; (13)

where ✓i 2 Œ0; 2⇡/ are phase variables, !i are eigenfrequencies, g.x/ is a smooth 2⇡-periodic coupling function,
Kj ; j D 1; : : : ; N; are the parameters of strength of the interaction between oscillators, and all subscripts are
determined modulo N: The coefficient KN D K0 specifies the self-coupling of the oscillator. System (13) is a
special case of system (1) with the following circulant matrix of couplings:
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K D circ.K0; K1; : : : ; KN�1/ D

0

BBBBBBBBBBB@

K0 K1 : : : KN�2 KN�1

KN�1 K0 K1
: : : KN�2

::: KN�1 K0
: : :

:::

K2
: : :

: : :
: : : K1

K1 K2 : : : KN�1 K0

1

CCCCCCCCCCCA

; (14)

(in other words, Kij D Ki�j ) and a single coupling function between the elements Äij .x/ D g.x/=N:

The system in phase differences (2) corresponding to (13) takes the form

d'i

dt
D Åi C

N�1X

jD1

Kj .g.'j / � g.'iCj � 'i //; i D 1; : : : N � 1; (15)

where the subscripts are considered modulo N: We formulate our main results for the reduced system (13) in the
phase space TN�1:

We describe some properties of system (13) in more detail for the case of identical oscillators, i.e., for the
case where equality (3) is true. The circulant structure of the network and the identity of oscillators induce the
equivariance of the analyzed system under the cyclic group ZN specified by the action

� W .✓1; ✓2; : : : ; ✓N / 7�! .✓N ; ✓1; : : : ; ✓N�1/:

The cyclic symmetry of system (13), (3) leads to the existence of invariant splay states (or rotating waves)

‚
.k/
splay.t/ D

✓
✓.t; k/; ✓.t; k/ � 2⇡k

N
; : : : ; ✓.t; k/ � .N � 1/2⇡k

N

◆
; k D 0; : : : ; N � 1;

where

✓.t; k/ D

0

@! C
NX

jD1

Kj�ig

✓
2jk⇡

N

◆1

At;

for any coupling functions g.x/: For the system in phase differences (15), (3) corresponding to (13), (3), the splay
states ‚.k/

splay.t/ correspond to the equilibria

ˆ
.k/
splay D

✓
2k⇡

N
;
4k⇡

N
; : : : ;

2.N � 1/k⇡

N

◆
:

As a special case of splay state with the wave number k D 0; we can mention the state of full synchronization
of all oscillators in the system

‚sync.t/ D ‚
.0/
splay.t/ D .✓.t/; : : : ; ✓.t//:

For the system in phase variables, this state is the origin ˆsync D ˆ
.0/
splay D .0; : : : ; 0/: Note that, in addition to

ˆ
.k/
splay; system (15), (3) may also have other equilibria depending on the coupling function g.x/:
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The analysis of the equilibria ˆ
.k/
splay; k D 0; : : : ; N � 1; demonstrates that the Andronov–Hopf (degenerate

or regular) bifurcation is a typical bifurcation for these points. Moreover, in the case of skew-symmetry of the
coupling matrix, the synchronous state ˆsync is neutral, whereas the other states ˆ

.k/
splay are either attractors or

repellers [48]. This means that the conservative dynamics may coexist in the vicinity of ˆsync with the dissipative
dynamics in the system under certain additional restrictions imposed on the coupling function.

3.2. Reversibility of the Oscillatory System and the Coexistence of Conservative and Dissipative Dynamics.
An oscillatory system given on a circulant network serves as a source of numerous nontrivial collective dynamics.
All synchronous regimes described in [1] are possible for this system because a network of globally coupled
identical elements is a partial case of circulant network. In what follows, we also show that a ring network of
identical elements is a source of chimera states in the system under certain additional conditions. In this section,
we describe only some properties of this system in the case where the couplings between any two elements of the
system in the same or different directions have identical absolute values but the opposite signs. We present some
results for the systems in phase differences (15) and note that the original system (13) has the same properties.

The system in phase differences (15) for identical phase oscillators with a circulant and skew-symmetric cou-
pling matrix K (with Kj D �K�j ) has the time-reversible symmetry RWTN�1 �! TN�1; where

R.'1; : : : ; 'N�1/ D .'N�1; : : : ; '1/; t 7�! �t:

Recall that the involution R is a time-reversible symmetry of the system dˆ=dt D G.ˆ/ if

G.Rˆ/ D �R.Gˆ/

and R2 D id; where id stands for the identical transformation [49], i.e., R maps any solution ˆ.t/ into another
solution Rˆ.�t / of this system with the opposite direction of the phase flow. The systems with time-reversible
symmetry form a fairly broad class of dynamical systems with geometry of the phase space typical only of these
systems. The properties of reversible systems have been quite extensively studied for several last decades [50–
57]. Numerous classical results deal with the existence of families of periodic solutions, elliptic fixed points, and
invariant tori. For the detailed bibliography of works in this field, see the survey [58].

As one of the most interesting specific features of time-reversible systems, we can mention the coexistence of
conservative (Hamilton-like) and dissipative dynamics in the same phase space. The phenomenon of coexistence of
conservative and dissipative dynamics was described for various specific physical systems, in particular, for a three-
dimensional laser system [59], for coupled superconducting Josephson junction arrays [60, 61], and for a system
of anisotropically coupled spheres (Stokeslet model) [62]. In [63, 64], the existence of conservative-dissipative
dynamics was demonstrated for chains and rings of oscillatory systems and a possible physical interpretation of
this phenomenon was given.

A system with time-reversible symmetry can be completely conservative without attractors and repellers, and
its phase space is filled with families of neutral periodic, quasiperiodic, or even chaotic trajectories and heteroclinic
cycles. The dynamics of this system resembles the dynamics of a Hamiltonian system despite the fact that a
conservative time-reversible system is not necessarily even-dimensional. On the other hand, a time-reversible
system can be also dissipative with attracting and repelling elements of the phase space. Thus, the indicated
two types of dynamics may take place for the same reversible system but for different values of the parameters.
However, the most interesting case is represented by the third type of reversible systems whose phase space is split
into two regions the first of which is conservative and filled with neutral trajectories, whereas the second region
is dissipative and contains repellers and attractors and also the trajectories that connect repellers and attractors.
The boundary between conservative and dissipative regions is, as a rule, a heteroclinic cycle or a multidimensional
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invariant set of heteroclinic cycles (if the dimension of the system is greater than two). As a rule, a time-reversible
system with parameter can be conservative-dissipative for the major part of values of this parameter and only
conservative (or only dissipative) for the limit values of the parameter. The indicated properties for the systems of
coupled oscillators (13) and (15) were described in detail in [48].

A fixed space of involutionR for system (15) is defined as follows:

FixR D fˆ 2 TN�1WRˆ D ˆg D
º
ˆ 2 TN�1W'i D 'N�i ; 1  i 


N � 1

2

�»
:

Its dimension depends on the evenness of the phase space of the system: dim.FixR/ D ŒN=2ç:

We now present several properties of solutions of the system depending on their intersections with a fixed
subspace ofR:

If an orbit intersects FixR at two points, then it is periodic and consists of two parts mapped into each other
by the involutionR:

Any nonperiodic trajectory can intersect FixR only once.
The attractors and repellers of a reversible system do not belong to FixR:

If a reversible system has an attractor A; then it also has a repeller RA:

If a trajectory starts from a source and intersects FixR; then it approaches a symmetrically located sink and,
moreover, this trajectory is heteroclinic.

The superposition of the symmetries ZN and R implies the existence of N � 1 more reversible symmetries
Ri ; i D 2; : : : ; N: Thus, there exist N � 1 hyperplanes FixRi D � iFixR1; R1 WD R; invariant under the
transformations of Ri : All Ri intersect at the point ˆsync if N is odd. At the same time, if N is even, then they
intersect along the one-dimensional line V0 D .'; 0; '; 0; : : : ; '; 0; '/; ' 2 T1. The intersections described above
are the centers of conservative regions for system (15).

In [48], by using the theoretical results from [62, 65], it was shown that system (15) with a circulant skew-
symmetric coupling matrix K and a coupling function g.x/ such that g0.0/ ¤ 0 has the following dynamical
regimes:

(A) Families of periodic solutions in the vicinity of the point ˆsync: There exists a one-parameter family of
periodic solutions ˆ� .t/ in the vicinity of ˆsync if N is odd and a two-parameter family of periodic
solutions ˆ.�1;�2/.t/ with period close to 2⇡=�m if N is even; here,

�m D 2g0.0/
Œ.N�1/=2çX

jD1

Kj sin
✓
2mj⇡

N

◆
:

(B) A dense set of invariant tori in the vicinity of ˆsync: In any vicinity of ˆsync; there exist analytic Œ.N �
1/=2ç-dimensional quasiperiodic tori with incommensurable frequencies close to �1; : : : ;�Œ.N�1/=2ç:

(C) Dissipative dynamics. The equilibrium ˆ
.k/
splay; k ¤ 0; is a sink if the following condition is satisfied:

Œ.N�1/=2çX

jD1

Kj

✓
g0

✓
2⇡k

N
j

◆
� g0

✓
�2⇡k

N
j

◆◆✓
1 � cos

✓
2mj⇡

N

◆◆
< 0; m D 1; : : : ; N � 1:

In this case, ˆ.�k/
splay is a source.
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Items (A) and (B) describe the conservative dynamics in the vicinity of the state of full synchronization,
whereas item (C) describes the possibility of dissipative dynamics in the vicinity of splay states. System (15) is
characterized by the coexistence of regimes (A) and (B) with regime (C) for almost all coupling functions g.x/
because one can almost always find a circulant skew-symmetric coupling matrix for which all necessary additional
inequalities are satisfied.

By D0 we denote a conservative region in the vicinity of the synchronous fixed point ˆ0: The structure of
the boundary @D0 of the indicated region is quite complicated because, in the general case, it depends on the
parameters of the matrix K and the function g.x/: Nevertheless, we can say that @D0 is an .N � 2/-dimensional
hypersurface in the phase space TN�1 of system (15) completely composed of heteroclinic cycles.

In the two-dimensional case, the region D0 is bounded by a Z3-symmetric heteroclinic cycle and filled with
neutral periodic trajectories, which concentrically surround the point ˆsync: In the three-dimensional case, the
regionD0 is bounded by a tetrahedron-like surface formed by heteroclinic cycles and completely filled with a two-
parameter family of periodic orbits surrounding a one-parameter family of equilibria with coordinates .'; 0; '/; ' 2
T : As indicated in item (A), the families of periodic orbits are two-dimensional for odd N and three-dimensional
for evenN . Hence, for the system in phase differences whose phase space is .N �1/-dimensional, the conservative
region is completely filled with periodic orbits solely in two- and three-dimensional cases of TN�1: For higher
dimensions N � 5; the region D0 is already filled with quasiperiodic or chaotic solutions with an “ interwoven”
two- or three-dimensional surface of periodic orbits.

System (15) may have several conservative regions. In particular, for the even dimensions, the fixed point
ˆ

N=2
splay is always the center of a conservative region. Thus, forN D 4; the phase space has two conservative regions

around the points ˆsync and ˆ
.2/
splay and a dissipative region that contains heteroclinic trajectories connecting the

attracting (repelling) fixed point ˆ.1/
splay with the repelling (attracting) fixed point ˆ.3/

splay (as shown in [48]). In the
general case, the number of conservative regions increases with the number of harmonics of the coupling function
g.x/: As a rule, the dissipative region remains simply connected independently of the number of conservative
“islands” in the system.

System (15) with a circulant skew-symmetric coupling matrixK and an odd coupling function g.x/ is conser-
vative (divergence free). Moreover, this system has the first integral

E1.'1; : : : ; 'N�1/ D
N�1X

iD0

h.'i � 'iC1/;

where h0.'/ D g.'/ and 'N D '0 D 0: In the case of even N; odd g.x/; and a sparse skew-symmetric matrix
(14) with Kj D 0 for even j; system (15) also has another first integral

E2.'1; : : : ; 'N�1/ D
N�1X

iD1

.�1/i�1'i :

System (15) with a circulant skew-symmetric matrix K and an even function g.x/ is gradient and, hence,
dissipative in the entire space TN�1: The indicated two cases are limit cases for the function g.x/. For the
conservative-dissipative dynamics, it is necessary that the function g.x/ be neither even, nor odd. Note that system
(15) with a symmetric matrix K (in particular, in the case of global coupling described in [1]) is gradient for
odd g.x/ and divergence free for even g.x/: Hence, for symmetric and skew-symmetric matrices, we observe
the opposite situations. It is worth noting that the system with symmetric coupling does not have conservative-
dissipative dynamics for any coupling functions.
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3.3. Ring Oscillatory Networks with the Opposite Feedback Coupling. A special case of system (13) is a
system given on a ring network, where each oscillator acts with identical strengths upon its l neighbors located
clockwise along the circle in the direction from the oscillator and with the opposite strengths upon the neighbors
located anticlockwise. Choosing the strengths Kj D �Kj D 1; j D 1; : : : ; l; l < N=2; we can represent the
system of identical oscillators in the form

d✓i

dt
D ! C

lX

jD1

g.✓i � ✓iCj / �
N�1X

jDN�l

g.✓i � ✓iCj /; j D 1; : : : N: (16)

Then the corresponding reduced system takes the form

d'i

dt
D

lX

jD1

�
g.'j / � g.'iCj � 'i /

�
�

N�lX

jDN�1

�
g.'j / � g.'iCj � 'i /

�
: (17)

A system of three coupled oscillators of the form (16) with one-harmonic coupling function (see Kuramoto–
Sakaguchi [66]):

g.x/ D � sin.x � ˛/; (18)

where ˛ is a phase shift, serves as the simplest example of a system with coexistence of conservative and dissipative
dynamics. In this case, the system in phase differences is two-dimensional

d'1

dt
D � sin.'1 � ˛/ � b sin.'2 � ˛/ � b sin.'1 C ˛/ � sin.'1 � '2 C ˛/;

d'2

dt
D � sin.'1 � ˛/ � b sin.'2 � ˛/ � sin.'2 C ˛/ � b sin.'2 � '1 C ˛/:

(19)

This system has the cyclic symmetry Z3 generated by the action �Z3
W .'1; '2/ 7! .�'2; '1 � '2/; the time-

reversal symmetryR given by the action �RW .'1; '2; t / 7! .'2; '1;�t /; and the reversible symmetry of parametric
shift given by the action �˛W .'1; '2; ˛; t/ 7! .'1; '2; ˛ C ⇡;�t /: The superposition of Z3 and R yields the
existence of three involutionsRi ; i D 1; 2; 3; with the corresponding fixed spaces FixR1W'1 D '2; FixR2W'2 D
0; and FixR3W'1 D 0:

System (19) is conservative for ˛ D 0 and ˛ D ⇡ and has the first integral

E.'1; '2/ D cos'1 C cos'2 C cos.'1 � '2/:

For ˛ D ˙⇡=2; the system is gradient (and, hence, dissipative). If the parameter ˛ is unequal to the values
indicated above, then we observe the coexistence of conservative dynamics in a certain region of the phase space of
the system with the dissipative dynamics in the remaining part of this space. The conservative region D0 is formed
around the synchronous equilibrium ˆsync D .0; 0/: This region is bounded by a Z3-symmetric heteroclinic cycle
(curvilinear triangle) formed by three saddles: S1 .e';e'/ 2 FixR1; S2 .�e'; 0/ 2 FixR2; and S3 .0;�e'/ 2 FixR3;

where e' D ⇡ � 2˛; and their one-dimensional invariant manifolds W u.Si / D W s.SiC1/; i D 1; 2; 3: The
region D0 is filled with a one-parameter family of concentric orbits with center at the point ˆsync: The dissipative
region T2 n D0 of the dynamical system is formed around two equilibria ˆ

.1/
splay D .2⇡=3; 4⇡=3/ and ˆ

.2/
splay D
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.4⇡=3; 2⇡=3/ one of which is attracting and the other is repelling for ˛ ¤ ˙⇡=2: The entire dissipative region is
filled with heteroclinic trajectories connecting the points ˆ.1/

splay and ˆ
.2/
splay:

The conservative region D0 occupies the entire phase space T2 for ˛ D 0; begins to decrease as j˛j increases,
and contracts into the point ˆsync (i.e., disappears) for j˛j D ⇡=2: At the same time, the dissipative region, which
was absent for ˛ D 0; appears around ˆ

.1/
splay and ˆ

.2/
splay for j˛j ¤ 0; increases with j˛j; and occupies the entire

phase space as j˛j approaches ⇡=2: The subsequent increase in j˛j from ⇡=2 to ⇡ is accompanied by symmetric
processes running in the opposite direction. We can easily trace the process of contraction of the conservative
region by watching the motion of three saddle points Si of the heteroclinic cycle along fixed lines of the reversible
symmetry FixRi observed as the parameter ˛ varies. We also note that ˛ D 0 and ˛ D ⇡ are the bifurcation
values for the fixed points ˆ.1/

splay and ˆ
.2/
splay corresponding to the degenerate Andronov–Hopf bifurcation. At the

time of bifurcation, the points ˆ.1/
splay and ˆ

.2/
splay are surrounded with neutral families of concentric periodic orbits.

The values ˛ D ˙⇡=2 are bifurcation values for the point ˆsync corresponding to a triple degenerate transcritical
bifurcation realized along each line FixRi ; i D 1; 2; 3: At the time of bifurcation, the point ˆsync is transformed
from the center (for ˛ ¤ ˙⇡=2) into a degenerate saddle with six saddle cells.

A system of four coupled oscillators of the form (16) with coupling function (18) also exhibits conservative-
dissipative dynamics, which has both common and absolutely different specific features as compared with lower-
dimensional systems. The corresponding three-dimensional system in phase variables (17) with N D 4 and l D 1

has two conservative regions, namely,D0 around the synchronous stateˆsync D .0; 0; 0/ andD2 around the double
antiphase state ˆ.2/

splay.⇡; 0;⇡/ (two oscillators are in the antiphase relative to the other two oscillators). The other

two fixed pointsˆ.1/
splay D .⇡=2;⇡; 3⇡=2/ andˆ.3/

splay D .3⇡=2;⇡;⇡=2/ are, respectively, an attractor and a repeller
for ˛ ¤ 0 and ˛ ¤ ⇡: The dissipative region T3n.D0 [D2/ is formed by the heteroclinic trajectories connecting
ˆ

.1/
splay and ˆ

.3/
splay:

The conservative regions D0 and D2 have identical structures due to the symmetry Z2 and differ only by
the opposite directions of the vector field inside the regions. Each of these regions is bounded by a tetrahedron-
like surface (@D0 or @D2; respectively). Four edges of this surface form a Z4-symmetric heteroclinic cycle and
the other two edges are completely formed by saddle points that are degenerate saddles (neutrally stable along
the edges). The faces of each tetrahedron-like surface @D0 and @D2 are filled with a one-parameter family of
heteroclinic trajectories (the arcs connecting two saddle points of one of the above-mentioned two edges). Any
pair of heteroclinic trajectories forms a heteroclinic cycle. Thus, the described boundary of the region @D0 (or
@D2) consists of two two-dimensional sets of two-saddle heteroclinic cycles (two pairs of glued faces) connected
by a four-saddle heteroclinic cycle into a tetrahedron-like surface. The interior of @D0 (or @D2) is filled with a
two-parameter family of neutral limit cycles concentrically located around neutral fixed points of the straight line

V0 D
4\

iD1

FixRi D .'1; 0; '1/

(note that FixR1 D FixR3 and FixR2 D FixR4). Every periodic trajectory crosses FixR1 at two points

.'1; '2; '1/ and .'1 � '2;�'1; '1 � '2/

and the plane FixR2 at the points

.�'1; 0; '2 � '1/ and .'2 � '1; 0;�'1/;

where '1 and '2 are the initial values of the trajectories on FixR1:
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As in the case of lower dimension, for ˛ D 0 (and, symmetrically, for ˛ D ⇡), system (17) is completely
conservative and, hence, D0

S
D2 D T3: As the parameter j˛j increases from zero, each conservative region is

contracted and, hence, the space occupied by the dissipative region increases. In the case where j˛j reaches the
value ⇡=2; both conservative regions shrink into the fixed pointsˆ.1/

splay andˆ
.3/
splay (in this case, they are degenerate

saddles) and create the possibility for the dissipative region to undergo maximum possible expansion and fill the
entire phase space.

Five oscillators can be coupled in a ring oscillatory network of the form (16) in two ways: locally (each
oscillator is coupled only with two nearest neighbors; l D 1) and globally (each oscillator interacts with all other
oscillators with two types of bonds; l D 2). In both cases l D 1 and l D 2; the system in phase differences (17)
exhibits conservative-dissipative dynamics. The conservative region D0 2 T4 is concentrated around the neutral
synchronous point ˆsync: It is bounded by a Z5-symmetric hypersurface (polyhedron) @D0 completely formed
by heteroclinic cycles. The boundary @D0 can be described with the help of a complete directed graph based on
five vertices (fixed saddle points) Si and has ten edges. The three-dimensional faces of @D0 are completely filled
with heteroclinic trajectories connecting two different saddle vertices Si : As a result, we observe the appearance
of two- and three-dimensional sets of heteroclinic cycles formed by heteroclinic trajectories from one or several
faces. The region D0 is filled with a dense two-parameter set of concentric (around ˆsync) quasiperiodic tori with
five interwoven one-parameter (identical with respect to the symmetry Z5) sets of periodic orbits. The presence of
quasiperiodic trajectories makes the cases with N � 5 strongly different from the cases N D 3 and N D 4: The
dissipative region T4 nD0 is formed around the equilibria ˆ.i/

splay; i D 1; : : : ; 4; two of which are attractors and the

other two are repellers. It is completely filled with heteroclinic trajectories connecting the pairs of points ˆ.i/
splay:

Systems of arbitrarily many .N / oscillators of the form (16) and (17) also reveal the coexistence of conserva-
tive and dissipative dynamics for

g.x/ D � sin.x � ˛/

independently of the number of couples between the neighbors l: There is a principal difference between the
structures of the conservative region D0 2 TN�1 for (17) and its boundary @D0 observed for even and odd N .
The boundary @D0 is a ZN -symmetric and .N � 2/-dimensional hypersurface in TN�1 or a hyperpolyhedron that
can be described by a complete graph based on the saddle points Si ; i D 1; : : : ; N; playing the role of vertices. All
N.N � 1/=2 one-dimensional edges of @D0 are invariant manifolds of the saddles Si and form heteroclinic cycles
in the case of odd N: Note that, in the case of an even number of oscillators, only N.N � 3/=2 edges of @D0 are
heteroclinic trajectories, whereas the other N edges are completely formed by one-parameter sets of degenerate
saddles. In the case of odd N; all periodic and quasiperiodic orbits interior for D0 are concentrated around the
point ˆsync: At the same time, for even N; these orbits are concentrated around the one-parameter set of central
fixed points

V0 D .'; 0; '; 0; : : : ; '; 0; '/;

where ' is the parameter of location of a fixed point on the straight line. The family of periodic orbits inside D0

is one-parameter for odd N and two-parameter for even N: In the case of even N; parallel with the conservative
region D0; we always encounter another symmetric region DN=2 around the equilibrium ˆ

.N=2/
splay :

As the parameter j˛j changes from 0 to ⇡=2; we observe the transformation of the system from completely
conservative into conservative-dissipative and, finally, into completely dissipative (as in the low-dimension cases
described above). A similar situation with nonhomotopic regions is observed, in particular, for the other type
of reversible systems [60, 61, 63]. The results of additional numerical analysis reveal the presence of chaotic
trajectories in the conservative region (at least for N � 6) mixed with periodic and quasiperiodic orbits. Note that,
in this case, chaotic trajectories are trajectories of the neutral type, i.e., they are similar to classical ABC-flows
[26, 67].
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3.4. Systems of Nonidentical Elements. It turns out that system (13) may also have conservative-dissipative
dynamics in the case of partial symmetry breaking. This specific type of dynamics is preserved for certain relations
between the frequencies of oscillators !i and symmetries of the function g.x/:

System (13) [as well as (15)] with s circulant skew-symmetric coupling matrixK and an odd coupling function
g.x/ is divergence free for any eigenfrequencies !i and any dimensions N: Thus, the entire phase space TN�1

of system (15) is filled with neutral (relative to each other) trajectories (that can be also chaotic). Hence, unlike
the case of identical frequencies !i D !; the periodic and quasiperiodic orbits or heteroclinic cycles can be both
homologous to zero and nonhomologous to zero.

A system can be conservative-dissipative if a perturbation of eigenfrequencies breaks the cyclic symmetry
ZN but preserves at least one time-reversal symmetry R (for N available Ri in the case of identical oscillators).
This symmetry R is preserved if the eigenfrequencies !i are pairwise equidistant from a certain mean value. By
ˆ

.k/
Å we denote a fixed point formed from the state of distributed phases ˆ.k/

splay; k D 0; : : : ; N � 1; as a result of
perturbation of the frequency vector Å D .Å1; : : : ;ÅN�1/; Åi D !1 � !i ; i D 1; : : : ; N � 1: In this notation,
ˆ

.0/
Å are formed by the perturbations

ˆsync D ˆ
.0/
splay:

The point ˆ.k/
Å remains an attractor (repeller) for small perturbations of Å from the position .0; : : : ; 0/ in the case

where the point ˆ.k/
splay is an attractor (repeller). Thus, system (15) with circulant skew-symmetric K may exhibit

conservative-dissipative dynamics if the frequency differences satisfy the relations

ÅN�i D �Åi ; i D 1; : : : ; ŒN=2ç; (20)

and at least one point ˆ.k/
Å ; k ¤ 0; is either a sink or a source. Note that, under condition (20), in the presence of

a perturbation Å; the point ˆ.0/
Å moves along FixR together with the entire conservative part. The bifurcations of

the parameters of Å may lead to the disappearance of both conservative and dissipative regions.
System (15) may have numerous conservative “islands” if the coupling function g.x/ has higher harmonics

in its expansion in the Fourier series. In the case of equidistant eigenfrequencies, conservative regions can be
topologically nontrivial without internal central fixed points. Moreover, the boundaries of conservative regions
may have quite complicated structures, and some of these regions with different topologies can be located inside
each other [48].

At the end of the section, we note that numerous theoretical results were also obtained for the circulant net-
works whose nodes can be specified by complicated multidimensional systems or systems with delay. The in-
version symmetry of these networks is a source of rich dynamical behaviors, including rotating waves [68–74],
heteroclinic cycles [75–80], symmetric chaos [68, 81–83], chimera states [84, 85], and compactons [64]. As appli-
cations to neuroscience, the bifurcation mechanisms in rings of coupled Hodgkin–Huxley neurons with inhibitory
and excitatory synapses were studied in [86–89]. Note that the complicated dynamical scenarios and multistability
were also discovered in the cited works. The relationship between the dynamics of infinite-dimensional oscillatory
systems given on circulant networks and the solutions of the complex Ginzburg–Landau equation and nonlinear
Schrödinger equation was established in [48, 90, 91].

4. Chimeras in Models of Coupled Oscillators

4.1. Concept of Chimera States. In the present section, we mainly describe a relatively new collective phe-
nomena of significant interest, rather than analyze a specific oscillatory model. In [84], Kuramoto and Battogtokh
showed, for the first time, that the set of identical oscillators given on a ring network and subjected to the action of a
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dynamical system may decompose into two groups of oscillators such that all oscillators from one group are coher-
ent and phase-locked, whereas the oscillators from the other group are incoherent and desynchronized. This type of
collective behavior seems to be impossible because all elements of the network are equivalent. Later, Abrams and
Strogatz called this collective behavior a chimera state (or simply chimera) [85], which emphasizes the presence
of a combination of incongruous elements. The existence of chimera states turned into a subject of extensive the-
oretical and experimental investigations. Note that about 700 works devoted to this research area were published
for last two decades. The results of numerical investigations show that chimera states may appear in systems on
the networks with absolutely different architectures and for diverse objects each of which is characterized by a
complicated individual dynamics. It was shown that chimera states appear in mechanics [92, 93], chemistry [94],
biology [95], neuroscience [96, 97], electronics [98, 99], optics [100], electrochemistry [101], sociology [102], and
in analyzing the behaviors of financial markets [103]. In our opinion, the theory proposed by Ott and Antonsen
(the Ott–Antonsen ansatz) [104] proves to be very important for the theoretical investigation of chimera states. It
is worth noting that the first experimental confirmations of existence of the chimera states [94, 105] appeared ten
years later than the first theoretical work [84]. In recent years, chimera states have been extensively investigated,
new concepts of dynamical regimes related to chimeras have been introduced, chimeras have been studied for net-
works with various architectures and different individual nodes, and chimera states have been described for broader
classes of dynamical systems [102, 106–112].

4.2. Definition of Weak Chimeras. The first results on coherent-incoherent states were introduced in [84]
for a complex-valued oscillatory system given by the Ginzburg–Landau-type equation with periodic boundary
conditions. Note that the same chimera states are obtained for the phase part of the Ginzburg–Landau equation,
which has the following form:

@✓.y; t/

@t
D ! C

⇡Z

�⇡

G.y � y/ sin.✓.y; t/ � ✓.y; t/C ˛/dy; (21)

where y 2 T1 is the space variable, ✓.y; t/ is the phase of the oscillator at a point y; ! is frequency, ˛ is the
phase shift, and G.y � y/ is an even function (kernel) guaranteeing the nonlocal coupling between oscillators in
a ring depending on the distance between them jy � yj. In the first works [84, 85], the kernels had the form
G.y/ D  exp.�jyj/=2 and G.y/ D .1 C  cosy/=.2⇡/; where  is a parameter, respectively. The
theoretical results obtained for chimera states were confirmed by the data of numerical simulations carried out for
a large number of coupled oscillators and the parameter of phase shift ˛ close to ⇡=2:

Equation (21) can be reduced to the following finite-dimensional Kuramoto–Sakaguchi system with the cou-
pling function g.x/ D � sin.x � ˛/W

d✓i

dt
D ! C

NX

jD1

Kijg.✓i � ✓j /; i D 1; : : : ; N; (22)

where K D .Kij /
N
i;jD1 is a circulant symmetric matrix whose elements are distributed by analogy with G.y/ and

jyj is a discrete analog of the distance between an element of the matrix and a diagonal element. The necessary
condition for the collective regime to be regarded as a chimera state is the equivalence of all elements of the
network. It is clear that the ring structure of the network is not the most general structure in the analyzed case and,
moreover, the results of investigations show that chimeras appear not only for ring networks. In the most general
case, it is reasonable to consider indistinguishable oscillators, i.e., oscillators that are identical and coupled in a
sense that they have the same number and strength of couplings [113].
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In the first theoretical works dealing with chimeras, the researchers, as a rule, considered the arrays of infinitely
many (or of a large number of) coupled oscillators. For the complete understanding of the structure of these
dynamical regimes, it is important to determine the minimal number of elements guaranteeing the existence of
chimeras and the degree of complexity of each element of the network required for the existence of this state.
However, in the major part of works devoted to chimeras, the authors did not make attempts to give a rigorous
analytic definition of the chimera state, which can be easily applied to the case of low-dimensional systems. As
implicit definitions of chimera states, we can mention the examples of regimes given in the first classical works
in this field [84, 85, 114]. The first strict definition of a (somewhat simplified) concept of chimeras was given in
[115].

We say that the oscillators i and j on the trajectory of system (22) are frequency synchronized if

�ij D lim
t!1

1

t

�
✓i .t/ � ✓j .t/

�
D 0;

where we choose continuous representations for ✓i .t/ and ✓j .t/. The set A is a weak chimera state [115] for a
system of indistinguishable phase oscillators if it is a connected chain-recurrent [116] flow-invariant set such that,
in each trajectory from the set A; one can find i; j; and k such that �ij ¤ 0 and �ik D 0:

This definition does not impose any restrictions on the dynamical behavior and stability of the solutions cor-
responding to weak chimeras. It also does not pretend to give a description of chimera states in a broad sense with
regard for the transitivity and chaotic behavior of the corresponding solutions, and also asN ! 1:However, it can
be regarded as an important step in understanding the behavior of coherent-incoherent regimes in low-dimensional
systems and as an auxiliary tool for the investigation of these regimes in the general case.

4.3. Minimal Chimeras in Oscillatory Systems. It follows from the definition that the trajectory of a weak
chimera state must be phase-unlocked. This means that the minimal necessary dimension of system (22) is equal to
four because the three-dimensional system of this kind is globally connected and has only phase-locked trajectories.
For the same reason, an additional condition should be imposed on the system of four phase oscillators: it is
necessary to have at least two types of different couplings Kij . A more nontrivial condition for the existence
of chimeras follows from the results of additional investigations and can be formulated as follows: the coupling
function must have at least two harmonics in its expansion in the Fourier series

g.x/ D � sin.x � ˛/C r sin.2x/ (23)

with parameters ˛ and r:
An oscillatory network of four phase oscillators ✓1; : : : ; ✓4 that satisfies all conditions imposed above was

constructed in [115]. This system has strong couplings between two pairs of oscillators

Ki;iC2 D KiC2;i D 1

and all other couplings are weak, i.e.,

Ki;iC1 D KiC1;i D ";

and the index is taken modulo 4: It is clear that, in this case, the oscillatory network is formed by indistinguishable
elements and system (22) takes the form
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d✓1

dt
D ! C .g.✓1 � ✓3/C g.0//C " .g.✓1 � ✓2/C g.✓1 � ✓4/ ;

d✓2

dt
D ! C .g.✓2 � ✓4/C g.0//C " .g.✓2 � ✓3/C g.✓2 � ✓1/ ;

d✓3

dt
D ! C .g.✓3 � ✓1/C g.0//C " .g.✓3 � ✓4/C g.✓3 � ✓2/ ;

d✓4

dt
D ! C .g.✓4 � ✓2/C g.0//C " .g.✓4 � ✓1/C g.✓4 � ✓2/ :

(24)

It was proved that there exists an open set of parameters .r; ˛/ such that the four-oscillator system (22), (23)
has a stable weak chimera state for sufficiently small j"j. The idea of construction of the minimal system with
chimera dynamics can be described as follows: For " D 0; network (24) consists of two separate oscillatory
blocks (modules) .✓1; ✓3/ and .✓2; ✓4/ given by identical two-dimensional systems. The two-dimensional system
is characterized by the bistability of the inphase regime with the antiphase regime for r < �j cos˛j=2: Hence, for
the corresponding initial data, system (24) has two clusters (coherent regimes) ✓1 D ✓3 and ✓2 D ✓4 C ⇡ that can
freely rotate along the phase circle relative to each other because the modules are not coupled with each other for
" D 0; i.e., they are incoherent. Since the system is structurally stable for " D 0; the coherent-incoherent regime
is also preserved for perturbations " such that j"j < "0.r; ˛/: Note that, for the existence of weak chimeras, the
parameter "must be smaller than 1 because, otherwise, the system is global with identical interactions between the
elements.

The idea of construction of modular systems with chimeras is quite fruitful and enables one to give an analytic
proof of the existence of complex stable chimeras for systems of higher dimensions. Consider a network with
N D mk oscillators formed by m modules each of which contains k oscillators. This network is described by the
following system of equations:

d✓ij

dt
D ! C

kX

qD1

2

4Kij;iqg.✓ij � ✓iq/C "Kij;pq

mX

pD1;p¤i

Kij;iqg.✓ij � ✓pq/

3

5;

where i D 1; : : : ; m; j D 1; : : : ; k; and the coupling strengthsKij;pq are chosen to guarantee that the oscillators in
the network are indistinguishable. By using the results on the multistability of a separate uncoupled k-dimensional
module in the system, we can prove, e.g., the existence either of heteroclinic chimeras [115, 117] or of chaotic
chimeras [110].

The existence, stability, and bifurcations of weak chimeras in a system of six coupled oscillators (22) were
investigated in detail for three possible (nonmodular) configurations of the network of indistinguishable elements
of the system in [115, 118]. As a convenient method for the investigation of low-dimensional systems of this
kind, we can mention the analysis of possible symmetries of the system and the corresponding invariant cluster
manifolds. Thus, for the system of six indistinguishable oscillators, the subspaces

.✓1; : : : ; ✓6/ D .✓1; ✓2; ✓1; ✓1 C ⇡; ✓2; ✓1 C ⇡/

and

.✓1; : : : ; ✓6/ D .✓1; ✓1 C ⇡; ✓2; ✓1; ✓1 C ⇡; ✓2 C ⇡/
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are invariant (however, this is true not only for these subspaces).
In low-dimensional systems, weak chimeras may correspond to several (at least two) oscillatory clusters that

freely move relative to each other along the phase circle. Therefore, the investigation of chimera states is reduced
to the analysis of the solutions of systems on manifolds of lower dimensions. The application of phase differences
decreases the dimension of the original system by one and can also reduce the dimension of the required mani-
fold. The existence of a minimal chimera corresponds to a trajectory nonhomologous to zero on a two-dimensional
toroidal manifold of the system in phase differences [115]. The existence of an invariant cluster manifold cor-
responds to the coherence of oscillators inside the cluster, while the nonhomology of a trajectory to zero on the
invariant torus guarantees, in this case, the phase unlockness of oscillators from different clusters and, hence, the
incoherence of the collective regime. The procedure of reduction to the two-dimensional system makes it pos-
sible to better understand the structure of trajectories and the bifurcation mechanisms of appearance of minimal
chimeras in the study of these problems, first inside an invariant manifold and then in the transverse directions.
A weak chimera can be heteroclinic if the corresponding trajectory on the invariant manifold is heteroclinic. In
[118], it was shown that the system of six indistinguishable oscillators can be integrable and, moreover, can have a
continuous family of neutral chimera solutions. Note that the Kuramoto–Sakaguchi system of five locally coupled
oscillators on a ring may also have a weak chimera state of the form

.✓1; : : : ; ✓5/ D .✓1; ✓2; ✓3; 2✓3 � ✓2; 2✓3 � ✓1/

for the values of the parameter of phase shift close to ⇡=2:
As already indicated, a system of globally coupled identical phase oscillators each of which (together with the

coupling) is given by a single equation of the form (1) cannot have chimera states. In the case where the oscillators
are given by more complicated equations (one of the imposed conditions is violated), chimeras may also exist on the
global networks of identical couplings. Thus, in particular, the existence of chimeras in the Kuramoto–Sakaguchi
model with global coupling and delay was shown in [119]. Chimeras in globally coupled complex-valued Stuart–
Landau oscillators were described in [120]. The existence of chimeras in the network of four globally coupled
lasers was shown in [121].

The existence of weak chimeras in the extended Kuramoto–Sakaguchi model with inertia

m
d2✓i

dt2
C "

d✓i

dt
D ! � K

N

NX

jD1

sin.✓i � ✓j � ˛/; i D 1; : : : ; N;

where m and " are additional parameters, was proved for N D 3 in [122]. In this case, two requirements imposed
above are violated, namely, the system is globally coupled and the minimal number of oscillators is equal to three.
At the same time, each oscillator is described by a second-order equation (or by a two-dimensional system). The
results obtained in [122] show that the minimal number of elements (of any kind) for the existence of chimeras in
a dynamical system is equal to three.

The investigations of chimera regimes are carried out in different directions: construction of more complicated
networks of identical elements in which chimeras exist; verification of the existence of chimeras in known networks
but with different nodal elements; comparison of the corresponding results for finite and infinite-dimensional sys-
tems; experimental investigations and their comparison with theoretical results and the data of computer simula-
tions; description of chimeras with certain additional properties (chaotic, fractal, heteroclinic, transitive, etc.), and
investigation of the stability and bifurcations of chimera states. In particular, a classification of the chimera states
according to various criteria can be found in [123]. Numerous recent works appearing in this field demonstrate
that chimeras are now one of the most popular objects in the investigation of the collective regimes in complicated
systems and reveal broad prospects for their subsequent development.
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5. Discussion

In the present paper, we study systems of coupled identical phase oscillators of the Kuramoto type (1) given
on networks with symmetries of various types. It was shown how various types of architecture of the networks and
interaction between the elements affect the existence of different types of collective behavior in the systems. In
particular, it was proved that the presence of symmetries in the interactions between the elements always promotes
the appearance of certain cluster regimes. In turn, cluster regimes correspond to the invariant manifolds of the
system in the case where the clusters are not destroyed under the action of a vector field of the system (this happens
not for all networks). Much attention is given to the description of bifurcations of transitions between different
regimes of collective dynamics.

In the first part of the present paper (see [1]), we described several globally coupled oscillatory systems. It
was shown that the permutation symmetry SN of all oscillators plays a decisive role in the formation of dynamics
of the system. The presence of permutation symmetry results in the existence of all cluster invariant manifolds
with any number of oscillators, which, in turn, leads to the appearance of canonical invariant regions, which bound
the phase-locked trajectories. The subgroups of the symmetry group SN also result in the existence of collective
regimes of various kinds, such as, e.g., the splay state, the global antiphase regime, and various regimes of slow
switching (the existence of these regimes also depends on the parameters of the coupling function). Most of these
regimes are unstable under violations of the identity of eigenfrequencies of oscillators !i : However, symmetric
networks can be regraded as the most convenient starting point for the theoretical investigations and subsequent
analyses of nonsymmetric networks under perturbations of the parameters and in the case of application of the
bifurcation theory.

In the second part of the paper, we have considered the systems with nonglobal interaction between the el-
ements but in the presence of certain symmetries. It is shown that the absence of some couplings between the
elements strongly affects their collective behavior. In particular, the absence of global interaction in each part of
the analyzed system leads to the breaking of permutation symmetry, a smaller number of possible cluster regimes,
the absence of closed invariant regions, and the appearance of phase-unlocked orbits. The absence of global cou-
plings in the network leads to the disappearance of certain collective regimes accompanied by the formation of an
even greater number of new regimes with very nontrivial specific features. Thus, it was shown that the oscillatory
system with central element has the property of multistability of the antiphase “competition for synchronization”
regimes and that the system of indistinguishable elements may have either chimera states or the conservative-
dissipative dynamics. It was also shown that parity or oddness of the coupling function may turn an oscillatory
system into a gradient or conservative system. It is also worth noting that the systems with global and circulant
skew-symmetric coupling have the opposite properties in this respect.

Note that various models of Kuramoto-type phase oscillators are the simplest dynamical systems with one-
dimensional nodes and without additional equations specifying the interaction between the elements. Nevertheless,
these systems have a very broad spectrum of collective dynamics corresponding to the most important regimes ob-
served in more complicated systems. In addition, the Kuramoto-type systems prove to be among the systems most
convenient for the analytic investigation of the collective behaviors. In many cases, it turns out that the obtained
and well-studied regimes typical of simple oscillatory models also appear in a certain (possibly modified) form
in much more complicated physical, chemical, or neural systems. In the most evident way, this observation is
illustrated by the phenomenon of chimera states whose existence was established for various and often fairly com-
plicated natural systems. The investigation of simpler models of interacting elements often opens new directions
for their analysis and gives tools for the study of more complicated and general systems with similar specific fea-
tures of the architecture of networks. The aim of the present survey was not only to describe some theoretical
results obtained for relatively complicated symmetric dynamical systems but also to demonstrate the potentialities
and broad prospects of the investigation and description of the natural phenomena of collective interaction on the
basis of various oscillatory Kuramoto-type models.
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